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Abstract—Wind profile prediction at different scales plays

a crucial role for efficient operation of wind turbines and

wind power prediction. This problem can be approached in

two different ways: one is based on statistical signal process-

ing techniques and both linear and nonlinear models can be

employed either separately or combined together for profile

prediction; on the other hand, wind/atmospheric flow analysis

is a classical problem in computational fluid dynamics (CFD) in

applied mathematics, which employs various numerical methods

and algorithms, although it is an extremely time-consuming

process with high computational complexity. In this work, a

new method is proposed based on synergy’s between the signal

processing approach and the CFD approach, by alternating the

operations of a quaternion-valued least mean square (QLMS)

algorithm and the large eddy simulation (LES) in CFD. As

demonstrated by simulation results, the proposed method has

a much lower computational complexity while maintaining a

comparable prediction result.

Index Terms—wind profile prediction, linear prediction,

quaternion-valued signal processing, computational fluid dynam-

ics

I. INTRODUCTION

Wind profile (including speed and direction in our context)

prediction at different scales (short-term, mid-term and long-

term) plays a crucial role for efficient operation of wind

turbines and wind power prediction. This problem can be

approached in two different ways: one is based on statistical

signal processing techniques and both linear and nonlinear

(such as artificial neural networks) models can be employed

either separately or combined together for profile prediction;

on the other hand, wind/atmospheric flow analysis is a classical

problem in computational fluid dynamics (CFD) in applied

mathematics, which employs various numerical methods and

algorithms, although it is an extremely time-consuming pro-

cess with high computational complexity. The aim of this

work is to develop efficient and effective methods for wind

profile/atmospheric flow prediction based on synergies be-

tween the statistical signal processing approach and the CFD

approach.

For the signal processing side, recently, the hypercomplex

concepts have been introduced to solve problems related to

three or four-dimensional signals [1], such as vector-sensor

array signal processing [2], color image processing [3] and

wind profile prediction [4], [5]. In many of the cases, the

traditional complex-valued adaptive filtering operation needs

to be extended to the quaternion domain to derive the corre-

sponding adaptive algorithms, such as the quaternion-valued

Least Mean Square (QLMS) algorithm in [6]. Since wind

velocity in our study is three-dimensional, based on the wind

data produced from CFD with a chosen sampling frequency,

the QLMS algorithm derived earlier can be used to predict the

wind velocity effectively.

On the other hand, as a branch of fluid mechanics, CFD

adopts numerical approaches and algorithms to tackle various

fluid flow problems. Usually, computers are used to solve

the equations that model the motions of liquids and gases

with suitable boundary conditions. There are some simulation

methods being used to solve wind prediction problems, such

as direct numerical simulation (DNS), large eddy simulation

(LES) and the subgrid-scale (SGS) model. In our work, we

will use the LES as well as the state-of-art SGS models to

simulate the wind field around wind farms, and use the DNS

method to produce reference signals.

To combine the QLMS algorithm and the LES and SGS

simulation models together, two approaches can be adopted

here: one is to combine the results of QLMS prediction and

LES by an appropriate weighting function and the other is to

alternate their operations in series. Here, as the first step in our

research, we will focus on the alternating method and show

that its running time is much shorter than the CFD method

while still maintaining a comparable prediction result. We will

leave the first approach as a topic for our future research.

This paper is structured as follows. The signal processing
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based prediction method including the QLMS algorithm is

introduced in Sec. II, while the CFD based methods are

presented in Sec. III. The proposed alternating method is

described in Sec. IV. Simulation results are provided in Sec. V,

and conclusions are drawn in Sec. VI.

II. SIGNAL PROCESSING BASED PREDICTION

For the signal processing based approach, we can use the

Wiener solution for quasi-stationary scenarios and the QLMS

algorithm for the more general case with constantly changing

data statistics. Here we introduce the QLMS algorithm first,

followed by the quaternion-valued Wiener solution.

A. The QLMS Algorithm

The following is a brief review of the QLMS algorithm. The

output y[n] and error e[n] of a standard adaptive filter can be

expressed as

y[n] = wT [n]x[n] (1)

e[n] = d[n]− wT [n]x[n], (2)

where w[n] is the adaptive weight vector with a length of L,

d[n] is the reference signal, x[n] = [x[n], x[n− 1], · · · , x[n−

L+1]]T is the input sample sequence vector, and {·}T denotes

the transpose operation. The cost function based on the instan-

taneous squared quaternion-valued error is J0[n] = e[n]e∗[n].

Its gradient is given by

∇w∗J0[n] =
∂J0[n]

∂w∗
(3)

∇wJ0[n] =
∂J0[n]

∂w
(4)

with respect to w∗[n] and w[n], respectively. According to

[7], [8], the conjugate gradient gives the maximum steepness

direction for the optimization surface. Therefore, the conjugate

gradient ∇w∗J0[n] will be used to derive the update of the

coefficient weight vector.

Then, we have the final gradient result

∇w∗J0[n] = −
1

2
e[n]x∗[n]. (5)

With the general update equation for the weight vector

w[n+ 1] = w[n]− µ∇w∗J0[n], (6)

we arrive at the following update equation for the QLMS

algorithm with a step size µ

w[n+ 1] = w[n] + µ(e[n]x∗[n]). (7)

Note that although the above update equation has a similar

form as the traditional complex-valued LMS algorithm, here

the order of the parameters can not be changed since the

quaternion algebra is not commutable.

B. The Wiener Solution

To obtain the Wiener solution, we minimize the mean

squared prediction error as follows

min
w

E{e[n]e∗[n]} , (8)

where E{} represents the expectation operation.

From [9], [10], based on the instantaneous gradient result,

the optimum solution wopt should satisfy

E{−
1

2
x[n]e∗[n]} = 0. (9)

In particular,

E{x[n]e∗[n]} = E{x[n]d∗[n]} − E{x[n]x[n]Hw∗

opt}

= p − Rsw∗

opt = 0, (10)

where the cross-correlation vector p = E{x[n]d∗[n]} and

the covariance matrix Rs = E{x[n]s[n]H}. Note that the

superscript H denotes Hermitian transpose. Then, we have

w∗

opt = R−1

s p. (11)

The covariance matrix Rs can be expressed in expanded

form using the condition of wide-sense stationarity [11]

Rs =















r(0) r(1) · · · r(L− 1)

r∗(1) r(0) · · · r(L− 2)

...
...

. . .
...

r∗(L− 1) r∗(L− 2) · · · r(0)















(12)

where r(k),k = 0, 1, · · · , L−1 is the autocorrelation function

of the process for a lag of k, given by

r(k) = E[s[n]s∗[n− k]], k = 0, 1, · · · , L− 1. (13)

Correspondingly, the cross-correlation vector p can be de-

scribed by the expanded form below

p = [p(0), p(−1), · · · , p(1− L)]T . (14)

where p(−k) = E[s(n)d∗[n]], k = 0, 1, · · · , L− 1.

III. CFD BASED SIMULATION METHODS

In this section, we give a review of CFD by introducing

some basic CFD concepts and simulation methods. In partic-

ular, two of the most popular simulation methods called DNS

and LES are presented.

A. Fluid Dynamics Equations

The Navier-Stokes equations are the basis of fluid mechan-

ics. They are essentially the mathematical formulation of the

Newton’s second law applied to fluid motions. The general

expression of the equation is

ρ(
∂u

∂t
+ (u · ∇))u = −∇P + η∆u (15)

where u is the fluid velocity at a particular spatial location at

a given time, P is the pressure, ρ is the fluid density, and η
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is the dynamic viscosity of the field. The left hand side of the

equation is acceleration of the fluid, whilst on the right side

are (the gradient of) the forces, including pressure and viscous

force. Together with the conservation of mass and suitable

boundary conditions, the Navier-Stokes equation can model a

large class of fluid motions accurately [12].

B. Turbulence

The second term on the left hand side of equation (15)

represents the contribution from the advection of fluid particles

to fluid acceleration, and is customarily called the inertial

force. The second term on the right hand side represents

the viscous force. The ratio of these two forces is defined

as the Reynolds number (Re). As it turns out, when Re

is large, the flows tend to become unstable and generate

a spectrum of high frequency components in the velocity

signal. Such a regime of fluid motions is called turbulence.

Atmospheric flows, including the wind fields around wind

farms, are always turbulence [13]. Due to presence of the high

frequency components, the CFD calculation of the velocity

signal in turbulent wind fields becomes very time consuming

unless simplified models are introduced.

C. Direct Numerical Simulation (DNS)

DNS is a simulation method for turbulence, which solves

the Navier-Stokes equation directly without employing any

turbulence models [14]. It is easy as well as accurate to apply.

However, the computational cost can be very high if Re is

large. Therefore, this method is not yet applicable to practical

situations [12], such as the atmospheric flows that we will

be dealing with. Nevertheless, we can choose to use DNS to

generate the velocity signals in this study as a reference when

we compare the accuracies of different prediction methods.

D. Large Eddy Simulation (LES) and Subgrid-Scale (SGS)

Models

Large eddy simulation (LES) is a popular modeling ap-

proach for turbulence proposed by Joseph Smagorinsky to

simulate atmospheric air currents [15], and first explored by

Deardorff in 1970 [16], where we eliminate the small length

scales of the velocity field and simulate the large scales only,

which reduces the calculation cost. However, due to nonlinear

nature of the Navier-Stokes equation, the small scales are

coupled to the large scales. The effects of small scales have to

be modeled; otherwise, the solution will diverge. The model

adopted is called the subgrid-scale model.

In our study, we will use the LES as well as the state-of-art

SGS models to simulate the wind field around wind farms.

IV. THE COMBINED APPROACH

As mentioned, there are different ways of combining the

signal processing approach and the CFD approach to obtain a

Initial Conditions

DNS Approach

QLMS Algorithm

Reference Signal

LES Method Prediction Results

Fig. 1. The alternating process.

more effective and efficient method for wind profile prediction.

In our current study, we mainly focus on the issue of efficiency,

i.e. we aim to develop a method which can achieve a similar

level of accuracy as the CFD approach but with a lower

complexity. Certainly, it is possible to increase the complexity

of the new method a little (but still lower than the original

CFD approach) and achieve a more accurate result and in this

case the new method could be more efficient and at the same

time more effective as well.

In the combined method, the signal processing part employs

the QLMS algorithm, while for the CFD part, LES based on

the Smagorinsky SGS model will be employed. The alternating

process is described as follows. First, the QLMS algorithm is

used to obtain the predicted wind velocity, and then we use the

prediction result as the initial conditions for the LES method

for calculating the next stage of the wind velocity. In the next

round, the same process is repeated. The process flow chart is

shown in Fig. 1.

As the LES approach is accurate but time consuming with a

high computational cost, and the QLMS algorithm has a very

low complexity, an alternating combination of these two will

produce a method with a much lower complexity.

When comparing the accuracy of the new method with the

CFD approach (the LES method in this context), the CFD data

generated by DNS is used as a reference. The DNS simulation

is based on a denser grid than the LES: 64×64×64 grid points

for DNS and 32× 32× 32 grids for LES. The code is written

in FORTRAN 90. Running the code, we can then generate a

time series of three-dimensional turbulent wind velocity fields.

Note that an appropriate sampling frequency when calcu-

lating the flow field is essential for effective and efficient

prediction. Several data sets with different sampling frequen-

cies will be used to work out the normalised error and then

compare them to find out the desired sampling frequency for

the studied scenario. Using the DNS method to generate the

data, for each sampling frequency, a sample sequence will

be produced for calculating the correlation matrix/vector to

obtain the Wiener solution. Then, we can find the proper
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TABLE I

NORMALISED PREDICTION ERROR

P e1 e2

1 0.0538 0.0854

2 0.0969 0.0762

3 0.0889 0.0811

4 0.1115 0.0842

5 0.0880 0.0759

6 0.0861 0.0924

7 0.1042 0.1028

8 0.1013 0.0973

9 0.1022 0.0871

10 0.0960 0.0820

TABLE II

RUNNING TIME (SECONDS)

P t1 t2

1 260.9 214.1

2 484.6 380.4

3 832.2 533.2

4 1432.5 657.4

5 1813.6 787

6 1951.4 1015.9

7 2338.9 1253.2

8 2465 1177.1

9 2489.3 1464.7

10 3134.3 1646.4

sampling frequency with reasonable range of errors and use

this sampling frequency to apply the QLMS algorithm and the

CFD method for alternating prediction.

V. SIMULATION

Simulation results will be provided in this section to show

the performance of the proposed alternating method. Based on

an analysis of the correlation generated by the CFD data, we

have chosen the sampling frequency as 1/6 Hz for this data

set, i.e. the sampling interval between adjacent samples is 6

seconds. The other parameters are: the length of the FIR filter

is L = 16 and the step size is µ = 1× 10−5.

The results are shown in Table I, where the first column

is the prediction advance value P , e1 the normalised error

between the LES method and the DNS method, and e2 is the

normalised error between the combined method and the DNS

method. We can see that in terms of the normalised prediction

error, the two methods have a very similar performance. As

to the computational complexity, we show the running time of

the two methods in Table II, where t1 and t2 are for the LES

method and the alternating method, respectively. We can see

that the running time for the LES method is nearly doubled

when compared to the alternating method as the prediction

advance step increases, highlighting the clear advantage of the

proposed combined alternating method.

VI. CONCLUSIONS

In this work, both the CFD approach and the signal

processing approach have been reviewed briefly, and a new

combined method is proposed by alternating the operation of

the QLMS algorithm and the LES method one by one. As

demonstrated by computer simulations, the proposed method

has a much lower computational complexity with roughly half

of the running time of a standard LES operation, while still

maintaining a comparable performance in terms of prediction

accuracy. In the future, a thorough study of this new method

will be performed and its various extension/variation will also

be investigated.
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