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Map LineUps: effects of spatial structure on graphical inference

Roger Beecham, Jason Dykes, Wouter Meulemans, Aidan Slingsby, Cagatay Turkay and Jo Wood Member, IEEE

Fig. 1: Two map line-up tests. Left: constructed under an unrealistic null of Complete Spatial Randomness. Right: constructed under

a null in which spatial autocorrelation occurs.

Abstract—Fundamental to the effective use of visualization as an analytic and descriptive tool is the assurance that presenting data
visually provides the capability of making inferences from what we see. This paper explores two related approaches to quantifying the
confidence we may have in making visual inferences from mapped geospatial data. We adapt Wickham et al.’s ‘Visual Line-up’ method
as a direct analogy with Null Hypothesis Significance Testing (NHST) and propose a new approach for generating more credible spatial
null hypotheses. Rather than using as a spatial null hypothesis the unrealistic assumption of complete spatial randomness, we propose
spatially autocorrelated simulations as alternative nulls. We conduct a set of crowdsourced experiments (n = 361) to determine the
just noticeable difference (JND) between pairs of choropleth maps of geographic units controlling for spatial autocorrelation (Moran’s
I statistic) and geometric configuration (variance in spatial unit area). Results indicate that people’s abilities to perceive differences
in spatial autocorrelation vary with baseline autocorrelation structure and the geometric configuration of geographic units. These
results allow us, for the first time, to construct a visual equivalent of statistical power for geospatial data. Our JND results add to
those provided in recent years by Klippel et al. (2011), Harrison et al. (2014) and Kay & Heer (2015) for correlation visualization.
Importantly, they provide an empirical basis for an improved construction of visual line-ups for maps and the development of theory to
inform geospatial tests of graphical inference.

Index Terms—Graphical inference, spatial autocorrelation, just noticeable difference, geovisualization, statistical significance.

1 INTRODUCTION

Maps are attractive tools for studying spatial processes. They convey
patterns, structures and relations around the distribution and extent of
phenomena that may be difficult to appreciate using non-visual tech-
niques [12]. However, even when trained in spatial data analysis, hu-
mans find it difficult to reason statistically about spatial patterns [10].
This is especially true when visually analysing patterns in choropleth
maps (Figure 1). Here, spatial units are coloured according to a sum-
mary statistic describing some process, such as local crime or unem-
ployment rates. The same colour value representing a local average or
rate is used for the entirety of that spatial unit and units can vary in size,
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shape and visual complexity. Notice also the boundaries between spa-
tial units: they are very often detailed and thus highly visually salient,
yet are typically incidental to the phenomena being depicted. In an
exploratory visual analysis, these types of effects may lead to faulty
claims about apparently discriminating spatial processes.

Graphical inference [20] is a technique that may offer support here.
Wickham et al.’s line-up protocol – where an analyst must identify a
‘real’ dataset from a set of decoys constructed under a null hypoth-
esis – is intended to confer statistical credibility to any visual claim
of discriminating structure. However, although there is some empiri-
cal support for line-up tests as a generalisable classification task [18],
there are few examples demonstrating or providing empirical evidence
for their use when applied to choropleth maps. The mismatch between
the statistical parameters describing a spatial pattern and graphical per-
ception of those parameters is not well understood.

Klippel et al. [10] investigate this phenomenon through laboratory
tests that explore people’s ability to identify statistically significant
spatial structure in two-colour maps consisting of regular grids. Al-
though Klippel et al.’s experimental set-up is impressive, the authors
do not attend to the role of geometry or shape in affecting ability to
discriminate between different spatial processes. The three statistical



spatial structures considered relate to a tradition within geography of
testing against a null assumption of spatial independence, or complete
spatial randomness (CSR), a condition which is highly unlikely for
most spatial data. Also, in focusing on three categories of spatial au-
tocorrelation structure, Klippel et al. do not consider systematically
how visual perception varies with different intensities of autocorrela-
tion structure.

A number of recent studies (e.g. [16, 7, 9]) have contributed
empirically-validated models for describing how individuals perceive
non-spatial correlation in different visualization types. These models
quantify how ability to perceive differences in statistical correlation
varies at different baseline intensities of that structure, as measured by
Pearson product-moment correlation coefficient (r) [16], and between
visualization types [7, 9]. We apply and adapt the techniques used in
these studies in order to model how individuals perceive spatial auto-
correlation in differing choropleth maps. The differences in map type
relate not to the encoding of data to visual variables, but to the char-
acteristics of the region under observation. We use model parameter
estimates and exploratory analysis of the response data to suggest rec-
ommendations for setting up visual tests of spatial autocorrelation in
maps. Data are collected from 361 Amazon Mechanical Turk workers.
We apply the secondary data analysis of Kay & Heer [9] as closely as
possible and find that:

• Ability to discriminate between two maps of differing spatial au-
tocorrelation varies with the amount (or intensity) of baseline
positive spatial autocorrelation.

• Comparison of spatial autocorrelation in maps is more challeng-
ing than comparison of non-spatial structure. The difference in
autocorrelation required to discriminate maps is greater than that
observed in Harrison et al.’s study.

• Introducing greater irregularity into the geometry of choropleths
makes tests more challenging (the difference in autocorrelation
required to discriminate maps is again larger), but also results in
greater variability in performance.

• There is substantial between-participant variation. This may be a
limitation of using a crowdsourcing platform. It may also relate
to idiosyncrasies and visual effects introduced into the received
stimulus that we cannot easily quantify.

Our findings offer early empirical evidence for an improved con-
struction of line-up tests using maps. We reflect on this and outline
an immediate research agenda and theory to inform geospatial tests of
graphical inference.

2 BACKGROUND

2.1 Spatial autocorrelation structure in geography

A well-rehearsed concept in spatial analysis disciplines is that of
spatial dependence, or Tobler’s First Law of Geography, which states
that: “everything is related to everything else, but near things are
more related than distant things” [17]. Geographers have developed
numerous analytic techniques for measuring spatial autocorrelation
and deciding whether an observed spatial process is really present.
The orthodoxy here is to perform a test of whether the observed
pattern is significantly different from random. Geographers ask how
probable the observed pattern would be if an assumption of spatial in-
dependence, or complete spatial randomness (CSR), were operating.
Moran’s I coefficient [13] is the de facto summary statistic for spatial
autocorrelation; it describes the distance-weighted co-variation of
attribute values over space and is defined by:

I =
n

∑i ∑ j wi j

∑i ∑ j wi j(zi − z̄)(z j − z̄)

∑i(zi − z̄)2
(1)

The numerator in the second fraction is the covariance term: i and
j refer to different geographic measurements in a study region, spa-
tial units or polygon areas in the case of choropleth maps, and z the

attribute value of each geographic measurement, for example local
crime rates or house prices. The degree of dependency between ge-
ographic units is characterised by wi j , which refers to positions in a
spatial neighbours’ weights matrix, neighbours being typically defined
by shared boundary (as in [19], see [2]) and weighted according to an
assumption that influence is inversely proportional to distance (1/di j

or 1/d2
i j). Notice that I is normalised relative to the number of units

being considered and the range in attribute values (z). As with Pear-
son product-moment correlation coefficient (r), Moran’s I can range
in value from 1 (complete positive spatial autocorrelation), through 0
(complete spatial randomness), to -1 (complete negative spatial auto-
correlation).

When testing for statistical significance, Moran’s I can be compared
to a theoretical distribution, but since the spatial structure of the map
is also a parameter in the analysis [14] – the geometry of a region
partly constrains the possible Moran’s I that can be achieved – a more
common procedure is to generate a sampling distribution of Moran’s I
empirically by permuting attribute values within a region any number
of times and calculating Moran’s I on each permutation. This is the
same technique proposed in Wickham et al. [20] for generating decoys
in line-up tests of spatial independence.

The assumption of CSR within geographic analysis is a strange one.
Acceptance of Tobler’s first law is an acknowledgment that CSR can
never exist. Rejecting a null of CSR therefore reveals little about the
process that is actually operating [14]. We get a sense of this when
generating line-up tests with choropleth maps (Figure 1). Imagine that
the maps convey per capita household income. The decoys in the left
map line-up generated under the null hypothesis of CSR ‘look’ far
less plausible than the more autocorrelated decoys in the right line-up.
Tobler’s Law tells us that CSR is unlikely for geographical data and
this is easily observable in practice.

Our proposal is instead to generate line-up tests with non-CSR de-
coys that are more visually plausible and therefore potentially analyt-
ically useful. For example, an analyst believes that she has identified
a spatial pattern of interest – that the spatial distribution of crime rates
in small neighbourhood units of a Local Authority are spatially auto-
correlated. She then specifies a more ‘sensible’ null hypothesis; for
instance, one that contains autocorrelation structures we typically see
in crime datasets for areas with the same type of geography. A number
of null datasets (decoys) are created under this null hypothesis for use
in a line-up test. This procedure allows us to compare our pattern of
interest against plausible nulls, established in line with observations
that comply with Tobler’s Law.

2.2 Visual perception of spatial autocorrelation structure

Crucial to such an approach is an understanding or expectation of the
power, loosely defined, of such a test. In frequentist statistics, power
is the probability of rejecting the null hypothesis if there is a true effect
of a particular stated size in the population [5]. Power is thus contin-
gent on experimental design, sample size, confidence level and target
effect. Experimental designs with extremely large sample sizes are
said to have high power as the null hypothesis may be rejected with
even negligible differences in effect.

Before proceeding with spatial line-up tests, it is necessary to at-
tempt to estimate the power likely in different line-up designs. How-
ever, a visual analogue of power may need to be considered slightly
differently. Our modified conception uses power as a mechanism for
describing the sensitivity of a map line-up test: that is, the probabil-
ity of visually detecting a statistical effect where that effect exists in
the data. Our presupposition is that, when constructing visual line-up
tests with maps, the size of this statistical effect varies not with sam-
ple size, but with the baseline intensity of autocorrelation and the level
of irregularity in the regions under observation. We hope to establish
empirical support for this assumption and derive a model of its effect.

Klippel et al.’s [10] work is prescient here. The authors sought to
investigate: “when and how . . . a spatial pattern (statistically signifi-
cant clustering or dispersion) represented on a map become[s] percep-
tually and conceptually salient to someone interpreting the map” [10,
p1013]. Participants were presented with 90 two-colour maps laid out



as regular 10× 10 grid cells. Several autocorrelation structures were
generated: clustering of the two colours (positive spatial autocorrela-
tion), random distribution (spatial randomness) of those colours and
dispersed (negative spatial autocorrelation). The authors found that
dominant colour has the most substantial effect on participants’ abil-
ity to identify statistically significant spatial clustering, that random
patterns are harder to identify than significantly clustered or dispersed
patterns and also that background and recent training in the concept of
spatial autocorrelation has relatively little effect on ability to discrimi-
nate statistically significant spatial dependency.

Klippel et al.’s study design and findings are compelling. However,
in limiting the stimulus to two-colour, regular grid maps, the authors
avoid visual artefacts introduced by ‘real’ geography, such as variation
in geometry, that likely interact with human abilities to perceive auto-
correlation structure. In addition, the thresholds of spatial autocorre-
lation structure used in Klippel et al.’s study – statistically significant
clustering, dispersion and randomness – relate closely to the tradition
in geography of testing against CSR. The authors therefore do not ad-
dress systematically how perception varies as a function of different
intensities of spatial autocorrelation structure.

2.3 Modelling perception of non-spatial correlation

Three notable studies [16, 7, 9] attempt to model how humans per-
ceive data properties, in these cases bivariate correlation structure,
when such data are presented at different baseline levels of correlation
and in different visualization types. Crucial to this work is the con-
cept of Just Noticeable Difference (JND) – how much a given stimulus
must increase or decrease before humans can reliably detect changes
in that stimulus [7]. We believe the concept of JND, and Rensink
& Baldridge’s and later Harrison et al.’s procedure for estimating it,
might provide useful information for constructing map line-up tests
with varying intensities of spatial autocorrelation structure – poten-
tially giving an estimate of the size of effect required to discriminate
that structure.

3 EXPERIMENT

3.1 Methodology

We re-implement the staircase procedure employed by Rensink &
Baldridge [16] and Harrison et al. [7] as closely as possible, using
Moran’s I as our measure of spatial autocorrelation. For a given spa-
tial autocorrelation target, we show participants two choropleth maps
side-by-side with different values of Moran’s I and ask them to se-
lect the one they perceive to have the greater spatial autocorrelation
structure. If they are correct, we make the subsequent test harder by
showing two new maps in which the difference between the values
of Moran’s I is reduced. If they are incorrect, we make the test eas-
ier by increasing the difference in Moran’s I between the two maps.
This process continues until a given stability criterion is reached; the
staircase procedure thus aims to “home-in” [7] on JND.

There are two staircase approaches – those operating from above
and those from below. In the above case, the comparator (non-target)
map is characterised by a value of Moran’s I higher than the target: 0.8
if the target is 0.7 and the difference being tested is 0.1. In the below
case, the comparator (non-target) map is characterised by a value of
Moran’s I lower than the target: 0.6 assuming the same target as above.
This distinction becomes important when considering the distribution
of our observed JNDs and likely ceiling effects.

Both Rensink & Baldridge and Harrison et al. start the staircase
with a distance in r of 0.1. This distance in r decreases in steps of 0.01
where the more correlated plot is correctly identified. Where partici-
pants fail to correctly identify the more correlated plot, they are moved
backwards by three distance steps (0.03). The staircase procedure ends
after 50 assignments have been made or a stability criterion is reached.
This stability criterion is computed continuously using a moving win-
dow of the last 24 user assignments. Here, the last 24 assignments are
ordered chronologically and divided into three groups, each consisting
of eight successive tests. Stability is reached when there is no signif-
icant difference between these three sets of observations as calculated
via an F−test (2,21; α = 0.1). Given the ratio of distances in r used to

decrease and increase the difference between target-comparator pairs,
the resulting JNDs approximate to the minimum difference in r that
can be correctly perceived 75% of the time.

To adapt the staircase procedure for maps it was necessary to de-
part slightly from certain decisions taken by Rensink & Baldridge and
Harrison et al. [16, 7]. Firstly, since we think comparisons of spa-
tial autocorrelation are particularly demanding (as evidenced by the
performance of the expert participants in the Klippel et al. tests [10])
and more visually complex than in the non-spatial equivalents, we do
not expect to estimate JND to the same level of precision as in these
earlier papers. Our approach to decreasing and incrementing data dis-
tance is procedurally the same, but our distance steps are coarser. We
increment by 0.05 and penalise by 0.15 – using the same ratios but a
different scaling. Additionally, in cases of exceptional performance –
if participants successfully discriminate between the more autocorre-
lated map at a distance of 0.05 – we introduce two finer steps of 0.03
and 0.01, again penalising incorrect assignments by three steps in the
staircase. There is a risk that this addition may result in a staircase not
reaching stability since unequal variance is introduced at the very end
of the staircase. Analysis of individual performance during a pilot sur-
vey and also on the full collected dataset does not suggest this effect
to be of practical concern.

A second departure, which also has implications for the staircase,
is the baseline Moran’s I used in the targets. Rensink & Baldridge
and Harrison et al. consider six targets: three displaying relatively low
correlation (0.3, 0.4, 0.5); three displaying high correlation (0.6, 0.7,
0.8). Since we are unsure as to the extent of a linear relationship be-
tween derived JND and baseline Moran’s I, we wish to collect data on
a larger number of targets. We therefore add targets of 0.2 and 0.9.

Harrison et al. identify the problem of ceiling and floor effects: an
upper limit of r = 1 and a lower limit of r = 0 where positive correla-
tion is considered. With a target of 0.8 and an approach from above,
for example, participants may fail to discriminate the plots at the max-
imum possible distance (0.2) and answer randomly for the remainder
of that test case. We expect to observe a strong ceiling effect contin-
gent on approach. Chiefly, this is because we anticipate much wider
JNDs than appear in the non-spatial correlation example. A second
reason is more procedural – simulating autocorrelation structure of
values greater than 0.95 using our described permutation approach be-
comes problematic. We therefore cap the upper ceiling of Moran’s I
to 0.95. We revisit the role of ceiling and floor effects when discussing
our observed results.

3.2 Materials

Motivating the user study is the need to understand how numerically-
defined autocorrelation structure in choropleth maps is visually per-
ceived; and the desire to use this knowledge to derive empirically-
informed recommendations around the design and configuration of vi-
sual line-up tests. For this reason, we consider it important to base
our experiments on realistic geometries typical of those used in choro-
pleth maps. It is difficult to generate these synthetically; for exam-
ple, Voronoi polygons of differently clustered point patterns often do
not look realistic. We instead use real geographies. To avoid pre-
conceptions about spatial processes operating in these real regions,
however, we choose geographic units likely to be unfamiliar to partic-
ipants. UK Census Output Areas (OA)1 offer this. There are approxi-
mately 175,000 OAs in England and Wales. OAs are the lowest level
at which population geography is made available, with an average of
about 150 households per unit, and the areas of units vary depending
upon population density.

We wish to generate maps from these OAs that contain approx-
imately 50 unique polygons. An initial approach was to randomly
select an OA and find its 49 nearest neighbours. This is simple and
procedurally efficient, but usually produces regions that are generally
circular and seem unrealistic. Instead we use Middle Super Output Ar-
eas (MSOAs) – a higher level census geography composed of approx-
imately 25 OAs. Combining the OAs contained within two adjacent

1UK Office of National Statistics website: http://bit.ly/1PGyYUr



Fig. 2: Example stimuli used in the experiments. Three categories of geography were used: regular grid, regular real and irregular real.

MSOAs gives us the sets of ∼50 unidentifiable and realistic regions
that we need.

As regions become more irregular, visual artefacts or idiosyncrasies
become more likely. We want to investigate how irregularity of ge-
ography affects the ability to discriminate between autocorrelation in
maps. Our region-selection approach not only enables the use of real
regions; it also allows us to select regions of varying irregularity from a
sampling distribution that is representative and realistic of geometries
commonly encountered in choropleth maps.

We try to characterise the irregularity of study regions in two ways:
using the Nearest Neighbour Index and coefficient of variation. The
Nearest Neighbour Index (NNI) is the average distance between each
geographic unit and its nearest neighbour divided by the average area
of units in that study region. The coefficient of variation (cv) measures
the variation in areal extent of a series of geographic units, capturing
the degree of similarity or irregularity in sizes of individual units. Af-
ter visually inspecting maps generated at various thresholds of these
measures, we find cv to be more consistently discriminating and con-
ceptually perhaps most closely relates to the category of irregularity
likely to interact with ability to discriminate autocorrelation structure
in maps. We select maps at two positions in this sampling distribution,
representing geometries that contain spatial unit sizes that are compar-
atively regular (cv ∼0.4) and irregular (cv ∼1.2) (Figure 2). Addition-
ally, for comparison we generate maps in the contrived regular grid
(7×8) layout. Thus, our three levels of irregularity are: irregular real,
regular real and regular grid (Figure 2).

Generating the choropleth maps used as stimuli in our experiment
is procedurally straightforward. We use the same technique employed
by Wickham et al. [20] when proposing decoy plots in line-up tests.
Unique maps are created by permuting the attribute values of each ge-
ographic unit until a desired intensity of spatial autocorrelation struc-
ture, as measured by Moran’s I, is reached. Where the target increases
above a Moran’s I of 0.3, this procedure becomes very slow. We accel-
erate the process by starting with a unique permutation and recording
the resulting map’s Moran’s I. We then randomly sample a pair of
individual geographic units and swap their attribute values. If this op-
eration reduces the distance in I between the current I and our target,
the swap remains and we randomly sample a new geographic unit pair.
This continues until a desired Moran’s I value is reached. Despite the

edit to our map generation procedure, we cannot generate choropleth
maps sufficiently quickly for use in a dynamic testing environment
as do Harrison et al. when generating different intensities of bivari-
ate correlation structure. It is therefore necessary to pre-generate all
maps used in our staircase tests. For each position in the staircase
(unique target × comparator pair), thirteen iterations of that position
are generated. This requires 4,784 maps for each geometry type and
an execution time of ∼2 hours per geometry. We use a continuous se-
quential colour scheme derived through linear interpolation between
shades defined in ColorBrewer YlOrBr [8].

An advantage of pre-generating and storing the maps is that we
can relate participant assignments to the exact stimulus received and
explore factors such as the influence of areas of the map dominated
with darker colours. All stimuli used in the tests are generated in the
R programming environment. The code, boundaries for the UK ad-
ministrative areas, along with the data analysis can be accessed at:
http://www.gicentre.net/maplineups.

3.3 Procedure

The conditions in our experiment again closely mirror those described
by Harrison et al.. We test eight target values of Moran’s I, which
can be divided into two groups representing low [0.2, 0.3, 0.4, 0.5]
and high [0.6, 0.7, 0.8, 0.9] spatial autocorrelation, and for each tar-
get use two categories of approach (above and below) for estimat-
ing JND. Participants are assigned to one high and low target and for
each target complete two staircase attempts to detect the JND for that
target – one using the above approach and one the below approach.
Each participant thus performs four separate trials. We use a coun-
terbalanced design: for each unique target pair, the order receiving
high− f irst× low−second | low− f irst×high−second is varied sys-
tematically between participants. The geography-type does not vary
within-subject. A single participant completes all tests on the same
geography-type: either regular grid, regular real or irregular real.

Prior to starting the test, participants are provided with a brief intro-
duction to spatial autocorrelation and perform a short ‘dummy’ stair-
case. We assume that most participants are unfamiliar with the con-
cept of spatial autocorrelation. Conveying this concept with the same
brevity achieved in the case of non-spatial autocorrelation by Harri-
son et al. is challenging. In addition to a textual explanation, we pro-
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Fig. 3: Image used in training. We suggest strategies for judging spatial autocorrelation structure.

vide an image with suggested strategies for identifying autocorrelation
structure (Figure 3).

During the ‘dummy’ test, the staircase procedure is made explicit.
Participants are given feedback on whether they chose correctly and if
so, are informed that the subsequent test will be more challenging; if
not, that it will be more easy. Feedback without this description is also
given during the formal tests. Throughout the test procedure partici-
pants are made aware of their performance. Following Peer et al.[15],
we attempt to mitigate against poor respondent performance by requir-
ing Amazon Mechanical Turk (AMT) workers with an approval rating
of at least 99%, having completed more than 10,000 AMT HITs.

Data were collected from 361 participants; all registered workers
on AMT. Forty-two percent were female, 25% reported holding a high
school diploma as their highest level of qualification, 52% were edu-
cated to Bachelors level, 19% to Masters level and 2% were PhDs. To
enable meaningful quantitative analysis of results, data from 30 par-
ticipants were collected for each geography×target×approach com-
bination. Participants were paid $2.18 to complete the survey; since
the median completion time was 18 minutes, this approximates to the
US minimum wage.

4 RESULTS

4.1 Data cleaning

A consequence of using a crowdsourced platform for perception re-
search is greater uncertainty around whether concepts are understood
and whether participants make a concerted effort to perform the task
seriously. Harrison et al. validate the use of AMT for their test by
running a pilot and comparing estimated JNDs with the same graphics
tested in Rensink & Baldridge and using the same procedure, but con-
ducted in a controlled laboratory setting. Inspection of the individual-
level data captured in Harrison et al.’s study (presented in plots ap-
pearing in Kay & Heer’s paper), does suggest some variation between-
participants and the authors discuss the challenge of dealing with ob-
servations where performance is worse than chance.

Our JND scores suffer from between-participant variation. There is
also evidence of certain participants chance-guessing through the pro-
cedure. A challenge particular to our data is that, since we estimate
JND with less precision than Harrison et al. and over a wider range of
target Moran’s I, scores become artificially compressed. This is par-
ticularly true for tests of high baseline Moran’s I where the approach is
from above and of low baseline Moran’s I where the approach is from
below. The ceiling (and floor) effects substantially constrain the pos-
sible values that JND can take. Figures 4 and 5 highlight this problem
of compression due to approach. In Figure 5, observed staircases are
presented for tests that reach ‘stability’ somewhat artificially. Notice
that where the target I is high (0.8) and the approach is from above,

the difference between comparator and target cannot increase above
0.15. Equally, where the target I is low (0.2) and the approach is from
below, the resulting data difference cannot increase above 0.2.

In addition to visual inspection, these ceilings and floors can be
identified from studying accuracy rates for the computed JNDs. Sta-
bility in the staircase procedure is reached when there is no significant
difference between three subgroups describing a user’s last 24 judg-
ments. Given the distances used to increment and decrease data differ-
ence, this should approximate to a user correctly identifying the more
correlated plot 75% of the time. This cut-off procedure nevertheless
fails where there are ceiling or floor effects – there are obvious limits
to the extent to which data difference in I can be increased, the error
rate subsequently increases but the computed F-Statistic is insensitive
to this.

In Harrison et al.’s data, such a compression of scores does not
appear to exist. Instead, the authors identify a more systematic differ-
ence in estimated JNDs between approach conditions and relate this
to the linear relationship between JND and r. Where the approach
is from above, JND is slightly overestimated as the test is compara-
tively easier; where the approach is from below, JND is slightly un-
derestimated. Harrison et al. do identify a chance boundary for JND
– the JND in the staircase procedure that would result from partic-
ipants randomly guessing through the staircase (JND = 0.45). Any
JNDs at or above this boundary would indicate that participants could
not adequately discriminate between the plots. Observations beyond
this chance threshold are not removed, but the proportion of collected
JNDs above the threshold is calculated for each tested visualization
and visualization types with > 20% of observed JNDs worse than the
threshold are removed. In Kay & Heer, the chance threshold is also
used to treat outliers. JNDs approaching or larger than chance are cen-
sored to the threshold or to the JND ceilings or floors.

We also calculate a chance boundary for JND by simulating the
staircase procedure, but pay attention to how this boundary varies by
each test-case (target × approach pair). Clearly, chance in the stair-
case will vary for different target × approach pairs and will tend to-
wards the ceilings where the target is high and the approach is from
above and the floors where the target is low and the approach is from
below. The censoring method described in Kay & Heer may be one ap-
proach to treating outliers where scores are not artificially compressed;
for example, where the target is 0.8, the approach is from below and
the estimated JND is 0.7 – an obvious outlier. This score would be
censored to min(base − 0.05,0.4) → 0.4. Given the precision with
which we estimate JND, simply censoring to these thresholds would
not, as we understand it, remove the observed compression effect. As
an example, if the approach is from above and the baseline Moran’s
I is 0.7, then Kay & Heer’s censoring would only ever limit JNDs to
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min(0.95−base,0.4) → 0.25 – too small given the JNDs we estimate
using the below approach.

Cleaning JNDs on the accuracy rates for the last 24 observations on
which they are based may be one means of removing this compression
effect. If, for example, the accuracy rate is less than 60%, it is likely
that a ceiling or floor effect is present; were it not, the stability crite-
ria would not have been reached. This approach, however, does not
fully address the problem of artificial ceilings, as the resulting JNDs
can still be biased at certain target × approach combinations. Con-
sequently, we instead remove the JND compression due to approach
by taking only the measurements for both the above and below ap-
proaches where there is a range of difference values to play with: the
mid-range target Moran’s I of 0.4, 0.5 and 0.6. Doing so results in
lines that more closely approximate to linear. However, this risks giv-
ing too much weight to the middle target Is where we still collect data
using both approaches. When developing our model, we therefore re-
sample at these mid-bases to ensure an equal number of data points
are recorded at each target.

Finally, we must decide on how to clean outliers. Earlier, we iden-
tified the censoring approach used by Kay & Heer to treat outliers that

are not constrained by ceilings or floors. The authors censor scores
to an approximate chance threshold for the staircase as a whole (JND
of ∼0.4). Given that our test is comparatively more challenging – it
is conceivable that for the irregular geography participants could not
distinguish between a Moran’s I of 0.4 and 0.8 – we decide against this
threshold. Instead we remove all estimated JNDs where the accuracy
rate on which the score is based begins to approach chance (≤ 0.55).

The analysis that follows is based on this revised dataset: JNDs
based on low accuracy rates (≤ 0.55) are removed, so too are data
likely to exhibit artificial compression of scores due to approach, with
re-sampling of observed JNDs at the middle values of Moran’s I to
ensure equivalent observations across targets. This reduces the dataset
to a total of 633 computed JND scores.

4.2 Data analysis

Although the plots in Figure 4 suffer from the discussed compression
effect, they do suggest that ability to discriminate between autocor-
relation structure varies with Moran’s I and also with irregularity in
geometry. Comparison of average (median) JNDs on the cleaned data,
and for the baselines that were measured across all three geographies
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(0.3-0.8), suggests JND increases as the geography becomes more ir-
regular (regular grid 0.19; regular real 0.23, irregular real 0.28). Fol-
lowing Harrison et al., Table 1 quantifies these differences in JND
scores using Mann-Whitney-U tests.

Table 1: Mann-Whitney-U test for differences in JNDs between geogra-

phies. With Bonferonni correction, the null hypothesis is rejected at

α = 0.017.

comparison-type U p-value effect size (r)

regular grid - irregular real 25233.5 <0.001* 0.33

regular real - irregular real 27501.5 <0.001* 0.19

regular grid - regular real 29515.0 0.008* 0.14

We are fortunate that both Harrison et al. and Kay & Heer describe
in detail their data analysis and make scripts available via a git reposi-
tory. Our analysis attempts to follow the process taken by Kay & Heer
in fitting a model to individual-level data, though for the reasons out-
lined in Section 4.1, we do not use censoring to treat outliers, ceilings
and floors.

We start by fitting a linear regression to our observed data. Kay &
Heer make a strong case for log transformation of the outcome vari-
able (JND). They identify problems of skew and non-constant variance
in residuals; skew in residuals being a particular problem in data sets
associated with ceilings and floors. Although we mitigate these effects
in data cleaning, unequal variance in the distribution of residuals over
the regression model is likely due to high variation within participants
(also known as heteroscedasticity [3] and one of the assumptions of
linear regression). It is good practice to check and correct for this
unevenness. The residuals derived from a linear model fit to the regu-
lar real geography exhibit both skew (γ = 1.6) and kurtosis (κ = 6.9)
and with log transformation they more closely approximate to nor-
mal (γ = 0.3, κ = 3.15). Our residuals also suffer from non-constant
variance, but unlike Kay & Heer this variation is not obviously a func-
tion of baseline Moran’s I. Again, following Kay & Heer Box-Cox
transformation helps provide some justification for log transformation
of the outcome: λ = −0.11, 95% CI -0.3 – 0.1, which includes 0
(the log transform) and excludes 1 (the linear model) at p < 0.00001
(LRχ2,99.42). The estimated value of λ suggests that log transforma-
tion here is appropriate.

A further refinement made by Kay & Heer compensates for partic-
ipant effects. Since each participant contributes up to four data points
to our model, we might expect two randomly sampled observations
from the same participant to be more similar than two observations
selected from different participants. In other words, JND may vary
systematically as a function of who is taking the test. Kay & Heer cor-
rect for this by adding as an offset a varying-intercept random-effect
for each participant (u j). Here, the intercept for a given participant
( j) is higher or lower than the overall intercept (b0) by the amount u j,
with the value u j assumed to be randomly drawn from a normal distri-

bution, N(0,σ2
u ). Our model for predicting JND from Moran’s I can

be summarised as:

log(yi) = b0, j +b1Ii (2)

b0, j = b0 +u j (3)

The parameters estimated for models constructed separately for
each geography appear in Table 2. In all three models we find a con-
sistent effect: as Moran’s I increases, so too does participants’ abil-
ity to correctly judge differences (decreasing JNDs). Comparing the
slopes between the models, the effect of increasing Moran’s I is most
pronounced for regular grid, indicating the greatest improvement in
discrimination with increasing autocorrelation.

An interesting observation is the impact of the participant effect on
model fit (pseudo R2). This addition substantially improves model fit
for the real geographies, but has little effect on the regular grid. This
effect could possibly be due to certain permutations leading to arte-
facts introduced by the real geographies: that the irregular real model
displays the largest improvement in fit (0.13→ 0.51) also supports this
statement.

Finally, in order to evaluate how well our models predict JND, we
plot prediction intervals (95%) [1] for the three geographies (shown in
Figure 6). Prediction intervals attempt to account for the uncertainty
associated with model prediction, considering both fixed and random
effects – in our case the uncertainty associated with between partic-
ipant performance. The intervals were generated empirically from
1,000 simulations for each observation. Again, notice that the pre-
diction intervals become wider with increasing geometric irregularity.

Table 2: Intercept, slope and R2 estimates for the three log-linear re-

gression models

complexity exp(intercept) exp(slope)
pseudo

R2 fixed

pseudo R2

fixed+random

regular grid 0.311 -0.344 0.15 0.16

regular real 0.312 -0.438 0.12 0.42

irregular real 0.424 -0.370 0.13 0.51

5 FURTHER EXPLORATORY ANALYSIS

When introducing the context for this study, we made a link between
JND and statistical power. Statistical power is the probability of a sta-
tistical test correctly detecting a statistically significant effect where
that effect exists in the population. In our translation to graphical in-
ference, JND gives an estimate of the size of effect, or difference in
Moran’s I, required for that effect to be perceived. An alternative and
more direct analogue of power is the proportion of tests in which par-
ticipants failed to correctly judge the more autocorrelated map – failed
to identify a true effect where it exists.
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We calculate these proportions using all data collected through the
staircase procedure and show these graphically in Figure 7. Each posi-
tion in the staircase is represented for each geography type, along with
markers representing the 20% error rate – the threshold typically used
for power in frequentist statistics. We are cautious about relating these
data directly to line-up tests, as performing a judgement in the stair-
case procedure is very different to making graphical inferences using
line-ups. Individual judgements are not independent; it is likely that
the tests preceding any given position in the staircase will influence
participants’ performance. This might explain the lack of consistency
in observed error rates given our model. Whilst the error rates gener-
ally decrease with greater target Moran’s I (left-to-right) and greater
difference in I (top-to-bottom), we do not regularly observe a ‘top-to-
bottom diagonal’ that would suggest a consistent effect between irreg-
ularity of study region and error rates. Additionally, since just two
plots are shown, the probability of correctly identifying the target by
chance is much greater than in a line-up test proper, where a real plot
must be identified amongst an ensemble of decoys.

6 DISCUSSION

The purpose of this study was to establish an empirical basis for au-
tocorrelated map line-up tests. Our results support the assumption
that ability to discriminate between autocorrelation structure in maps
varies with baseline Moran’s I and irregularity in the size of geo-
graphic units within study regions. In both cases, these influences
are in the direction that we would expect. With greater intensities of
autocorrelation structure, JND, that is the difference in spatial auto-
correlation effect required for that effect to be perceptible, decreases.
This finding may support our argument for constructing decoy maps
in line-up tests with some degree of spatial autocorrelation. We ar-
gue that more informative line-up tests might be constructed at or ap-
proaching our predicted JND thresholds and that these thresholds be
used as expectations around the outcome of a graphical inference test.
If estimated JNDs were simply pinned to the chance boundaries or
the ceilings and floors of each test condition, then this would justify
line-up tests that assume complete spatial randomness.

Whilst our results do offer useful insights into the visual perception
of autocorrelation structure in maps, our model fits are very differ-
ent to those observed by Harrison et al.. Baseline autocorrelation and
the varying geometry of regions explain only a portion of the varia-
tion in estimated JND scores. Moreover, that our R2 values improve
substantially when we adjust for participant effects suggests variation
between individual performance. This variation might be the result
of collecting data via crowdsourcing: we might expect more consis-
tency in performance between analysts for example. However, since
this between-participant variation increases with greater geographic
irregularity, it might also relate to artefacts introduced into the real
geographies that we have not quantified in this study.

6.1 Limitations – effects of geography and statistic

An issue that we have yet to address is that our results are only ex-
pressed in terms of a single autocorrelation summary statistic. Whilst
Moran’s I is regarded as the de facto measure of spatial autocorrela-
tion, and we use a standard means of identifying spatial neighbours
[4], other statistics and weighting functions are available. It may be
that participants interpret the strength of spatial dependency in ways
that are better characterised by other flavours of this metric or other
statistics entirely.

Equally, it is worth noting that the use of a single observation for
each spatial measurement means that in the case of irregularly sized
units, different areas of the map are not equally represented in I. Ef-
fectively, the spatial sampling frame is uneven with more samples be-
ing collected where there are greater concentrations of spatial units.
We suspect that participants may be focussing less on these important
areas of multiple proximate measurements and more on the larger ar-
eas where samples per unit map area are low. Larger areas seem to
stand out when we inspect maps visually and are particularly salient
when filled with light, bright colours. This possibility is supported by
Klippel et al.’s study, where larger areas of a single colour acted as a
confounding factor. Any focus on the larger rather than smaller areas
in map comparison will impact upon performance in our comparison
tests and may lead to systematic errors in judgement



One line of exploration would be to calculate an autocorrelation
statistic that reflects the characteristics of the output graphic rather
than the geographically sampled measurements that it aims to repre-
sent. The notion here would be to use a regular sampling frame across
the map to sample data values and establish autocorrelation based
upon spatial covariation. In the regular grid example, our Moran’s
I statistic would be unchanged: sampling with a grid at the scale of
the underlying units would result in an output statistic identical to that
already calculated. However, in the case of irregularly sized units, a
single large unit may be sampled many times. Since the same colour
is applied to the entirety of the region, this large unit would contribute
more heavily to the alternative autocorrelation statistic. Tiny units that
have low saliency would be unlikely to be sampled and would there-
fore have a limited, or no, effect.

Also worth noting is that in choropleth maps the area of the graphic
covered by any particular colour can vary substantially in the cases of
less regular geometry. This difference is likely to increase with coeffi-
cient of variation in unit area. The largest effect identified in Klippel
et al.’s study of perception of autocorrelation structure in two-colour
maps was where one colour was dominant – where a greater propor-
tion of the overall area of the map was occupied by a single colour.
We do not as yet have evidence to suggest that the areas covered by
particular colours were influential in participants’ responses.

Other factors that affect interpretation relate to the manner by which
neighbours in a region relate to one another and the relative position
of their centroids. Moran’s I emphasises similarities or differences be-
tween units that are in close proximity – units with centroids very close
to one another have a substantial influence on the spatial autocorrela-
tion statistic used in this study. In the case of irregularly sized units,
two small units can have very close centroids and thus an inordinate
effect on the autocorrelation metric. These small units are unlikely to
be visually salient and so this important and influential aspect of spa-
tial dependency is easily missed. Taken to its extreme, a pair of tiny
neighbouring units will have a dominant effect on the statistic even
when that effect is visually unobservable. The influence of proximity
is particularly significant when a distance weighting function of 1/d2

is employed in calculating I. Such a situation is common in many
applied contexts where clusters of smaller units occur in populous ur-
ban centres. The effects of weighting functions on covariance can be
usefully explored with interactive graphics [6].

Additionally, we did not in this study account for unit shape. This
too is likely to result in dissonance between a spatial autocorrelation
statistic and its visual perception. This is particularly so where ge-
ometric centroids are used in the weighting function. Units that are
curved in shape and partially enclose other units can have geometric
centroids that are beyond their boundaries and thus within and close to
the centroids of the units that they partially contain. An extreme exam-
ple would involve a small central unit being entirely contained within
a larger peripheral ‘doughnut’. If these units were perfectly circular
and aligned at the same centroid with d at zero, then the weighting of
this association and the contribution of any covariance to the autocor-
relation statistic would be infinite. This particular case is highly un-
likely, but the relationships between distance measurements are com-
plex and this complexity increases with unit irregularity. One means
of improving performance would be to show the unit centroids used
in the spatial autocorrelation measure explicitly where spatial depen-
dency is being considered. This information is arguably more impor-
tant to their interpretation than the more complex boundaries. This
raises an important point around the choice of cartographic represen-
tation used to convey spatial structure. Choropleth maps were selected
in this study as they remain a ubiquitous geovisualization technique.
However, MacEachren [11] identifies nine map types used to represent
spatial data. Comparisons of perceived spatial structure across these
geovisualization types would be instructive.

6.2 Towards perceptually-validated map line-ups

Through empirical evidence, ideas and resources (http://www.
gicentre.net/maplineups), this research provides a basis for
the use of graphical inference techniques and an improved construc-

tion of map line-up tests. That ability to discriminate spatial auto-
correlation in choropleth maps varies with our two key experimental
factors, and possibly many more, is instructive. If graphical inference
is considered a technique for providing confidence around visually-
perceived patterns and effects, then evidence and some expectations
around the difficulty and variability with which those effects are per-
ceived is necessary. We have argued that, when applied to graphical
inference, JND has obvious links to statistical power. In Figure 7, we
attempted to derive power estimates by plotting the error rates for each
position in the staircase along with markers representing the 20% er-
ror rate – the threshold typically used for power in frequentist statistics.
We suggest that such a threshold might also be used to inform expecta-
tions when constructing line-up tests with autocorrelated decoys. For
example, an analyst studying crime rates in a given region may per-
ceive (and observe) a greater degree of spatial dependency (Moran’s
I of 0.7) in that region than was the case a decade ago (Moran’s I of
0.5). She may construct a line-up test to further investigate this differ-
ence in statistical effect. Given the (very speculative) data in Figure
7, we would generally expect the effect to be noticeable. If it is not,
then we might caution against using that choropleth map to visually
explore spatial autocorrelation structure – artefacts introduced into the
map might affect ability to reason statistically about that structure.

We do not suggest that our experimental data – individual observa-
tions taken from the staircase – are reliable estimates of visual power in
line-up tests. However, they provide an obvious and immediate avenue
for further research: for example, a large-scale quantitative perception
study replicating our controls (varying geography and Moran’s I) but
instead of deriving JND using the staircase procedure, collecting inde-
pendent observations within a map line-up setting and comparing error
rates across experiment conditions. A large crowd-sourcing platform
such as AMT is clearly well-suited to such an undertaking.

7 CONCLUSION

This study sought to provide empirical evidence to inform the use of
line-up tests in choropleth maps. We replicated an established ex-
perimental procedure for measuring just noticeable difference in non-
spatial correlation – that is the minimum difference in correlation re-
quired to be visually observable roughly 75% of the time. The aim
was to investigate whether, as is the case in studies of non-spatial cor-
relation [16, 7, 9], JND varies with the intensity of baseline spatial au-
tocorrelation. We also aimed to investigate the extent to which some
characteristics that are specific to spatial data, such as irregularity in
the regions under investigation, were influential. Our findings sug-
gest an effect from both factors and in the direction that we were ex-
pecting. As baseline autocorrelation increases, the difference in effect
required to discriminate that structure decreases. In the cases of irreg-
ular geography, we find JNDs that are wider and also observe greater
between-participant variation. These findings offer contextual infor-
mation to support line-up tests that assume autocorrelation rather than
complete spatial randomness. Our estimated JNDs may contribute to
an expectation around the likely outcome of a map line-up test and
therefore relate to the concept of statistical power: the probability of
correctly detecting an effect where that effect exists in the population.
It is worth noting this study’s two experimental factors – baseline spa-
tial autocorrelation and coefficient of variation in unit area – explain
only a portion of the variation in estimated JND scores: our model fits
are very different to those for studies of non-spatial autocorrelation
[16, 7, 9]. We believe this variation in performance is likely to relate
to artefacts not measured formally in this study and that are particular
to spatial statistics and cartographic representation.
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