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Abstract
The paper derives and analyses the (semi-)discrete dispersion relation of the Parareal parallel-in-time integration method. It
investigates Parareal’s wave propagation characteristics with the aim to better understand what causes the well documented
stability problems for hyperbolic equations. The analysis shows that the instability is caused by convergence of the ampli-
fication factor to the exact value from above for medium to high wave numbers. Phase errors in the coarse propagator are
identified as the culprit, which suggests that specifically tailored coarse level methods could provide a remedy.
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1 Introduction

Parallel computing has become ubiquitous in science and
engineering, but requires suitable numerical algorithms to
be efficient. Parallel-in-time integration methods have been
identified as a promisingdirection to increase the level of con-
currency in computer simulations that involve the numerical
solution of time dependent partial differential equations [5].
A variety of methods has been proposed [8,10,12,22,25],
the earliest going back to 1964 [27]. While even complex
diffusive problems can be tackled successfully [11,14,24,
33]—although parallel efficiencies remain low—hyperbolic
or advection-dominated problems have proved to be much
harder to parallelise in time. This currently prevents the use
of parallel-in-time integration for most problems in com-
putational fluid dynamics, even though many applications
struggle with excessive solution times and could benefit
greatly from new parallelisation strategies.

For the Parareal parallel-in-time algorithm there is some
theory available illustrating its limitations in this respect.
Bal shows that Parareal with a sufficiently damping coarse
method is unconditionally stable for parabolic problems but
not for hyperbolic equations [2]. An early investigation of
Parareal’s stability properties showed instabilities for imag-
inary eigenvalues [31]. Gander and Vandewalle [17] give a
detailed analysis of Parareal’s convergence and show that
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even for the simple advection equation ut +ux = 0, Parareal
is either unstable or inefficient.Numerical experiments reveal
that the instability emerges in the nonlinear case as a
degradation of convergence with increasing Reynolds num-
ber [32]. Approaches exist to stabilise Parareal for hyperbolic
equations [3,4,7,13,15,23,29], but typically with significant
overhead, leading to further degradation of efficiency, or lim-
ited applicability.

Since a key characteristic of hyperbolic problems is
the existence of waves propagating with finite speeds,
understanding Parareal’s wave propagation characteristics is
important to understand and, hopefully, resolve these prob-
lems. However, no such analysis exists that gives insight into
how the instability emerges. A better understanding of the
instability could show the way to novel methods that allow
the efficient and robust parallel-in-time solution of flows gov-
erned by advection. Additionally, just like for “classical”
time steppingmethods, detailed knowledge of Parareal’s the-
oretical properties for test cases will help understanding its
performance for complex test problems where mathematical
theory is not available.

To this end, the paper derives a discrete dispersion rela-
tion for Parareal to study how plane wave solutions u(x, t) =
exp(−iωt) exp(iκx) are propagated in time. It studies the
discrete phase speed and amplification factor and how they
depend on e.g. the number of processors, choice of coarse
propagator and other parameters. The analysis reveals that
the source of the instability is a convergence from above in
the amplification factor in higher wave number modes. In
diffusive problems, where high wave numbers are naturally
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strongly damped, this does not cause any problems, but in
hyperbolic problems with little or no diffusion it causes the
amplification factors to exceed a value of one and thus trig-
gers instability. Furthermore, the paper identifies phase errors
in the coarse propagator as the source of these issues. This
suggests that controlling coarse level phase errors could be
key to devising efficient parallel-in-time methods for hyper-
bolic equations.

All results presented in this paper have been produced
using pyParareal, a simple open-source Python code. It
is freely available [28] to maximise the usefulness of the
here presented analysis, allowing other researchers to test
different equations or to explore sets of parameters which
are not analysed in this paper.

2 Parareal for linear problems

Parareal [25] is a parallel-in-time integration method for an
initial value problem

u̇(t) = Au(t), u(0) = u0 ∈ C
n, 0 ≤ t ≤ T . (1)

For the sake of simplicity we consider only the linear case
where the right hand side is given by a matrix A ∈ C

n,n . To
parallelise integration of (1) in time, Parareal decomposes
the time interval [0, T ] into P time slices

[0, T ] = [0, T1) ∪ [T1, T2) ∪ · · · ∪ [TP−1, T ], (2)

with P indicating the number of processors. Denote as Fδt

and G�t two “classical” time integration methods with time
steps of length δt and�t (e.g.Runge–Kuttamethods). For the
sake of simplicity, assume that all slice [Tj−1, Tj ) have the
same length �T and that this length is an integer multiple of
both δt and �t so that�T = Nc�t and �T = Nfδt . Below,
δt will always denote the time step size of the finemethod and
�t the time step size of the coarse method, so that we omit
the indices and just write G and F to avoid clutter. Standard
serial time marching using the method denoted as F would
correspond to evaluating

u p = F(u p−1), p = 1, . . . , P, (3)

where u p ≈ u(Tp). Instead, after an initialisation procedure
to provide values u0p—typically running the coarse method
once—Parareal computes the iteration

ukp = G
(
ukp−1

)
+ F

(
uk−1
p−1

)
− G

(
uk−1
p−1

)
, p = 1, . . . , P

(4)

for k = 1, . . . , K where the computationally expensive
evaluation of the fine method can be parallelised over P pro-

cessors. If the number of iterations K is small enough and
the coarse method much cheaper than the fine, iteration (4)
can run in less wall clock time than serially computing (3).

2.1 The Parareal iteration inmatrix form

As a first step toward deriving Parareal’s dispersion relation
wewill need to derive its stability functionwhichwill require
writing it in matrix form. Consider now the case where both
the coarse and the fine integrator are one-step methods with
stability functions R f and Rc. Then,G andF canbe expressed
as matrices

u p = F(u p−1) = Fu p−1, u p = G(u p−1) = Gup−1 (5)

with F := (
R f (Aδt)

)N f and G := (Rc(A�t))Nc . Denote
as uk = (u0, . . . , uP ) ∈ R

(P+1)n a vector that contains the
approximate solutions at all time points Tj , j = 1, . . . , P
and the initial value u0. Simple algebra shows that one step
of iteration (4) is equivalent to the block matrix formulation

Mguk = (
Mg − M f

)
uk−1 + b (6)

with matrices

M f :=

⎡
⎢⎢⎢⎣

I
−F I

. . .
. . .

−F I

⎤
⎥⎥⎥⎦ ∈ R

(P+1)n,(P+1)n (7)

and

Mg :=

⎡
⎢⎢⎢⎣

I
−G I

. . .
. . .

−G I

⎤
⎥⎥⎥⎦ ∈ R

(P+1)n,(P+1)n (8)

and a vector b = (u0, 0, . . . , 0) ∈ R
(P+1)n . Formulation (6)

interpretes Parareal as a preconditioned linear iteration [1].

2.2 Stability function of Parareal

From thematrix formulation of a single Parareal iteration (6),
we can nowderive its stability function, that iswe can express
the update from the initial value u0 to an approximation uP at
time T = TP using Parareal with K iterations as multiplica-
tion by a single matrix. The fine propagator solution satisfies

M f u f = b (9)
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Wave propagation characteristics of Parareal 3

and is a fixed point of iteration (6). Therefore, propagation
of the error

ek := uk − u f (10)

is governed by the matrix

E :=
(
I − M−1

g M f

)
(11)

in the sense that

ek = Eek−1. (12)

Using this notation and applying (6) recursively, it is now
easy to show that

uk = Eu0 +
k−1∑
j=0

E jM−1
g b. (13)

If, as is typically done, the start value u0 for the iteration is
produced by a single run of the coarse method, that is if

Mgu0 = b, (14)

Equation (13) further simplifies to

uk =
⎛
⎝

k∑
j=0

E j

⎞
⎠M−1

g b. (15)

The right hand side vector can be generated from the initial
value u0 via

b = C1u0 (16)

by defining

C1 = [I; 0] ∈ R
(P+1)n,n, I ∈ R

n,n, 0 ∈ R
Pn,n . (17)

Finally, denote as

C2 = [0, I] , 0 ∈ R
n,Pn, I ∈ R

n,n, (18)

the matrix that selects the last n entries out of uk . Now, a
full Parareal update from some initial value u0 to an approx-
imation uP using K iterations can be written compactly as

uP = C2

⎛
⎝

K∑
j=0

E j

⎞
⎠M−1

g C1u0 =: MPararealu0. (19)

The stability matrix MParareal ∈ R
n,n depends on K , T ,

�T , P , �t , δt , F, G and A. Note that Staff and Rønquist
derived the stability function for the scalar case using Pas-
cal’s tree [31].

2.3 Weak scaling versus longer simulation times

There are two different application scenarios for Parareal that
we can study when increasing the number of processors P .
If we fix the final time T , increasing P will lead to better
resolution since the coarse time step �t cannot be larger
than the length of a time slice�T—the coarse method has to
perform at least one step per time slice. In this scenario, more
processors are used to absorb the cost of higher temporal
resolution (“weak scaling”).

Alternatively,we canuse additional processors to compute
until a later final time T and this is the scenario investigated
here. Consequently, we study here the case where T and
P increase together and always assume that T = P , that
is each time slice has length one and increasing P means
parallelising over more time slices covering a longer time
interval. Since dispersion properties of numerical methods
are typically analysed for a unit interval, this causes some
issues that we resolve by “normalising” the Parareal stability
function, see Sect. 3.1.

2.4 Maximum singular value

ThematrixEdefined in (11) determines howquicklyParareal
converges. Note that E is nil-potent with EP = 0, owing to
the fact that after P iterations Parareal will always reproduce
the fine solution exactly. Therefore, all eigenvalues of E are
zero and the spectral radius is not useful to analyse conver-
gence. Below, to investigate convergence, we will therefore
compute the maximum singular value σ of E instead. Since

σ = ‖E‖2 ,

it follows from (12) that

∥∥∥ek
∥∥∥
2

≤ ‖E‖2
∥∥∥ek−1

∥∥∥
2

= σ

∥∥∥ek−1
∥∥∥
2

≤ σ k
∥∥∥e0

∥∥∥
2

(20)

so that if σ < 1 Parareal will converge monotonically with-
out stalling. In particular, this rules out behaviour as found by
Gander and Vandewalle for hyperbolic problems, where the
error would first increase substantially over the first P/2 iter-
ations before beginning to decrease [16]. However, achieving
fast convergence and good efficiency will typically require
σ � 1. Note that if the coarse method is used to generate u0,
it follows from (9) and (14) that the initial error is

e0 = u0 − u f =
(
M−1

g − M−1
f

)
b. (21)

The size of σ depends on the accuracy “gap” between the
coarse and fine integrator and the wave number. Figure 1
shows σ for varying values of �t when backward Euler is
used for both coarse and fine method. Clearly, as the coarse
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4 D. Ruprecht

Fig. 1 Maximum singular value σ for decreasing coarse time step �t
for ν = 0. Backward Euler is used for both F and G and for �t = δt =
0.05, both methods coincide so that σ = 0

time step approaches to fine time step of δt = 0.05, the max-
imum singular value approaches zero. However, in this limit
the coarse and fine propagator are identical and no speedup
is possible. The larger �t compared to δt , the cheaper the
coarse method becomes but since σ also grows, more iter-
ations are likely required. Note that higher wave numbers
lead to higher values of σ while lower wave numbers tend to
have values of σ � 1 even for large coarse-to-fine time step
ratios.

Looking at σ also provides a way to refine performance
models for Parareal. Typically, inmodels projecting speedup,
the number of iterations has to be fixed in addition to �t , δt
and P . Instead, at least for linear problems, we can fix k such
that

σ k ≤ tol (22)

for some fixed tolerance tol. The resulting projected speedup
for P = 16 processors and a tolerance of tol = 1e−2 is
shown in Fig. 2. First, as the coarse time step increases, the
reduced cost of the coarse propagator improves achievable
speedup. Simultaneously, the decreasing accuracy of Gman-
ifests itself in an increasing number of iterations required to
match the selected tolerance. These two counteracting effects
create a “sweet spot“ where G is accurate enough to still
enable relatively fast convergence but cheap enough to allow
for speedup. It is noteworthy, however, that this sweet spot is
different for lower and higher wave numbers. Therefore, the
potential for speedup from Parareal does not solely depend
on the solved equations and discretization parameters but
also on the solution—the more prominent high wave num-
ber modes are, the more restricted achievable speedup.

Fig. 2 Projected speedup for pipelined Parareal [26] with P = 16
processors for the same parameters as in Fig. 1 and the number of
iterations k fixed such that σ k ≤ tol with tol = 0.01

2.5 Convergence and (in)stability of Parareal

Two different but connected issues with Parareal are dis-
cussed throughout the paper, convergence and (in)stability.
Here, convergence refers to how fast Parareal approaches the
fine solution within a single instance of Parareal, that is

MParareal → F as k → P. (23)

As discussed above, after k = P iterations we always have
MParareal = F , but particularly for hyperbolic problems
this can happen only at the final iteration k = P while at
k = P − 1 there is still a substantial difference [16]. Clearly,
speedup is not obtainable in such a situation. The maximum
singular value σ of E gives an upper bound or worst-case
scenario of how fast Parareal converges to the fine solution,
cf. Equation (20). While σ < 1 does not necessarily guaran-
tee converge quick enough to generate meaningful speedup,
it guarantees monotonous convergence and rules out an error
that increases first before decreasing only in later iterations.

The other issue investigated in the paper is that of stabil-
ity of repeated application of Parareal (“restarting”). Below,
stability is normally assessed for Parareal with a fixed num-
ber of iterations k. A configuration of Parareal is referred
to as unstable if it leads to an amplification factor of more
than unity. This corresponds to an artificial increase in wave
amplitudes and, just as for classical time stepping methods,
would result in a diverging numerical approximation if the
method is used recursively

(MParareal)
n → ∞ as n → ∞. (24)
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Wave propagation characteristics of Parareal 5

While for classical methods this recursive application simply
means stepping through time steps, for Parareal with P pro-
cessors it would mean computing one window [0, TP ], then
restarting it with the final approximation as initial value for
the next window [TP , 2TP ] and so on.

3 Discrete dispersion relation for the
advection–diffusion equation

Starting from (19) we now derive the (semi-)discrete dis-
persion relation of Parareal for the one dimensional linear
advection diffusion problem

ut +Uux = νuxx . (25)

First, assume a plane wave solution in space

u(x, t) = û(t)eiκx (26)

with wave number κ so that (25) reduces to the initial value
problem

ût (t) = −
(
Uiκ + νκ2

)
û(t) =: δ(κ,U , ν)û(t) (27)

with initial value û(0) = 1. Integrating (27) from t = 0 to
t = T in one step gives

ûT = R(δ, T )û0 (28)

where R is the stability function of the employed method.
Now assume that the approximation of û is a discrete plane
wave so that the solution at the end of the nth time slice is
given by

ûn = e−iωn�T . (29)

Inserting this in (28) gives

e−iωT û0 = Rû0 ⇒ ω = i
log(R)

T
. (30)

For R in polar coordinates, that is R = |R| exp(iθ) with
θ = angle(R), we get

ω = i (log(|R|) + iθ) T−1. (31)

The exact integrator, for example, would read

Rexact = eδ(κ,U ,ν)T . (32)

Using (30) to compute the resulting frequency yields ω =
iδ(k,U , ν) and retrieves the continuous plane wave solution

u(x, T ) = ûT e
iκx = e−νκ2T eiκ(x−UT ) (33)

of (25). It also reproduces the dispersion relation of the con-
tinuous system

ω = i
log(R)

T
= iδ(κ,U , ν) = Uκ − iνκ2. (34)

However, if we use an approximate stability function R
instead, we get some approximate ω = ωr + iωi with
ωr , ωi ∈ R. The resulting semi-discrete solution becomes

unj = e−iωtn eiκx = eωi tn eiκ(x−
ωr
κ
tn). (35)

Therefore, ωr/κ governs the propagation speed of the solu-
tion while ωi governs the growth or decay in amplitude.
Consequently, ωr/κ is referred to as phase velocity while
exp(ωi ) is called amplification factor. In the continuous case,
the phase speed is equal to U and the amplification factor
equal to e−νκ2 .Note that for (25) the exact phase speed should
be independent of the wave number κ . However, the discrete
phase speed of a numerical method often will change with
κ , thus introducing numerical dispersion. Also note that for
ν > 0 higher wave numbers decay faster because the ampli-
fication factor decreases rapidly as κ increases.

3.1 Normalisation

The update function R for Parareal in Eq. (19) denotes not
an update over [0, 1] but over [0, TP ] where TP = P is the
number of processors. A phase speed of ωr/κ = 1.0, for
example, indicates a wave that travels across a whole inter-
val [0, 1] during the step. If scaled up to an interval [0, P],
the corresponding phase speed would become ωr/κ = P
instead.

This enlarged range of values causes problems with the
complex logarithm in (30). As an example, take the stabil-
ity function of the exact propagator (32). Analytically, the
identity

ω = i
R

T
= iδ(κ,U , ν)

T

T
= iδ(κ,U , ν) (36)

holds, resulting in the correct dispersion relation (34) of the
continuous system. However, depending on the values of κ ,
U , T and ν, this identity is not necessarily satisfied when
computing the complex logarithm usingnp.log. For exam-
ple, for κ = 2, U = 1, ν = 0 and T > 0, the exact stability
function is R = e−2iT . In Python, we obtain for T = 1

1j ∗ np.log(e−2i )/1 = 2 = κ (37)
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6 D. Ruprecht

but for T = 2 we obtain

1j ∗ np.log(e−4i )/2 ≈ −1.1416 �= κ (38)

and so identity (36) is not fulfilled. The reason is that the
logarithm of a complex number is not unique and sonp.log
returns only a complex logarithmbut not necessarily the right
one in terms of the dispersion relation.

To circumvent this problem, we “normalise” the update R
for Parareal to [0, 1]. To this end, decompose

R = P
√
R · . . . · P

√
R (39)

where P
√
R corresponds to the propagation over [0, 1] instead

of [0, P]. Since there are P many roots P
√
R, we have to select

the right one. First, we use the zeros function of numPy
to find all P complex roots zi of

zn − R = 0. (40)

Then, we select as root P
√
R the value zi that satisfies

∣∣∣θ(
P
√
R) − θtarg

∣∣∣ = min
p=1,...,P

∣∣θ(z p) − θtarg
∣∣ (41)

where θ is the angle function and θtarg some target angle,
which we still need to define.

We compute ω and the resulting phase speed and ampli-
fication factor for a range of wave numbers 0 ≤ κ1 ≤ κ2 ≤
· · · ≤ κN ≤ π . For κ1, θtarg is set to the angle of the frequency
ω computed from the analytic dispersion relation. After that,
θtarg is set to the angle of the root selected for the previous
value of κ . The rationale is that small changes in κ should
only result in small changes of frequency and phase so that
θ(ωi−1) ≈ θ(ωi ) if the increment between wave numbers is
small enough. From the selected root P

√
R we then compute

ω using (30), the resulting discrete phase speed and ampli-
fication factor and the target angle θtarg for the next wave
number.

4 Analysis of the dispersion relation

After showing how to derive Parareal’s dispersion relation
and normalising it to the unit interval, this section now pro-
vides a detailed analysis of different factors influencing its
discrete phase speed and amplification factor.

4.1 Influence of diffusion

Figure 3 shows the discrete phase speed and amplification
factor of Parareal for P = 16, backward Euler with�t = 1.0
as coarse and the exact integrator as fine propagator. Both
levels use δ = − (

Uiκ + νκ2
)
, that is the symbol of the

continuous spatial operator. The two upper figures are for
U = 1.0 and ν = 0.0 (no diffusion) while the two lower
figures are for U = 1.0 and ν = 0.1 (diffusive).

In both cases, the discrete phase speed of Parareal con-
verges almost monotonically toward the continuous phase
speed. Even for ten iterations, Parareal still causes significant
slowing of medium to large wave number modes. Parareal
requires almost the full number of iterations, k = 15, before
it faithfully reproduces the correct phase speed across most
of the spectrum.However, for any number of iterationswhere
speedup might still be possible, Parareal will introduce sig-
nificant numerical dispersion. Slight artificial acceleration
is also observed for high wave number modes for k = 15
in the non-diffusive and k = 10 in the diffusive case, but
generally phase speeds are quite similar in the diffusive and
non-diffusive case.

The amplification factor in the non-diffusive case (upper
right figure) illustrates Parareal’s instability for hyperbolic
equations: for k = 10 and k = 15 it is larger than one for a
significant part of the spectrum, indicating that these modes
are unstable and will be artificially amplified. For k = 5, the
iteration has not yet corrected for the strong diffusivity of the
coarse propagator and remains stable for all modes but with
significant numerical damping ofmedium to highwave num-
bers. The reason for the stability problems is discernible from
the amplification factor for the diffusive case (lower-right):
from k = 0 (blue circles) to k = 5, Parareal reproduces the
correct amplification factor for small wave number modes
but significantly overestimates the amplitude of medium to
large wave numbers. It then continues to converge to the cor-
rect value from above. For the diffusive case where the exact
values are smaller than one this does not cause instabilities.
In the non-diffusive case, however, any overestimation of the
analytical amplification factor immediately causes instabil-
ity. There is, in a sense, “no room” for the amplification factor
to converge to the correct value from above. This also means
that using a non-diffusive method as coarse propagator, for
example trapezoidal rule, leads to disastrous consequences
(not shown) where most parts of the spectrum are unstable
for almost any value of k.

Figure 4 illustrate how the phase speed and amplitude
errors discussed above manifest themselves. It shows a sin-
gle Gauss peak advected with a velocity of U = 1.0 with
ν = 0.0 on a spatial domain [0, 4] over a time interval [0, 16]
distributed over P = 16 processors and Nc = 2 coarse time
steps per slice. A spectral discretisation is used in space,
allowing to represent the derivative exactly. For k = 5 iter-
ations, most higher wave numbers are damped out and the
result looks essentially like a low wave number sine func-
tion. The artificially amplified medium to high wave number
modes create a “bulge” for k = 10 while dispersion leads
to a significant trough at the sides of the domain. After fif-
teen iterations, the solution approximates the main part of
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Wave propagation characteristics of Parareal 7

Fig. 3 Discrete phase speed and amplification factor for Parareal with backward Euler as G and the exact integrator for F. The symbol for the
spatial discretisation is δ = − (

iκ + νκ2
)
. The diffusion coefficient is ν = 0.0 (upper) and ν = 0.1 (lower)

the Gauss peak reasonably well, but dispersion still leads to
visible errors along the flanks. The right figure shows a part
of the resulting spectrum. For k = 5, only the lowest wave
number modes are present, leading to the sine shaped solu-
tion. After k = 10 iterations, most of the spectrum is still
being truncated but a small range of wave numbers around
κ = 0.05 is being artificially amplified which creates the
“bulge” seen in the left figure. Finally, for k = 15 iterations,
Parareal starts to correctly capture the spectrum but the still
significant overestimation of low wave number amplitudes
and underestimation of higher modes causes visible errors.

Observation 1 The amplification factor in Parareal for high-
er wave numbers converges “from above”. In diffusive
problems these wave numbers are damped, so the exact
amplification factor is significantly smaller than one, leav-

ing room for Parareal to overestimate it without crossing the
threshold to instability. For non-diffusive problems where the
exact amplification factor is one, every overestimation causes
the mode to become unstable.

4.2 Low order finite difference in coarse method

In a realistic scenario, some approximation of the spatial
derivatives would have to be used instead of the exact symbol
δ. For simple finite differences, we can study the effect this
has on the dispersion relation. Consider the first order upwind
finite difference

ux (x j ) ≈ u j − u j−1

�x
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8 D. Ruprecht

Fig. 4 Gauss peak in physical space (left) and corresponding spectrum (right) for U = 1.0 and ν = 0.0 integrated using a pseudo-spectral method
with 64 modes in space and Parareal with P = 16 processors in time

Fig. 5 Phase speed (left) and amplification factor (right) of the implicit Euler method using the exact symbol δ (black circles) or the approximate
symbol δ̃ of the second order centred finite difference (blue squares)

as approximation for ux in (25). Assuming a discrete plane
wave

u j = û(t)eiκ j�x

on a uniform spatial mesh x j = j�x instead of the continu-
ous plane wave (26), this leads to

ux (x j ) ≈ eiκx j − eiκ(x j−�x)

�x
= eiκx j

1 − e−iκ�x

�x
.

For ν = 0 this results in the initial value problem

ût (t) = −U
1 − e−iκ�x

�x
û(t) =: δ̃(k,U , δx)û(t)

with initial value û(0) = 1 and a discrete symbol δ̃ instead
of δ as in (27). Note that

lim
�x→0

1 − e−iκ�x

�x
= iκ

so that δ̃ → δ as �x → 0. Durran gives details for different
stencils [6].

The dispersion properties of the implicit Euler method
together with the first order upwind finite difference are
qualitatively similar to the ones for implicit Euler with the
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Wave propagation characteristics of Parareal 9

Fig. 6 Phase speed (left) and amplification factor (right) for same configuration as in Fig. 3 but with a second order centred finite difference in the
coarse propagator instead of the exact symbol

exact symbol (not shown).1 Using the upwind finite differ-
ence instead of the exact symbol gives qualitatively similar
wave propagation characteristics for the coarse propagator.
Numerical slowdown increases (up to the point where modes
at the higher end of the spectrum almost do not propagate at
all) and numerical diffusion becomes somewhat stronger. As
a result, Parareal’s dispersion properties (also not shown) are
also relatively similar, except for too small phase speeds even
for k = 15.

However, if we use the centred finite difference

ux (x j ) ≈ u j+1 − u j−1

2�x

instead, this leads to an approximate symbol

δ̃ = −U
eiκ�x − e−iκ�x

2�x
= −Ui

sin(κ�x)

�x
. (42)

In this case, it turns out that the dispersion properties of
implicit Euler with δ and δ̃ are quite different. Figure 5 shows
the discrete phase speed (left) and amplification factor (right)
for both configurations. For the phase speed, both version
agree qualitatively, even though using δ̃ leads to noticeable
stronger slowdown, particularly of higherwave numbers. For
the amplification factor, however, there is a significant dif-
ference between the semi-discrete and fully discrete method.
While the former damps high wave numbers strongly, the
combination of implicit Euler and centred finite differences

1 The script plot_ieuler_dispersion.py supplied together
with the Python code can be used to visualize the dispersion proper-
ties of the coarse propagator alone.

strongly damps medium wave numbers while damping of
high wave numbers is weak.

In Parareal, this causes a situation similar to what hap-
pens when using the trapezoidal rule as coarse propagator,
albeit less drastic. Figure 6 shows again the phase speed (left)
and amplification factor (right) for the same configuration as
before but implicit Euler with centred finite difference for G.
The failure of the coarsemethod to remove highwave number
modes again leads to an earlier triggering of the instability.
Whereas for Parareal using δ on the coarse level the iteration
k = 5 was will stable (see Fig. 3), it is now unstable. For
iterations k = 10 and k = 15, large parts of the spectrum
remain unstable. Also, the stronger numerical slow down of
the coarse method makes it harder for Parareal to correct
for phase speed errors. Where before Parareal with k = 15
iteration captured the exact phase speed reasonably well, in
Fig. 6 we still see significant numerical slow down of the
higher wave number modes.

Observation 2 The choice of finite difference stencil used
in the coarse propagator can have a significant effect on
Parareal. It seems that centred stencils that fail to remove
high wave number modes cause similar problems as non-
diffusive time stepping methods, suggesting that stencils with
upwind-bias are a much better choice.

4.3 Influence of phase and amplitude errors

To investigate whether phase errors or amplitude errors in
the coarse method trigger the instability, we construct coarse
propagators where either the phase or the amplitude is exact.
Denote as Reuler the stability function of backward Euler and
as Rexact the stability function of the exact integrator. Then, a
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method with the amplification factor of backward Euler and
no phase speed error can be constructed as

R1 := |Reuler| eiθ(Rexact) (43)

while a method with no amplification error and the phase
speed of backward Euler can be constructed as

R2 := |Rexact| eiθ(Reuler). (44)

These artificially constructed propagators are now used
within Parareal.

Figure 7 shows the resulting amplification factor when
using R1 (upper) or R2 (lower) as coarse propagator. For R1,
where there is no phase speed error in the coarse propagator,
there is no instability. Already for k = 10 it produces a
good approximation of the exact amplification factor across
the whole spectrum. In contrast, for R2 where there is no
amplification error produced by G, the instability is clearly
present for k = 5, k = 10 and k = 15.

Figure 8 shows the solution for the same setup that was
used for Fig. 4, except using the R1 artificial coarse propaga-
tor without phase errors instead of the backward Euler. For
k = 5 iterations, the peak is strongly damped but, because
G has no phase errors, in the correct place. After k = 10
iterations, Parareal has corrected for most the numerical
damping and already provides a reasonable approximation,
even though the amplitude ofmost wave numbers in the spec-
trum is still severely underestimated. However, the lack of
phase errors and resulting numerical dispersion avoids the
“bulge” and distortions that were present in Fig. 4. Finally,
for k = 15 iterations, the solution provided by Parareal is
indistinguishable from the exact solution. Small underesti-
mation of the amplitudes of larger wave numbers can still
be seen in the spectrum, but the effect is minimal. Note that
this does not mean that Parareal will provide speedup—in a
realistic scenario, where F is not exact but a time stepping
method, too, it would depend on how many iterations are
required for Parareal to be as accurate as the fine method run
serially and the actual runtimes of both propagators. All that
can be said so far is that avoiding coarse propagator phase
errors avoids the instability and leads to faster convergence.

The effect of eliminating phase errors in the coarsemethod
can also be illustrated by analysing the maximum singular
value σ of the error propagation matrix. Figure 9 shows σ

depending on the wave number κ for three different coarse
propagators: the backward Euler, the artificially constructed
propagator R1 with no phase error and the artificially con-
structed propagator R2 with no amplitude error. For the
backward Euler method, σ is larger than one for significant
parts of the spectrum, indicating possible non-monotonous
convergence for these modes. The situation is even worse
for R2, mirroring the problems with a non-diffusive coarse

Fig. 7 Amplification factor of Parareal for the advection equation for
an artificially constructed coarsemethodwith exact phase speed (upper)
or exact amplification factor (lower)

method like the trapezoidal rule mentioned above. For R1,
however, σ remains below one across the whole spectrum,
so that Parareal will converge monotonically for every mode.
Since σ approaches one for medium to high wave numbers,
convergence there is potentially very slow, in line with the
errors seen in the upper part of the spectrum of the Gauss
peak. However, in contrast to the other two cases, these wave
numbers will not trigger instabilities.

In summary, these results strongly suggest that phase
errors in the coarse method are responsible for the insta-
bility, which is in line with previous findings that Parareal
can quickly correct even for very strong numerical diffusion
as long as a wave is placed at roughly the correct position by
the coarse predictor [29].
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Fig. 8 The same Gauss peak (left) and corresponding spectrum (right) as in Fig. 4 but now computed with the R1 coarse propagator with exact
phase speed

Fig. 9 Maximum singular value σ of error propagation matrix E
depending on the wave number of three choices of coarse propaga-
tor. R1 has exact phase speed while R2 has exact amplification factor

Observation 3 The instability in Parareal seems to be caused
by phase errors in the coarse propagator while amplitude
errors are quickly corrected by the iteration.

4.3.1 Relation to asymptotic Parareal

It is interesting to point out how the R1 propagator with exact
phase speed is related to the asymptotic Parareal method
developed by Haut et al. [18]. The exact propagator for (25)

is given by

Rexact = eδ(U ,κ,ν) = e−νκ2t e−Uiκ . (45)

Therefore, we have

|Rexact| = e−νκ2 (46)

and

θ(Rexact) = −Uκ. (47)

Equivalent to the use of a coarse propagator R1 with exact
phase propagation would be solving a transformed coarse
level problem instead by setting

ũ(t) := eUiκt û(t). (48)

This leads to the purely diffusive coarse level problem

ũt (t) = −νκ2ũ(t) (49)

with restriction operator eUiκt and interpolation e−Uiκt tak-
ing care of the propagation part. This is precisely the strategy
pursued in the nonlinear case by “asymptotic Parareal”where
they factor out a fast term with purely imaginary eigenval-
ues, related to acoustic waves. In a sense, their approach can
be understood as an attempt to construct a coarse method
with minimal phase speed error. Of course, evaluation of the
transformation is not trivial for more complex problems and
requires a sophisticated approach [30], in contrast to the here
studied linear advection–diffusion equation where the trans-
formation is simply multiplication by e−Uiκt and eUiκt .
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4.3.2 Phase error or mismatch

So far, we have always assumed that the fine method is exact.
This leaves the questionwhether the instability is triggered by
phase errors in the coarse method or simply by a mismatch
in phase speeds between fine and coarse level. In order to
see if the instability arises if both fine and coarse level have
the same large phase error, we replace the fine propagator
stability function by

R3 = |Rfine| eiθ(Rcoarse). (50)

Now, the fine propagator is amethodwith exact amplification
factor but a discrete phase speed that is as inaccurate as the
coarse method. While such an integrator would not make for
a very useful method in practice it is valuable for illustrative
purposes. The coarse method is again the standard implicit
Euler.

Figure 10 shows the phase speed (upper) and amplifica-
tion factor (lower) of Parareal for this configuration. Since
the fine and coarse method have the same (highly inaccurate)
phase speed, Parareal matches the fine method’s phase speed
exactly from the first iteration and all lines coincide. The
amplification factor converges quickly to the correct value
and looks almost identical to the case where a coarse prop-
agator with exact phase speed was used, compare for Fig. 7
(upper). No instability occurs and amplification factors are
below one across the whole spectrum for all iterations.

Figure 11 shows how Parareal converges for this configu-
ration in physical and spectral space. Because both fine and
coarse method now have substantial phase error, the Gauss
peak is at a completely wrong position. However, for k = 10,
Parareal already approximates it reasonably well and shows
no sign of instability. Convergence looks again very similar
to the results shown in Fig. 8 except for the wrong position
of the Gauss peak. While making the fine method as inaccu-
rate as the coarse method is clearly not a useful strategy to
stabilise Parareal, this experiment nevertheless demonstrates
that the instability is triggered by different discrete phase
speeds in the coarse and fine method.

Observation 4 Analysing further the issue of phase errors
shows that the instability seems to arise from mismatches
between the phase speed of coarse and fine propagator.

It is interesting to note that a very similar observation was
made by Ernst and Gander for multi-grid methods for the
Helmholtz equation. There, the “coarse grid correction fails
because of the incorrect dispersion relation (phase error) on
coarser and coarser grids […]” [9]. They find that adjust-
ing the wave number of the coarse level problem in relation
to the mesh size leads to rapid convergence of their multi-
grid solver. Investigating if and how their approach might
be applied to Parareal (which can also be considered as a

Fig. 10 Phase speed (upper) and amplification factor (lower) for an
artificially constructed fine propagator with the same phase error as the
implicit Euler coarse propagator

multi-grid in time method [17]) would be a very interesting
direction for future research. Furthermore, it seems possi-
ble that parallel-in-time methods with more than two levels
like MGRIT [10] or PFASST [8] could yield some improve-
ment, because they would allow for less drastic changes in
resolution compared to two-level Parareal.

4.4 Coarse time step

Using a smaller time step for the coarse method will obvi-
ously reduce its phase error and can thus be expected to
benefit Parareal convergence. Figure 12 shows that this is
indeed true. It shows discrete phase speed (left) and ampli-
fication factor (right) for the same configuration as used
for Fig. 3, except now using two coarse step per time slice
instead of one. Since the coarse propagator alone is now
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Fig. 11 Gauss peak computed with the R3 fine propagator. The incorrect phase speed of the fine method puts the peak at a completely wrong
position (left), but there is no instability and the spectrum (right) converges as quickly as for the exact phase speed coarse propagator in Fig. 8

Fig. 12 Phase speed (left) and amplification factor (right) for standard Parareal with the same configuration as for Fig. 3 except using two coarse
time steps per time slice

already significantly more accurate, Parareal with k = 5 and
k = 10 iterations provides more accurate phase speeds and,
for k = 15, reproduces the exact value exactly, The reduced
phase errors translate into a milder instability. For k = 10,
some wave numbers have amplification factors above one,
but both the range of unstable wave numbers and the sever-
ity of the instability are much smaller than if only a single
coarse time step is used. This explains why configurations
can be quite successful where both F and G use nearly iden-
tical time steps and the difference in runtime is achieved by
other means, e.g. an expensive high order spatial discretisa-
tion for the fine and a cheap low order discretisation on the
coarse level.

Observation 5 Since phase errors of the coarsemethod obvi-
ously depend on its time step size, reducing the coarse time
step helps to reduce the range of unstable wave numbers and
the severity of the instability.

4.5 Number of time slices

All examples so far only considered P = 16 time slices and
processors. To illustrate the effect of increasing P , Fig. 13
shows the discrete dispersion relation for standard Parareal
for P = 64 time slices or processors (same configuration
as in Fig. 3 except for P). Even for k = 15 iterations,
Parareal reproduces the correct phase speed (left figure) very
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Fig. 13 Phase error (left) and amplification factor for (right) P = 64 in contrast to P = 16 as in Fig. 3

poorly—waves across large parts of the spectrum suffer from
substantial numerical slowdown. Also, converge is slow and
there is only marginal improvement from k = 5 to k = 15
iterations. Convergence is somewhat faster for the amplifica-
tion factor (right figure) with more substantial improvement
for k = 15 over the coarse method. However, there also
remains significant numerical attenuation of the upper half
of the spectrum. If integrating the Gauss peak with this con-
figuration, the result at T = 64 after k = 5 iterations is
essentially a straight line (not shown) as almost all modes
beyond κ = 0 are strongly damped. A small overshoot at
around κ = 1 is noticeable for k = 15 iterations and this will
worsen as k increases. In general, as P increases, it takes
more iterations to trigger the instability since the slow con-
vergence requires longer to correct for the strong diffusivity
of the coarse method.

These results suggest that the high wave numbers are the
slowest to converge and that convergence deteriorates as P
increases. This is confirmed by Fig. 14, showing the maxi-
mum singular value for three wave numbers plotted against
P . Convergence generally gets worse as P increases, but
note that even for P = 64 the low wave number mode (blue
circles) still converges monotonically while the high wave
number mode (green crosses) might already converge non-
monotonically for only P = 4 processors. There also seems
to be a limit for σ as P increases, with higher wave numbers
levelling off at higher values of σ .

Therefore, Parareal could provide some speedup for linear
hyperbolic problems if the solution consists mainly of very
low wave number modes and/or numerical diffusion in the
fine propagator is sufficiently strong to remove higher wave
number modes. This also explains why divergence damp-
ing in the fine propagator can accelerate convergence of

Fig. 14 Maximum singular value of E depending on the number of
processors P for three different wave numbers κ

Parareal [29], as it removes exactly the high wave number
modes that converge the slowest.

Observation 6 While convergence becomes slower as the
number of processors P increases, low wave numbers con-
verge monotonically even for large numbers of P but high
wave numbers might not do so already for P = 4.

4.6 Wave number

The analysis above showed that higher wave numbers con-
verge slower and are more susceptible to instabilities. This
is confirmed in Fig. 15 showing the difference between the
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Fig. 15 Parareal defect versus number of iterations for ν = 0.0 (upper)
and ν = 0.1 (lower)

Parareal and fine integrator stability function

d(k) := |RParareal(k) − Rfine| . (51)

The smallest wave number, κ = 0.45, converges quickly
in the hyperbolic (upper) and diffusive case (lower). For
κ = 0.9, both cases show some initial stalling before the
mode converges. Finally, κ = 2.69 shows first a significant
increase in the defect before convergence sets in as k comes
close to P = 16. Interestingly, this is the case for both ν = 0
and ν = 0.1. While the “bulge” is even more pronounced in
the diffusive case, since modes decay proportional to e−νκ2t

in amplitude, the absolute values of the defect are orders of
magnitude smaller. Therefore, at least until k = 7 iterations,
it is no longer the high wave number mode κ = 2.69 that
will restrict performance, but rather the lower wave number
κ = 0.9. Then, the instability for the highwave number kicks
in and for k ≥ 8 wave number κ = 2.69 is again causing

Fig. 16 Maximum singular value of E depending on the wave number
κ for three values of diffusivity ν

the largest defect. As ν increases, however, the defects for
κ = 2.69 will reduce further, the cross-over point will move
to later iterations and eventually lower wave numbers will
determine convergence for all iterations. In a sense, in line
with the analysis above, Parareal propagates high wave num-
ber modes very wrongly in both cases, but since high wave
number modes are quickly attenuated if ν > 0, it does not
matter very much in the diffusive case.

Figure 16 confirms this for a wider range of wave numbers
κ . It shows the maximum singular value σ of the error prop-
agation matrix E over the whole spectrum for three different
values of ν. For ν = 0 (hyperbolic case), σ increases mono-
tonically with κ and the highest wave number converges
the slowest. After around κ ≥ 0.8, the singular values are
larger than one and convergence becomes potentially non-
monotone. For ν = 0.1, σ increases until around κ = 1.8
and then decreases again. Therefore, the slowest converging
mode is no longer at the end but in themiddle of the spectrum.
Also, we now have σ < 1 for all κ so that all modes will con-
verge, even though some potentially very slowly. Increasing
diffusion further to ν = 0.5 greatly improves convergence
for all modes, the largest σ across the whole spectrum is
now below 0.5. The worst converging mode has also moved
“further down” the spectrum and is now at around κ = 1.0.
This shows how the strong natural damping of high wave
numbers from diffusion counteracts Parareal’s tendency to
amplify them and thus stabilises it.

Observation 7 Since diffusion naturally damps higher wave
numbers, it removes the issue of slowor no convergence at the
end of the spectrum. Therefore, as the diffusivity parameter

123



16 D. Ruprecht

ν increases, the wave number that converges the slowest and
determines performance of Parareal becomes smaller.

5 Conclusions

Efficient parallel-in-time integration of hyperbolic and ad-
vection-dominated problems has been shown to be prob-
lematic. This prevents application of a promising new
parallelisation strategy to many problems in computational
fluid dynamics, despite the urgent need for better utilisation
of massively parallel computers. For the Parareal parallel-
in-time method, mathematical theory has shown that the
algorithm is either unstable or inefficient when applied to
hyperbolic equations, but so far no detailed analysis exists of
how exactly the instability emerges.

The paper presents the first detailed analysis of how
Parareal propagates waves and the ways in which the insta-
bility is triggered. It uses a formulation of Parareal as a
preconditioned fixed point iteration for linear problems to
derive its stability function. From there, a discrete disper-
sion relation is obtained that allows to study the phase speed
and amplitude errors from Parareal when computing wave-
like solutions. To deal with issues arising from increasing the
time interval togetherwith the number of processors, a simple
procedure is introduced to normalise the stability function to
the unit interval.

Analysis of the discrete dispersion relation and the max-
imum singular value of the error propagation matrix then
allows to make a range of observations, illustrating where
the issues of Parareal for wave problems originate. A key
finding is that the source of the instability are different dis-
crete phase speeds on the coarse and fine level, which cause
instability of higher wave number modes. Interestingly, the
overestimation of high wave number amplitudes is present in
diffusive problems, too, but since there these amplitudes are
naturally strongly damped, it does not trigger instabilities.
Further analysis addresses the role of the number of proces-
sors, the coarse time step size and comments on possible
connections to asymptotic Parareal and multi-grid methods
for the Helmholtz equation.

The analysis presented here will be useful to interpret and
understand performance of Parareal for more complex prob-
lems in computational fluid dynamics.Anatural line of future
research would be to attempt to develop a new, more stable,
parallel-in-timemethod for hyperbolic problemsbasedon the
provided observations. For example, the update in Parareal
proceeds componentwise. Thatmeans that if the coarse prop-
agator moves a wave at the wrong speed, the update will not
know that a simple shift of entries could provide a good cor-
rection. Attempting to somehow modify the Parareal update
to take into account this type of information seemspromising,
even though probably challenging to do in 3D. Extending the

analysis presented here to systems with multiple waves, e.g.
the shallow water equations, or to nonlinear problem where
wave numbers interact would be another interesting line of
inquiry. Furthermore, the framework used here to analyse
Parareal is straightforward to adopt for other parallel-in-time
integration methods as long as a matrix representation for
them is available.
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