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Abstract

We present a computational study of a simple one-dimensional map with dynamics composed
of stretching, permutations of equal sized cells, and diffusion. We observe that the combination
of the aforementioned dynamics results in eigenmodes with long-time exponential decay rates.
The decay rate of the eigenmodes is shown to be dependent on the choice of permutation and
changes non-monotonically with the diffusion coefficient for many of the permutations. The
global mixing rate of the map M in the limit of vanishing diffusivity approximates well the
decay rates of the eigenmodes for small diffusivity, however this global mixing rate does not
bound the rates for all values of the diffusion coefficient. This counter-intuitively predicts a
deceleration in the asymptotic mixing rate with increasing diffusivity rate. The implication of
the results on finite time mixing are discussed.

1 Introduction

Mixing processes occur in a variety of industrial and natural applications with large variation in
time and length scales, however the outcomes of mixing are typically the same; there is a reduction
of length scales, an increase in material interface and an approach to uniformity. Good mixing
can be accomplished in fluids by the action of stretching and folding fluid elements (SF), either
through a cascade to small scales via turbulent eddies or stirring protocols which consider chaotic
trajectories in highly viscous fluids [1]. The kinematic behaviour of SF systems is captured well
by the language of dynamical systems [2]. However, cutting and shuffling (CS), another mixing
process, can create interface and increase segregation but does not involve material deformation.
Discontinuous transformations such as cutting and shuffling have more subtle dynamics and are
not well understood. Once there is a reduction in length scales by an advective process, molecular
diffusion will blur any large gradients achieving uniformity of a scalar field in the long-time limit.

There are many instances in mechanical mixing in which discontinuities arise, although there is
comparitively little understanding in their implication on mixing. Split–and–recombine micro-mixers
adopt the action of cutting and shuffling to increase the number of lamellae between substances
[3]. Sink–source flows, which may be configured to generate chaotic velocity profiles via pressure
differences from fluid subtraction and reinjection, can introduce discontinuities by the closing and
opening of valves during syringe reorientation [4, 5]. Streamline jumping, which occurs during
reorientation, has been known to destroy dynamical features [6], or in the cut-dominated limit create

1email address: mm10hek@leeds.ac.uk

1



pseudo-elliptic and pseudo-hyperbolic periodic points [7]. Additionally, underlying properties of the
material may introduce discontinuities. High strain in polymeric, plastic or metallic material may
cause slip deformations due to shear banding [8]. Granular materials also exhibit the mechanisms of
both stretching and folding and cutting and shuffling. In tumbler flows, a flowing layer at the surface
introduces shear-like behaviour while the bulk material undergoes solid body rotation. Piecewise
isometries have been shown to capture the underlying structure in spherical tumbler flows [9, 10],
with deviations in experimental models occurring due to the material passing through the flowing
layer or diffusive-like effects from particle–particle interaction.

In applications of mixing, whether industrial or natural, it is a primary interest to quantify the
rate of mixing to a certain condition. Molecular diffusion acting alone will cause a concentration
field to tend to uniformity at an exponential rate, although this rate is generally very slow. Good
stirring protocols can increase the rate to uniformity. In fully chaotic flows exponential stretching
and compression of a fluid parcels produces an exponential rate in the reduction of length scales
and increase in material interface. However, KAM surfaces and islands, boundaries surrounding
fully chaotic domains, or parabolic points can contaminate this exponential mixing rate [11, 12].
The process of cutting and shuffling increases the number of interfaces linearly [13] and has been
proven to be weak mixing in the asymptotic limit even in the absence of material stretching [14],
but the mixing rate is at most polynomial [15]. Piecewise isometries on the unit interval or on a
hemispherical shell have been shown to achieve good mixing even in finite time [16, 17, 18]. However,
these mixing processes are unlikely to arise in isolation in real life applications.

There is an extensive literature studying the combination of stretching and folding from chaotic
advection and diffusion, and the underling mechanisms which drive the mixing rates. Uniform
stretching with diffusion predicts an unrealistic super-exponential mixing rate, however non-uniformity
in the underlying flow field produces exponential mixing rates overall. This rate is governed either
through the mis-alignment of concentration field gradients with local stretching directions [19] or
the global transport rate of the underlying flow field [20, 21, 22, 23]. The global regime leads to
the emergence of “strange eigenmodes” [24], persistent patterns with a fixed exponential decay rate.
The decay rate of the dominant eigenmode becomes independent of diffusivity in the zero-diffusivity
limit [24, 20, 22].

Permutations of equal sized cells on the unit interval, a subset of interval exchange transfor-
mations (IET), have been shown to accelerate the asymptotic mixing rate of diffusion acting alone
[25]. IETs with diffusion have been used as toy models to investigate mixing [26, 27] but there has
been no investigation of the mixing rates of this larger parameter space. Bounds have been found
on the mixing rates for permutations composed with expanding maps on the unit interval, with the
conclusion that permutations do not improve the mixing rate and typically make it worse [28]. It is
similarly reported for shears composed with a slip deformation that the combined mechanisms can
slow the rate of mixing of material segregation [29].

There has however been no investigation into the composition of the three dynamics of SF, CS,
and diffusion and the resulting mixing rates. We begin to address this here by studying a simple map
on the unit interval of an idealised time-periodic and laminar fluid flow. In Sec 2 we construct the
problem and introduce the hyperbolic and discontinuous maps. In Sec 3 we present the numerical
results and in Sec 4 discuss the relationships to previously published results on expanding maps with
permutations. In Sec 5 we consider the results in physical, finite time mixing and the implications
of the results are discussed in Sec 6.

2



2 Formulation of the problem

2.1 Iterative Advection–Diffusion Map

We study the evolution of a passive scalar c(x, t) in a viscous fluid flow by the advection–diffusion
equation

∂tc(x, t) + u(x, t) · ∇c(x, t) = κ∇2c(x, t), (1)

over a domain Ω. The velocity field u(x, t) is taken to be incompressible, ∇·u = 0, and time periodic
such that u(x, t + T ) = u(x, t). The diffusion coefficient κ is the inverse of the Peclet number
κ = Pe−1, a non-dimensional number representing the ratio of diffusive to advective timescales.

We simplify the evolution of the advection–diffusion equation by separating the processes of
advection and diffusion in time. This iterative approach has been used previously to study mixing
rates in one and two-dimensional chaotic maps [20, 21, 22]. First we evolve the scalar field according
to (1) with κ = 0 for a time T . Since we are considering laminar time-periodic flows, we consider
the advective step as a map M : Ω → Ω acting on fluid particles within the domain Ω as an iterative
step in time t → t + T along the streamlines of the underlying flow field. Then the evolution
of c(x, t) → c(x, t + T ) can be represented by a linear operator acting on the space of functions
PM : X → X , c ∈ X . We consider the function class of piecewise smooth functions on the unit
interval X = C∞

p [0, 1) as we are interested in studying transformations with discontinuities. The
operator for the map is known as the Frobenius–Perron operator in the dynamics literature capturing
the evolution of densities.

Following the advective time step, we then include diffusion by evolving the scalar field according
to (1) with u = 0 via the operator PD : X → X , PD = exp(tκ∇2) for a time T . The operator for the
full advective–diffusive time step is then considered as a composition of the operators P = PD ◦PM ,
such that c(j+1)(x) = (Pc(j))(x) with j = 0, 1, 2, . . . denoting the discrete steps. The operator P is
linear due to the linearity of the advection–diffusion equation (1).

The eigenvalues λk of the operator P and their respective eigenfunctions vk satisfy Pvk = λkvk
and the eigenvalues can be ordered according to their absolute values |λ1| ≥ |λ2| ≥ · · · ≥ 0. The
trivial eigenvalue λ1 = 1 and the respective invariant eigenfunction is the mean field of the scalar c̄.
All other eigenvalues will have the value |λk| < 1 when the diffusion coefficient is non-zero.

We take a one-dimensional concentration field and the domain Ω to be the unit interval T = [0, 1)
with periodic boundary conditions. Then the concentration field can be represented by the discrete
Fourier expansion

c(j)(x) =

∞
∑

n=−∞

ĉ(j)n e2πinx.

The action of the operator P is then represented by the transfer of amplitude between the Fourier
coefficients ĉn, given by

ĉ(j+1)
n =

∞
∑

k=−∞

dnmMmk ĉ
(j)
k (2)

where the transfer matrix due to the advective map M is

Mmk =

∫ 1

0

e2πimx−2πikM(x)dx (3)

and the diffusive step is defined via the transfer matrix

dnm = δnmρ
n2

, ρ = exp(−4π2κT ). (4)
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Figure 1: The action of the baker’s map (5) is to contract the x direction, stretch the y direction
and reassemble onto the unit torus. Taking a y independent initial condition, here c(x, y) = grey
for x < 1/2 and c(x, y) = white for x ≥ 1/2, reduces the baker’s map to a one-dimensional map on
the unit interval.

The time period for the diffusive step is normalised (T = 1) so that the effect of diffusion is
parametrized by κ only.

2.2 Maps of interest

The two-dimensional incompressible baker’s map is a paradigm example of a hyperbolic chaotic map
which is mixing, given by the map

MB(x, y) =

{

(x/2, 2y) for y ∈ [0, 1/2)

((x+ 1)/2, 2y − 1) for y ∈ [1/2, 1).
(5)

By considering a y independent initial condition, the baker’s map reduces to a one-dimensional
map which is one-to-two and represented acting on the concentration field by

c(j+1)(x) =

{

c(j)(2x) for x ∈ [0, 1/2),

c(j)(2(x− 1)) for x ∈ [1/2, 1).

Figure 1 depicts the action of the baker’s map and its reduction to one-dimension.
We compose the baker’s map with the simplest non-trivial piecewise isometry on the unit interval,

a permutation of equal sized cells. The permutation map is applied by first dividing the unit interval
into N equally sized intervals and numbering them according to their position within the interval.
Consider a permutation σ ∈ SN , where SN is the group of all permutations on the set of symbols
{1, 2, . . . , N}. Then the action of the map on a point x ∈ [(l − 1)/N, l/N) is given by

Mσ(x) = x+
σ(l)− l

N
. (6)

The action on the concentration field is c(j+1)(x) = c(j)(M−1
σ (x)). The permutations are represented

in disjoint cycle notation, see [25] for example.
The composition of the mapsMB andMσ will be denoted as a single map σ◦MB . The advantage

of the chosen maps is that they are simple to implement in the transfer between Fourier coefficients.
The advection–diffusion operator is represented as a single matrix by the product of matrices

ĉ
(j+1)
k = Pnk ĉ

(j)
n , Pnk = dnmMmk,
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where the diffusive step matrix is taken as in (4) and the advective step

Mmk =

∫ 1

0

e2πimx−2πik(σ◦MB(x))dx

=
(1− ω(2k−m))

2πi(2k −m)

N
∑

ℓ=1

ωmσ(ℓ)−2kℓ

when m 6= 2k, with the primitive Nth root of unity ω = e−2πi/N . When m = 2k,

Mmk =
1

N

N
∑

ℓ=1

ωm(σ(ℓ)−ℓ).

The computational process is then to truncate the Fourier modes to deal with finite matrices.
Here we take −K ≤ k ≤ K, with K = 1000, which was sufficient for κ ≥ 10−6. Larger values of K
showed no change in computational results. K can be increased accordingly for smaller values of κ.

We measure the decay of variance from the uniform distribution

ψ(j) =

∫ 1

0

|c(j)(x)− c̄|2dx =
∑

k

|ĉ
(j)
k |2 (7)

to quantify the mixing rate. Subtracting the mean value c̄ as a constant, the rate of decay of variance
is calculated in its approach to zero. A map which has good mixing will ensure that c(x) → c̄ quickly.

In the interest of the discussion here we only present results for σ ∈ S5. For ease of discussion
we define the rotation subgroup of SN as the permutations σ which satisfy

σ(l) = l +m mod N

for m ∈ {0, 1, . . . N − 1}. Note that we have included the identity permutation in this group, which
we denote SR

N .

3 Numerical results

3.1 Initial transient

Figure 2 shows the decay of variance for a selection of permutations with κ = 10−5 and the initial
condition c(0)(x) = cos(2πx). For a permutation σ ∈ SR

5 , the map reduces to M(x) = 2x +m/N
mod 1. Then Mmk = ωmk for m = 2k with |ωmk| = 1, and Mmk = 0 when m 6= 2k. Hence the
resulting variance equation can be calculated analytically for all σ ∈ SR

N and for the initial condition
cos(2πx) we have

ψ(j) = ψ(0) · exp

(

−
32

3
π2κ(4j − 1)

)

. (8)

This result is the same as discussed in [21]. There is an exponential cascade to large wavenumbers,
where the action of diffusion is more effective, leading to super-exponential decay in the variance.
This is observed in the linear-log plot in Figure 3 for a representative permutation (12345).

For all other permutations σ ∈ S5\S
R
5 the permutations create additional interface, transferring

concentration to large wave numbers in the Fourier expansion immediately. These additional sharp
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(j)

0.0

0.1

0.2

0.3

0.4

0.5

ψ

SR
5

S5  \ S
R
5

Figure 2: The initial stages of variance decay for representative permutations. Permutations which
introduce new interface S5\S

R
5 deplete the variance quicker than the identity of rotational permu-

tations SR
5 in the initial 5 iterations. Diffusion coefficient is κ = 10−5 with the initial condition

c(0)(x) = cos(2πx).

interfaces are not captured by stretching histories which implies that any local, Lagrangian argu-
ments will break down in predicting the mixing rate of such a system. However, once there is a
significant depletion of variance, the incompressible baker’s map composed with σ ∈ SR

5 depletes
the variance quicker than any σ ∈ S5\S

R
5 .

3.2 Exponential Decay

For all σ ∈ S5\S
R
5 the decay in concentration variance in the long-time limit is exponential. A

sample of the variance profiles are seen in Figure 3, for the initial condition c(0)(x) = cos(2πx) and
κ = 10−5. The variance profiles show significant variation in the exponential rates of decay for
different permutations, also seen across a range of diffusivity coefficients.

The decay rates are predicted from the transfer matrices of the composed advection-diffusion
iterative map Pnk. After a number of initial iterations the eigenfunctions vk decay at the rate of
their respective eigenvalues until the slowest decaying eigenfunction with the slowest decay rate, the
second largest eigenvalue λ2, dominates the evolution of the concentration field. Hence the long-time
exponential decay rate of the variance is given by ψ(j) ∼ |λ2|

2j , intuitive from (7). If |λ2| ∼ 1, then
the decay rate of the dominant eigenfunction v2 would be slow, while |λ2| ≪ 1 predicts a fast mixing
rate.

The predicted decay rates from the eigenvalues are plotted as dashed lines in Figure 3 to show
the precise agreement with the respective profiles. Oscillations arise due to the complex value of
the eigenvalues and eigenfunctions [30]. The eigenfunctions are either static or spatially evolve on
further applications of the operator Pnk. Figure 4 shows the emergence of a static eigenfunction for
the permutation σ = (34) after a number of initial iterations. Randomising the amplitudes of the
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10-16
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Figure 3: Variance decay profiles for representative permutations on linear-log axis. Dashed lines
show the variance decay predicted by the second leading eigenvalues λ2. The diffusion coefficient is
κ = 10−5 with the initial condition c(0)(x) = cos(2πx).
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=
1
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=
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=
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j
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j
=
7

j
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8

Figure 4: Image shows the first few iterations for the composed map with σ ◦MB with σ = (34),
κ = 10−4 and the initial condition c(0)(x) = cos(2πx). The colour scale is adjusted at each iteration
to clearly show the persistent pattern emerging.
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10-7 10-6 10-5 10-4 10-3 10-2 10-1

κ

0.0

0.2

0.4

0.6

0.8

1.0

|λ 2
|

 (24)

 (45)

 (354)

 (2354)

 (2453)

Figure 5: |λ2| is plotted against κ for a number of permutations. Convergence in the limit κ → 0
occurs for some of the permutations while |λ2| changed non-monotonically for others. The dashed
lines represent theoretical upper and lower bounds in the limit κ = 0. Symbols are used to distinguish
the profiles and do not represent data points.

first four modes for the initial condition [30] results in the same eventual exponential decay rate.
Hence we conclude that these are persistent patterns with decay rates irrespective of the initial
condition, similar to those seen in chaotic advective systems with non-uniformity in the stretching
rates of the flow field.

This is the well known global mechanism for mixing in smoothly deforming systems [20, 21, 22].
Dispersion between the Fourier modes occurs due to the permutation composition, comparable to
the dispersion in non-uniform maps [21]. The decay rate is not governed by the local, Lagrangian
behaviour since the stretching rates are the same almost everywhere, except for a countable number
of discontinuities which form a set of zero measure. Non-uniformity arises in the rearrangement of
striations by the interval exchange. Diffusive and reactive systems have been shown previously to
be sensitive to striation arrangement [31]. However, unlike the strange eigenmodes of non-uniform
smooth systems which align with regions of low stretching, the eigenmodes do not appear to correlate
with physical characteristics of the underlying advective dynamics, such as periodic points or where
the discontinuities are introduced.

According to the value of the second leading eigenvalues |λ2| for κ = 10−3, 10−4, 10−5 and 10−6,
each permutation falls into one of 16 subgroups of S5. The subgroups consist of 5 or 10 permutations
with |λ2| the same for all values of κ. The subgroups reflect rotations and reflections in the dynamics
of the compositions on T = [0, 1) which is not intuitive from the permutations alone. For the rest of
the paper we ignore σ ∈ SR

5 and focus on permutations which have long time exponential decay of
variance.

3.3 Effect of κ

A representative permutation from each of the 15 remaining subgroups was chosen and the second
leading eigenvalue computed for many values of κ. Figure 5 shows several of the profiles which
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Figure 6: Graphical representations of a) one-dimensional approximation of the baker’s map, the
halving map, b) the halving map composed with the permutation σ = (15243), denoted (σ ◦MB)
and c) the pre-image map (σ ◦MB)

−1 is shown with an appropriate Markov partition.

Table 1: For each of the subgroups, the absolute value of the second leading eigenvalues for low
values of the diffusion coefficient, denoted |λκ2 |, are computed. A comparison with τ , the mixing rate
from the respective Markov transition matrices of the pre-image mapping (σ ◦MB)

−1, shows good
agreement.

(45) (34) (345) (354) (35) (23)(45) (2354) (2453)

|λ10
−7

2 | 0.6042 0.6444 0.673 0.5878 0.6013 0.7493 0.7996 0.8046

|λ10
−8

2 | 0.6061 0.6518 0.6641 0.6235 0.5904 0.753 0.8075 0.807
Markov τ 0.5919 0.6624 0.6677 0.5755 0.5755 0.7564 0.809 0.809

(24) (245) (253) (25) (25)(34) (13452) (1345)

|λ10
−7

2 | 0.5751 0.8048 0.6443 0.6086 0.5089 0.8075 0.6156

|λ10
−8

2 | 0.561 0.8072 0.6531 0.5926 0.4788 0.807 0.5808
Markov τ 0.5 0.809 0.6624 0.5919 0.5 0.809 0.5
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highlight the behaviour seen. For some of the permutations there is convergence in the limit of
κ → 0 and the approach is monotonic with the diffusion coefficient, for example (2453) and (45).
Convergence of mixing rates in the limit of small diffusivity is well observed numerically in non-
uniform smooth chaotic deformations [24, 20, 32].

However non-monotonic profiles of the decay rates also occur with changing κ, for example (24),
(354) and (2354), which has not been widely reported. If the subgroups were listed by the value of
|λ2|, then it is apparent from Figure 5 that the ordering would be dependent on the value of κ. [25]
observed similar behaviour for permutations composed with diffusion, however non-monotonicity
was not reported. Examples of maps in which non-monotonicity has been seen include an expanding
map with three branches [33], and the non-uniform inverted baker’s map with a no-flux boundary
condition, where a power law relation had oscillatory non-monotonic behaviour [34]. Both maps
contain points that are non-differentiable.

4 Mixing rates in the non-diffusive limit

In the absence of diffusion the variance of the concentration field would remain constant, however
the advective operator PM can be said to be “mixing” in the following sense [35]. Take sets A,B ⊂
Ω = [0, 1) and define the Lebesgue measure µ such that A = [a, b), so that µ(A) = b − a. Let
(Ω,A, µ) be a normalized measure space where A is the σ-algebra made up of all possible half-open
subsets of the unit interval, and M : Ω → Ω a measure-preserving transformation. Then M is said
to be mixing if

lim
n→∞

µ(A ∩Mn(B)) = µ(B)µ(A) for all A,B ⊂ A. (9)

For a map M which is not invertible we replace Mn with M−n. This states that under the action
of the map on the set A, we expect to find the same amount of A in any of the chosen intervals B.
This can be re-formulated in functional form as the action of the map M on observable functions g
and h via the decay of correlations

Cg,h(n) =

∣

∣

∣

∣

∫

h(g ◦M−n)dµ−

∫

gdµ

∫

hdµ

∣

∣

∣

∣

. (10)

The rate at which Cg,h(n) → 0 is of interest. Typically the observables g and h are representative
of ‘a scalar field’. We refer to the following Lemma from [36]

Lemma 4.1 For the Frobenius–Perron operator P which represents the map M , let X be a class

of real-valued functions preserved by P . Let σ(P ) denote the spectrum of P when considered as an

operator on X , and set τ = sup{|z| : z ∈ σ(P )\{1}}. Then there is a constant C < ∞ such that

Cgh(N) ≤ CτN for all N ≥ 0, if g ∈ L∞ and h ∈ X

Hence the decay of correlations, and thus the rate of mixing τ , is bounded by the second leading
eigenvalue of the spectrum of P . It has previously been shown that the mixing rate given by the
second leading eigenvalue in the small diffusivity limit tends to the second leading eigenvalue of the
isolated spectrum for the advective operator PM in smoothly deforming systems [32].

Thus, studying the spectrum of PM will give an insight into the mixing rate of the composed
map as κ→ 0. However, for κ = 0 the transfer matrix for the Fourier coefficients can not be feasibly
truncated, thus it can not be found from the computational method already presented. The rate of
mixing for the map when κ = 0 can be calculated from matrices defining the probability transition
between Markov partitions for the map, the derivation of which closely follows methods developed
for permutations composed with expanding maps and we briefly outline the results of [28].
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An expanding map on the unit torus [0, 1) is described as

f(x) = mx mod 1, m ∈ Z,m ≥ 2, (11)

and the composition of expanding maps and permutations are denoted σ ◦ f . The eigenvalues of
Markov transition matrices representing the composed maps are related to the isolated spectrum of
the composed map σ ◦ f through the use of Fredholm matrices. The absolute value of the second
leading eigenvalue for the transition matrix is the value τ . It is proved that whenever N is not a
multiple of m, the composition σ ◦f acting on functions of bounded variation is always mixing, that
is τ < 1. A lower bound on τ is found to be 1/m and when N > m and gcd(m,N) = 1,

τ ≤ τmax =
sin(mπ/N)

m sin(π/N)
(12)

is a suitable upper bound.
The construction and results of [28] have a direct comparison with the current presented model.

Consider the graphical representation of the system studied here; the halving map composed with
a permutation, shown in Figure 6. We denote the pre-image (σ ◦MB)

−1, which is also graphically
presented. It is possible to construct a Markov partition on the pre-image map with 2×N elements
of equal size 1/2N (N the number of cells in the permutation). It can easily be shown that an
eigenvalue τ of the transformation σ−1 ◦ f , is equivalent to the eigenvalue τ of (σ ◦MB)

−1, where
σ−1 denotes the inverse permutation of σ. This arises from the construction of the Markov transition
matrices in the proof of the bounds from [28] (see the Appendix for details).

In reference to the definition of mixing given in (9), (σ ◦MB)
−1 is not invertible and as such

action of the map σ ◦MB is considered, which is precisely the evolution of striations we have studied
here. Thus we compare the rates of mixing in the limit κ → 0 to those predicted from the Markov
transition matrices of (σ ◦MB)

−1.
Table 1 compares τ for the pre-image (σ ◦MB)

−1 with |λ2| of the respective diffusive transfer
matrices in the limit of small diffusivity. The values show good agreement for many of the per-
mutations, however this is not the case for all. Considering the permutations which are not in
good agreement, profiles of |λ2| with κ for these permutations have non-monotonic behaviour with
significant variation in the values of |λ2|. It is not known whether the profiles will eventually con-
verge or continue oscillating in the limit of small diffusivity but investigating smaller values of κ is
computationally infeasible.

The lower and upper bounds on the value of τ for the model considered here are respectively

τmin =
1

2
, τmax =

sin(2π/5)

2 sin(π/5)
≈ 0.809

and are plotted as dashed lines in Figure 5. τmax and τmin predict the slowest and fastest mixing
rates of the operator Pσ◦MB

for σ ∈ S5 respectively and seem to be reasonable bounds on the mixing
rate when the diffusive rate is small. However, at large values of κ the upper bound does not agree
as a bound on |λ2| due to the non-monotonicity of the profiles. For many of the permutations in the
composed maps the second leading eigenvalue τ given by the Markov transition matrix is smaller than
|λ2| for non-zero κ. Counter-intuitively this implies that the mixing rate is slower when the diffusive
effect is large compared to the diffusivity in the zero-limit. To the authors’ knowledge, although
non-monotonicity has been reported previously, a slower mixing rate than the global transport rate
in the zero diffusion limit has not.

Explaining the non-monotonicity is beyond the scope of this paper, although non-monotonicity in
profiles of mixing rate with κ appear to persist when other hyperbolic maps on the unit interval are

11



0 5 10 15 20

(j)

10-2

10-1

100

ψ
(j
)/
ψ
(0
)

κ=10−3

κ=10−4

κ=10−5

Figure 7: The variance ψ(j)/ψ(0) is plotted for σ ◦MB with σ = (2354), initial condition c(0)(x) =
cos(2πx), for three diffusivity values. Linear-log plot is used to better distinguish the iterates in
which ψ(j)/ψ(0) crosses the 95% threshold, represented by the the dashed line. ψ(j)/ψ(0) crosses
the threshold at the earliest time when κ = 10−5, the smallest value.

considered for the stretch and fold component, such as when the baker’s map is the incompressible
non-uniform baker’s map [20] or inverted baker’s map [37, 34]. The computational results of these
maps composed with permutations are omitted for brevity.

5 Finite time mixing

The results of the paper thus far have been concerned with asymptotic mixing rates of the composed
maps. However, mixing of concentration fields has several stages which contribute to the finite time
mixing and in practical situations one would want to consider the time need to mix to a desired
condition. We consider the finite mixing rate by first returning to means of quantify mixing under
the action of advection and diffusion. We introduce the L∞ and Lq norms;

L∞

t =||c(x, t)− c̄||∞

= inf{M : |c(x, t)− c̄| ≤M a.e. x ∈ [0, 1)}

and

Lq
t = ||c(x, t)− c̄||q =

(
∫ 1

0

|c(x, t)− c̄|qdx

)1/q

.

In this paper we have already considered the variance which is defined ||c(x, t)− c̄||22, the square of
the L2 norm. Which norm to consider depends on the application and desired result. Note that
taking 0 < q′ ≤ q then || · ||q ≤ || · ||q′ ≤ || · ||∞. Similar to a previous study [25], we consider the
time needed for a desired norm to come within an arbitrary condition, say 5% of uniform, which is

12
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Figure 8: L∞
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∞

0 norm is plotted for σ◦MB with σ = (2354), initial condition c(0)(x) = cos(2πx), for
three diffusivity values. Linear-log plot is used to better distinguish the iterates in which L∞

t /L
∞

0

crosses the 95% threshold, represented by the the dashed line. Similar to the variance, L∞

t /L
∞

0

crosses the threshold at the earliest time when κ = 10−5, the smallest value.

referred to as the time to 95% mixing, t95. It is defined to be the smallest t95 = t > 0 such that

||c(x, t)− c̄||q/||c(x, 0)− c̄||q ≤ 0.05 (13)

where q denotes the Lq norm. We numerically investigate the number of iterates needed to satisfy
this requirement for the L∞ norm and ψ.

In the initial stages of advection and diffusion, when the effect of diffusivity is small, an Lq norm
will remain constant for some time until the gradients or lengthscales in the concentration field are
on the order of the Batchelor lengthscale

√

κ/λls, the balance between diffusive rate and local strain
rate λls. For smoothly deforming chaotic flows, in the limit of small diffusivity the exponential
mixing rate becomes independent of the diffusivity coefficient in the limit of small diffusivity, thus
the main consquence of decreasing the effect of diffusivity is to extend the initial transient where a
measured norm is close to constant. Once the Batchelor scale is reached there is significant decay,
however this initial stage is weakly dependent on diffusivity, on the order of log(κ) [21, 38].

As an example, we take the permutation σ = (2354), which has a slower asymptotic mixing rate
at non-zero κ than the upper bound on the zero-diffusivity mixing rate. The initial condition is
taken to be cos(2πx). Figure 7 plots the variance decay rates for three different values of κ. The
renormalised variance of c(j)(x) for the larger values of κ = 10−3, 10−4 achieves the 95% mixed state
after the smallest value κ = 10−5, although the difference is approximately 1 iteration. However, for
the L∞ norm in Figure 8, the condition for the larger diffusivity rates is reached approximately 5
iterations later. This example illustrates that the counter-intuitive deceleration with diffusivity rate
κ could have a significant effect on the time to achieve a practical mixing condition. In applications
of fluid mixing devices this would equate to 5 additional stirring periods or channel segments to
achieve the desired result, which could be overlooked if approximating mixing time from advective
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properties only and thus the correct mixing criteria not achieved in the predicted time.

6 Discussion

We have presented a one-dimensional model which captures a mixture of stretching and discontinuous
advective dynamics with a diffusive step. In the initial transient the additional discontinuities speed
up the decay of variance over the chaotic advection alone. However once the Batchelor scale is reached
and variance begins to deplete, a phase of exponential decay begins due to the non-uniformity caused
by the permutation of striation arrangement. Lagrangian arguments fail to explain the varying decay
rates across the range of permutations since stretching rates are the same almost everywhere, expect
where they are undefined on the discontinuities which form a set of measure zero. The mechanism
for the emergence of an exponential asymptotic mixing rate is global and in the limit κ → 0 the
mixing rate is well approximated by the global transport rate predicted from the Markov partitions
of the pre-image map.

However, this approach to the mixing rate in the zero diffusivity limit is non-monotonic in many
cases which is counter intuitive. Although non-monotonicity has been observed in one-dimensional
maps before [34] [33], here a slower mixing rate than the global mixing rate is predicted for large
values of the diffusivity coefficient, which has not been previously reported. However, all maps in
which non-monotonicity with diffusion has been reported have a common property in that they
contain points which are non-differentiable. We hypothesise that this deceleration with diffusion is
a feature of non-continuous mappings in which discontinuous transformations are a subset. In the
dynamical systems and ergodic theory literature there is large interest in finding global mixing rates
of advective maps and bounds on these mixing rates, but these computational results suggest that
in studying fluid mixing systems in which there is a mixture of stretching and cutting and shuffling,
diffusion may have to be taken into account for accurate mixing rate predictions and comparisons
across mixing protocols. The significance in this observation is shown to effect mixing rates in finite
time considerations to achieve physical mixing conditions, chosen arbitrarily here to be a 95% mixed
state.

The present study could be extended to a larger collection of interval exchange transformations
with finite order, however the similarities of the mixing rates for small diffusivity to the rates τ
when κ = 0 implies that the conclusions of [28] predict well the asymptotic mixing rates and it is
unlikely that adding diffusion would not highlight anything of further interest than already discussed
herein. The model is highly idealised in relation to real fluid mixing problems. The one-dimensional
reduction of the baker’s map leads to a striation arrangement which are all perfectly aligned with
the stable manifolds and notably, the discontinuities are also aligned with the stable manifolds. One
possible extension would be to study the same phenomena in a two-dimensional system where one
of these idealisations is not present.
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Appendix

In this appendix we briefly discuss the construction of the Markov partitions and highlight the
required results of [28] to find the mixing rates for σ ◦MB when κ = 0.

The Markov partitions for the composition map σ ◦ f , where σ ∈ SN and f as defined in (11), are
constructed as follows. Define Pk by {0, 1, ..., k−1} and number the associated rows and columns in
the transition matrices from 0. A(m,N) and B(m,N) are defined to be the state transition matrices
for the expanding map f with respect to PN and PNm respectively and are found via

A(m,N)ij =

{

1 if j = mi+ d mod N, 0 ≤ d ≤ m− 1,

0 otherwise,

and

B(m,N)ij =

{

1 if j = mi+ d mod Nm, 0 ≤ d ≤ m− 1,

0 otherwise.

The state transition matrices for σ ◦ f are then obtained by permuting the columns of A(m,N)
and B(m,N). P (σ) is defined as

P (σ) =

{

1 if j = σ(i),

0 otherwise,

and let Q(σ) be the Nm × Nm matrix obtained by replacing each entry 1 in P (σ) by an m ×m
identity matrix, and each 0 entry by a m ×m zero matrix. Then the state transition matrices for
σ ◦f w.r.t PN and PNm are A(m,N)P (σ) and B(m,N)Q(σ). It is proved in Lemma 4.2.1. [28] that
the eigenvalues of A(m,N)P (σ) and B(m,N)Q(σ) are the same.

When considering the state transition matrices of the pre-image (σ ◦ MB)
−1, the same con-

struction can be followed in which the rows are permuted instead of the columns; P (σ)A(m,N) and
Q(σ)B(m,N). By the same arguments in Lemma 4.2.1 [28], a vector space can be constructed which
proves that the second leading eigenvalues of P (σ)A(m,N) and Q(σ)B(m,N) are also equivalent.

Finally, note that P (σ)A(m,N) is the matrix obtained from A(m,N)P (σ−1) and if τ̃ is an
eigenvalue of P (σ)A(m,N), then τ = τ̃ /m, hence for every σ, τσ−1◦f = τ(σ◦MB)−1 .
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