This is an author produced version of Design of a high-speed germanium-tin absorption modulator at mid-infrared wavelengths.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/123536/

Proceedings Paper:

https://doi.org/10.1109/GROUP4.2017.8082175

(c) 2017, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
We propose a high-speed electro-absorption modulator based on a direct bandgap Ge$_{0.875}$Sn$_{0.125}$ alloy operating at mid-infrared wavelengths. Enhancement of the Franz-Keldysh-effect by confinement of the applied electric field to GeSn in a reverse-biased junction results in 3.2dB insertion losses, a 35GHz bandwidth and a 6dB extinction ratio for a 2Vpp drive signal.

Extension of Silicon Photonics to the longer wavelength IRB and mid-IR regions has attracted very considerable attention in recent years [1]. The recent demonstration of a direct bandgap Germanium-Tin (GeSn) IRB laser [2],[3], offers the prospect of establishing a complete group IV mid-IR platform, provided reliable electrically pumped room temperature lasing can be reached. Important progress has already been made on extended wavelength GeSn photodetectors [4],[5]. On the other hand, only a few studies have been made on the realization of GeSn modulators. Theoretical studies have been mostly focusing on the physical modelling of direct absorption via the quantum confined Stark effect [6],[7] or the Franz-Keldysh effect (FKE) [8], rather than a comprehensive device design relying on a proven fabrication flow. We propose a high-speed and low power consumption FKE GeSn modulator design relying on a strain relaxed Ge$_{0.875}$Sn$_{0.125}$ layer grown on a Ge virtual substrate (with a residual compressive strain of -0.4%), as already experimentally realized [3], with a room temperature direct bandgap of 440meV (absorption edge at 2.82μm). The modulator is based on a vertical 1μm/300nm/300nm Ge/GeSn/SiGeSn stack grown on Si, in which the upper SiGeSn and the lower Ge layers are respectively intentionally n-doped to 1e18cm$^{-3}$ (top 30nm n-doped to 2e19cm$^{-3}$ to facilitate top contacting) and p-doped to 3e16cm$^{-3}$. The GeSn is intrinsically p-type (~1e17cm$^{-3}$) due to native point defects. Application of a reverse bias across the stack partially depletes the GeSn layer and results in the application of an electric field in the space charge region, so that both the FKE and free carrier absorption contribute to the variable absorption. Under application of a reverse biased voltage, the induced change of free carrier absorption is opposite to that of FKE. It has, however, also a much smaller magnitude at the chosen bias point. n-doping of the topmost SiGeSn is chosen at least an order of magnitude above the native GeSn n-doping to ensure that the applied field is primarily localized in the latter. Assumed refractive indices are 4.02 (Ge), 4.2 (GeSn) and 4.02 (SiGeSn).

Fig. 1 is a schematic representation of the device. The GeSn/SiGeSn layers are removed everywhere except in the active region of the device to enable reduced loss, 2μm wide Ge single mode interconnect waveguides (p-doping still results in ~2.3dB/mm) defined by a 600nm deep etch into the Ge (400nm slab thickness). The GeSn/SiGeSn stack is tapered up to a 1.4μm width in a 50μm long transition that allows adiabatically pulling up the field into the GeSn region. A central electrode on top of the stack allows contacting the cathode. Further device designs relying on segmented waveguides [9] for contacting without metal induced excess losses, as well as on a p-SiGeSn/GeSn/n-SiGeSn stack grown on intrinsic Ge for low loss interconnect waveguides are currently under study. The optimization
of phase shifters with the same waveguide configuration is also under study and will be reported at the conference.

The FKE is modelled based on Eq. 6 in [8], with the value of the parameter C used therein taken from the same reference. Due to the residual compressive strain, the light hole and heavy hole bands are split. Only the heavy hole band, preferentially interacting with TE polarized light, is taken into account. The effective masses were calculated using the 8 band k·p method, resulting in 0.22m0 for the heavy hole effective mass and 0.03m0 for the Γ-valley electron mass, both taken in the growth direction along which the electric field is applied. Fig. 2(a) shows the calculated change in absorption (Δα) induced in the GeSn alloy by the applied electric field as a function of photon energy, and Fig. 2(b) shows the induced refractive index change calculated with the same model [8],[10]. Sub-bandgap absorption (Urbach tail) was taken from [11] (data for 11% shifted by the change in bandgap). Free carrier absorption and electro-refraction are estimated based on a corrected, empirical Drude model [12]. In line with what is seen for electron mediated losses in Ge and hole mediated losses in Si, theoretically predicted absorption losses are doubled. In addition, inter-valence band absorption seen in Ge (~400dB/cm at 1e18cm⁻³ hole concentration) [13] is also assumed here in the GeSn film and intra-conduction band absorption seen in Si (~90dB/cm at 1e18cm⁻³) is also assumed here in the SiGeSn film. Correction factors to the Drude model for free carrier induced electro-refraction are respectively assumed to be 0.6 for electrons and 0.9 for holes, in line with the Ge coefficients.

![Fig. 2](image_url)

Fig. 2. Prediction of FKE in Ge₀.₃₇Sn₀.₆₃ under 8 V/μm: (a) electro-absorption and (b) electro-refraction. (c) and (d) show the absorption and refractive index change due to free carriers at the photon energy Eᵣ = 10meV.

Although the intrinsic figure of merit Δα/α peaks at a larger optical carrier detuning below the bandgap energy [14], once excess optical losses due to doping and metal contacting are taken into account, the optimal optical carrier photon energy was found to be around 0.75eV below the bandgap (Eᵣ). Unlike Δα, which is always positive below the bandgap, the FKE induced Δr changes sign at Eᵣ = 10meV for an applied electrical field of 8V/μm (resulting from applying 2V reverse bias to the device), meaning that low chirp operation can also be achieved since the dominant electro-refraction effect is also zeroed close to that energy. Short devices with high Δr resulting from optical carrier frequencies close to the bandgap energy are required due to the high excess losses. This has also the side benefit of high bandwidth, especially since we assume the modulator to be driven as a lumped element with a 50Ω driver and thus the bandwidth is mainly determined by the capacitance of the device.

The performance metrics of the modulator are calculated by simulating the diode at different applied voltage levels, calculating the carrier and field distributions and the resulting change of the complex refractive index, and subsequently the effective index change based on the optical overlap with the different regions. Table 1 summarizes the calculated characteristics of the modulator.

<table>
<thead>
<tr>
<th>Wavelength (μm)</th>
<th>Length (incl. taper)</th>
<th>Vₜ₉₀ and DC Vₜ₉₀</th>
<th>Extinction Ratio</th>
<th>Insertion Loss</th>
<th>Power consumption</th>
<th>Bandwidth (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.88 μm</td>
<td>102 μm</td>
<td>2Vₜ₉₀ @ -1V</td>
<td>6.0 dB</td>
<td>3.2 dB</td>
<td>70 fJ/bit</td>
<td>35 GHz</td>
</tr>
</tbody>
</table>

Table 1. Summary of the modeled modulator characteristics.

REFERENCES