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Abstract. Electron transfer dissociation (ETD) is a versatile technique
used in mass spectrometry for the high-throughput characterization of
proteins. It consists of several concurrent reactions triggered by the trans-
fer of an electron from its anion source to the sample cations. Transferring
an electron causes peptide backbone cleavage while leaving labile post
translational modifications intact. The obtained fragmentation spectra
provide valuable information for sequence and structure analysis.
Here we propose a formal mathematical model of the ETD fragmentation
process in form of a system of stochastic differential equations describing
its joint dynamics. Parameters of the model correspond to the rates of
occurring reactions. Their estimates for various experimental settings
give insight into the dynamics of the ETD process.
We estimate the model parameters from the relative quantities of the
fragmentation products in a given mass spectrum by solving a nonlinear
optimization problem. The cost function penalizes for the differences
between the analytically derived average number of reaction products
and their experimental counterparts.
The presented method proves highly robust to noise in silico. Moreover,
the model can explain a considerable amount of experimental results
for a wide range of instrumentation settings. The implementation of the
presented workflow, code-named ETDetective, is freely available under
2-clause BSD license.

Keywords: Mass Spectrometry, Electron Transfer Dissociation, Markov Jump
Process, BFGS, ODEs.

1 Introduction

Mass spectrometry is an analytical technique of measuring the ratio of mass to
charge (m/z) of molecular compounds. Ionized molecules are separated in an



electromagnetic field. The intensity of the detected signal is plotted against the
corresponding m/z values on a mass spectrum. In most of its range, the signal
intensity is proportional to the number of the detected particles (Housecroft and
Constable, 2010).

Among many of its applications, mass spectrometry can be used for iden-
tifying compounds in biological samples. In the case of proteins, however, the
mass of the whole molecule provides little information about its amino acidic se-
quence, and even less so on its tertiary structure. In particular, any permutation
of amino acids in the sequence results in the same signal in the spectrum. One
can gain much more insight into the structure of sample molecules by inducing
their fragmentation and recording the resulting signal. In particular, knowing
the masses of all consecutive fragments can reveal the protein’s sequence.

There are two main approaches to protein fragmentation: bottom-up and top-
down. In bottom-up proteomics the protein is partially digested by a proteolytic
enzyme and mass spectrometry is used to measure the m/z ratios of the frag-
ments. In the top-down approach, sample proteins are subject to fragmentation
only inside the mass spectrometer, without the use of any proteases.

One of the fragmentation methods used in top-down mass spectrometry is
Electron Transfer Dissociation (ETD). This ion-ion technique exploits the natu-
rally occurring interaction between the multi charged, non-radical protein/peptide
cation on one side, and the radical reagent anion on the other (Syka et al., 2004;
Zhurov et al., 2013). However, while this method is becoming ever more ubiqui-
tous in the MS-based proteomics analyses, important questions remain regarding
the precise reaction mechanism, fragmentation patterns, and the level(s) of pro-
tein structure that can be probed using ETD (Sohn et al., 2009, 2015). Shedding
more light on the nature of ETD can thus lead to optimization of the instrumen-
tal settings and the overall improvement of the identification of peptide sequences
and the post-translational modifications.

There are several other fragmentation techniques used in the top-down ap-
proach, most importantly the Collision-Induced Dissociation (CID), where the
cleavage is induced by colliding ions with nonreactive gas molecules (Mitchell Wells
and McLuckey, 2005). A major disadvantage of the CID compared to ETD is
that it often leads to loss of posttranslational modifications, particularly phos-
phorylation (Kim and Pandey, 2012). Electron Transfer Dissociation has also
been found to provide more uniform fragmentation than CID, which preferen-
tially cleaves the weakest bonds (Kim and Pandey, 2012; Zhurov et al., 2013).
However, a notable amount of work has been devoted to analyzing and mathe-
matically modeling the CID process (Zhang, 2004, 2005; Wysocki et al., 2000),
while ETD has received less attention.

The fragmentation in ETD is induced by the transfer of an electron from a
radical anion to the sample peptide/protein cation the after a series of electron
rearrangements results in a cleavage of one of the peptides (N–Cα) bonds. The
sample cations are positively charged during the electrospray ionization (ESI)
step (Fenn et al., 1989), leading to the formation of [M+nH]n+ ions, i.e. adding
both charge and mass to the analyte molecule M.
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Apart from ETD, other reactions occur concurrently adding their products
to the signal observed in the mass spectrometer. Figure 1 presents the considered
set of reactions. Unlike in ETD, during PTR the proton gets transferred from
the protein’s backbone to the anion. The mechanism of ETnoD closely resembles
that of ETD, with the difference that the protein fails to fragment into the c
and z. The appearance of the ETnoD fragments in the experimental data can
be traced to the folding of proteins: although backbone cleavage occurs, non-
covalent interactions keep the resulting fragments from separating. The ETnoD
can also be caused by accommodation of an electron, e.g. in an aromatic side
chain (Lermyte et al., 2014; Lermyte and Sobott, 2015). It is assumed that,
regardless of the precise reaction mechanism, the electron obtained by ETnoD
causes neutralization of one ESI-generated proton (Lermyte et al., 2015a), re-
ferred to as the quenched proton further on. In all of the reactions described
above, one charge is neutralized.

PTR [M + nH]n+ + A•–
−−→ [M+(n-1) H](n –1)+ + AH

ETnoD [M + nH]n+ + A•–
−−→ [M+nH](n –1)+• + A

ETD [M + nH]n+ + A•–
−−→ [C+xH]x+ + [Z+(n-x)H](n –x –1)+• + A

Fig. 1: Considered chemical reactions. M stands for a precursor or a fragment ion, C and Z stand
for fragment ions.

A single cation can undergo several reaction events, being approached mul-
tiple times by different anions. However, the so-called internal fragments of pro-
teins, i.e. resulting from two backbone cleavage events, are usually not observed,
suggesting that double ETD scarcely ever occurs. On the other hand, there is
a lot of evidence that one analyte molecule can undergo multiple ETnoD and
PTR (Lermyte et al., 2015c). Note that only molecules with non-zero charge are
observed in the mass spectrometer: after a sufficiently large number of reactions
molecules simply disappear.

The isotope distributions of reaction products show considerable overlap,
especially for large molecules, as illustrated in Fig. 2. In particular, the products
of PTR and ETnoD reactions on the same substrate differ only by 1Da mass
(the mass of the electron can be neglected, falling beyond the resolving power
of most modern instruments).

The peptide bond cleavage induced by ETD is believed to be fairly uni-
form (Li et al., 2011). A notable exception from this rule is the peptide bond of
proline: due to the ring structure of this amino acid, the c- and z-ions are held
together even after the N–Cα bond cleavage.

A specific type of N–Cα bond cleavage occurs on the N-terminus, leading to
a loss of one ammonia molecule. The precise mechanism of this reaction is not
yet known. Here, we assume this reaction to be an instance of ETD and treat the
ammonia molecule as a c fragment. Therefore, the number of considered ETD
cleavage sites is equal to the number of amino acids other than proline in the
protein/peptide sequence.

3



I
n
t
e
n
s
i
t
y

mass/charge

EXPERIMENTAL = 48% PTR + 52% ETnoD

Fig. 2: The deconvolution of the observed isotopic envelopes performed by MassTodon. The ob-
served signal (black) is represented as a combination of two theoretical isotopic patterns (gray).

Our contribution. We propose a formal model of the electron-driven reac-
tions occurring inside the mass spectrometer. We follow a modeling strategy first
developed by Gambin and Kluge (2010) to study the degradation of proteins by
proteolytic enzymes. The model of ETD reaction can be obtained conceptually in
the same way: the stochastic description of the reaction, based on a Markov Jump
Process (MJP), is transformed to a populational description of a large number of
molecules based on a system of Ordinary Differential Equations (ODEs). Given
the intensities of transitions in the process, we solve the ODEs numerically with
a recursive algorithm to obtain the expected number of molecules. The space of
possible intensities is then searched for the best possible set of parameters by
solving an optimization problem.

The model we propose lets us express the mass spectrum in terms of param-
eters such as the total intensity of reactions and the probabilities of the three
studied reactions: ETD, PTR, and ETnoD. A process described by a handful of
parameters can be easily visualized and thus easily understood. Also, the com-
parison of different spectra, e.g. coming from different instrument settings, is
highly simplified.

We apply our method to mass spectra gathered in controlled experiments,
obtained for highly purified compounds. The identity of the precursor ion and all
fragments obtained given a set of possible reactions is known and the quantities
of these fragments can be established using our in-house developed identifica-
tion tool called MassTodon (Lermyte et al., 2015a, 2017; Łącki et al., 2017).
Given a mass spectrum and a precursor molecule, MassTodon outputs a list
of reaction products together with their estimated intensities (that are usually
assumed to be proportional to the actual number of ions). It performs deiso-
topisation and deconvolution of the spectrum, i.e. reports total intensities of
chemical compounds in possibly overlapping isotope clusters (see Figure 2).

The model and the fitting procedure have been implemented in Python. The
software tool, called ETDetective, is designed as an extension to MassTodon

workflow, see https://matteolacki.github.io/MassTodonPy/. The control flow
of the whole process from obtaining a spectrum to obtaining the reaction rates
and fragmentation patterns has been depicted on Figure 3. ETDetective together
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with example data is available to download at https://github.com/mciach/

ETDetective under the 2-clause BSD license.

ETDetectiveMassTodonPy

ETnoD % PTR % ETD %

RPKPQQFFGLM

Reaction Probabilities

Fragmentation Probabilities

Mass Spectrum

0e+00

1e+05

2e+05

3e+05

445 450 455 460

m/z

In
te
n
s
it
y

Fig. 3: The process of mass spectrum interpretation with MassTodon and ETDetective.

Related research. Various approaches have been taken to model different
protein fragmentation techniques (Breuker et al., 2004; Simons, 2010; Zhurov
et al., 2013; Tureček and Julian, 2013). A somewhat similar approach to the
one taken by us was presented by Zhang (2004, 2005) to study CID fragmenta-
tion, who uses a kinetic model to study fragmentation. Zhang (2010) adapts the
model to model mass spectra obtained with the use of ETD. The model uses 280
parameters and its derivation is grounded in the theory of statistical mechanics.
The model was fitted to a training data set consisting of more than 7000 ETD
spectra simultaneously.

There are important differences between that approach and ours. Zhang’s
model is derived from the first principles of statistical physics, whereas the one
we propose is more phenomenological. In our approach, the physics of the phe-
nomenon dictates only the potential states and the transitions between them. We
then cast the problem into the well-studied setting of continuous time Markov
Jump Processes. Our current approach also builds upon the approach for param-
eter estimation introduced previously in the MassTodon paper. MassTodon used
a heuristical approach to estimate some of the deep parameters of the process,
relying on the idea of parsimony. The approach we present here is theory driven.
That said, ETDetective can use some of the estimates provided by MassTodon
and not optimize them. This can greatly reduce the number of existing pa-
rameters, as one can skip the estimation of the fragmentation probabilities. In
contrast, parameters described by Zhang are fairly complex, making it more dif-
ficult to limit their number. Limiting the number of parameters also reduces the
risk of model’s unidentifibility. Finally, one can use the results obtained using
our model as an input for another model that, similarly to Zhang, includes more
of the underlying physical principles. For instance, the reaction rates we provide
appear in the Arrhenius equations.

Apart from these mostly theoretical considerations, the ability to fit to indi-
vidual mass spectra also simplifies the process of comparing results obtained
with different instruments. This is an important step in experiment design,
see (Lermyte et al., 2015a).

A notable amount of literature has been built up around the idea of purely
data-driven prediction of the intensity of peptides in tandem MS experiments (Elias
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et al., 2004; Arnold et al., 2006; Degroeve et al., 2013). A more exploratory ap-
proach targeted at studying fragmentation patterns was taken by Li et al. (2011).
That said, the above approaches have been applied mainly to study CID.

Organization of the paper. First, we introduce the theoretical consider-
ations behind our model. Then, we describe the procedures used to obtain our
data sets (experimental and in silico). Then, we assess the performance of the
model. Finally, we discuss existing problems and possible extensions.

2 Formal model of the ETD reaction

2.1 Statement of the model

Following the ideas outlined in Gambin and Kluge (2010), we model ETD and
its side reactions as a continuous time Markov Jump Process (MJP), which is
a well-established approach to modeling chemical reactions. Below, we describe
the state space of our model and provide elementary lemmas on its size and
properties. Next, we define the transition intensities of our MJP.

Our model can be described by a Petri net, in which places correspond to
molecular species, transitions to reactions, and tokens to molecules of a given
species (Figure 5).

All molecules that cannot be observed, e.g. the internal fragments or ions in
which all charges have been neutralized, are merged into the cemetery—a unique
place without any outgoing transitions. Note, however, that the reactions which
yield such molecules are still present in the graph. We will refer to this net as
the reaction graph.

Definition 1. A reaction graph is a bipartite, directed, connected graph ⟨M,R,F⟩,
in which

– M is a set of vertices called molecular species or places,
– R is a set of vertices called reactions or transitions,
– F ⊂ (M×R)∪ (R×M) is a set of edges connecting species and reactions,

and
– W : M → N is a function denoting the number of molecules or tokens of a

molecular species.

Each molecular species u ∈ M is described by the sequence of amino acids
s, the charge of the cation q, and the number of quenched protons g, so that
u = (s, q, g). Note that we do not model the positions of the charges, i.e. we
assume to know only the numbers of protons on the backbone. We denote the
charge of u as qu. The sequence and number of quenched protons are denoted
accordingly as su and gu.

The precursor or root of the reaction graph, denoted r = (s, q0, 0), is the
unique molecular species with no incoming transitions (i.e. the root of the re-
action graph). Based on the description of the set of molecular species, we can
approximate the size of this set as follows:
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[M+3H]3+ 

[C+H]+ 

[Z+H]+ 
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Fig. 5: A model of the ETD reaction. (a) A fragment of the reaction graph for a triply charged
precursor. The molecular species are depicted in pale grey and the reactions in dark grey. The skull
represents the cemetery. The reaction graph serves as a board for tokens that represent the numbers
of molecules of a given species, depicted as black circles. Only one ETD transition has been shown
for clarity of the image. (b) During each reaction, a token disappears on the substrate side and
product tokens appear: one in the case of ETnoD and PTR, two in the case of ETD).

Lemma 1. The number of the places in a reaction graph corresponding to a
precursor molecule r = (s, q0, 0) is O(Lq20), where L is the length of s.

Proof. Since in the reaction graph we do not include the internal fragments
(i.e. infixes of the amino acid sequence), there are O(L) possible sequences of
molecular species. Furthermore, for each molecular species u = (su, qu, gu), we
have qu + gu ≤ q. ■

For two molecular species u and v, we write u → v if v can be reached
from u by a single reaction. We write u ≥ v if there exist molecular species
m1,m2, . . . ,mn such that u = m1 → m2 → · · · → mn = v. Note that u ≥ u. We
also write u > v if u ≥ v and u ̸= v. In this case, u is referred to as the ancestor
or ancestral molecule of v.

For a reaction R ∈ R, all molecules u such that (u,R) ∈ F are called sub-
strates of R. Similarly, all molecules v such that (R, v) ∈ F are called products
of R. If u is the substrate of reaction R ∈ R and v1, v2, . . . , vm are its products,
then we denote R as u → v1 + v2 + · · · + vm. Species vi are referred to as the
daughter species of ui’s, and ui’s are called parent species of vi’s.

Note that in our model, any reaction can be uniquely identified by its sub-
strate and one of the products. Therefore, we will write u → v1 or u → v2 to
denote a reaction u → v1+v2. We will also write u → v to indicate the existence
of a reaction for which u is a substrate and v is a product.

We assume that at the onset, before any reaction occurred, positive charges
are attached randomly to basic amino acids of the molecules, i.e. on lysines,
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arginines, and histidines, at most one charge per site. This restricts the number
of protons on a molecular species: for any molecule, m, qm + gm ≤ Bm must
hold, where Bm is the number of basic amino acids in its sequence.

If one does not know the position of charges before ETD than one cannot
know how many protons should appear on the fragment ions. Therefore, a single
fragmentation reaction at a given residue gives rise to several different outcomes.
This leads to the following lemma. We have the following lemma.

Lemma 2. Assume a random placement of charges and quenched protons on
basic amino acids of a molecule m = (s, q, g). Let cl be the l-th prefix of the
sequence, and let zL−l be the l-th suffix. Let Bc be the number of basic amino
acids in the backbone of cl, and Bz be the number of basic amino acids on the
backbone of the corresponding zL−l fragment. Then, the probability of observing
qc charges and gc quenched protons on cl after ETD cleavage on l-th amino acid
is equal to

Pl(qc, gc) =

(

Bc

qc

)(

Bz

q−1−qc

)

(

Bc+Bz

q−1

)

(

Bc−qc
gc

)(

Bz−q+qc+1

g−gc

)

(

Bc+Bz−q+1

g

) ,

and also equal to the probability of observing qz = q−1−qc charges and gz = g−gc
quenched protons on zL−l.

Proof. Since one charge gets neutralized during the reaction, both fragments
have q − 1 charges and g quenched protons in total. As each charge is placed
randomly and independently of other charges on the unoccupied basic sites, the
probability of observing qc charges on cl is equal to the probability of choosing qc
out of Bc basic amino acids and q−1− qc out of Bz basic amino acids randomly
and without replacement. After placing the charges on the sequence, there are
Bc+Bz−q+1 unoccupied basic sites. The probability of observing gc quenched
protons on cl, given qc charges, is then equal to the probability of choosing gc
out of Bc − qc basic amino acids and g− gc out of Bz − (q− 1− qc) basic amino
acids.

■

The outcomes of the PTR and ETnoD reactions are unique. It follows that the
number of outgoing transitions for a molecular species other than the cemetery
is equal to the number of ETD transitions plus two side reactions:

2 +
L
∑

l=1

(

Bcl +BzL−l

q − 1

)(

Bcl +BzL−l
− q + 1

g

)

.

However, many transitions lead directly to the cemetery. This is especially the
case for any molecule with a single charge or any ETD reaction of a molecular
species which has already undergone an ETD.

The rate of a reaction R = u → v is denoted λuv. We assume that this rate
can be factorized into a product of base reaction intensity, I, squared charge of
the substrate, qu, and reaction probability PR, so that

λuv = Iq2uPR for R = u → v,
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where

PR =















PPTR for R = (s, q, g) → (s, q − 1, g),
PETnoD for R = (s, q, g) → (s, q − 1, g + 1),

PETDl
Pl(qc, gc) for R = (s, q, g) → (cl, qc, gc) + (zL−l, qz, gz)

for qz = q − 1− qc, gz = g − gc.

In the above definition, PETDl
is the probability of ETD reaction on the l-th

amino acid, regardless of the distribution of charge among product fragments.
Note that the rates u → cl and u → zL−l are equal, as they correspond to the
same reaction. The assumption that the microscopic intensity of a given reaction
is proportional to squared substrate charge is motivated by the kinetics of ion
reactions (McLuckey and Stephenson, 1999).

We further define the outflow rate, λuu, as λuu = −
∑

v:u→v λuv. Since the
probabilities of reactions sum to 1, λuu can be expressed by a simple closed
formula:

λuu = −Iq2u.

We then construct a Markov Jump Process (MJP) to describe the flow of
molecules across the reaction graph. Denote the number of tokens at place m in
time t by Xm(t). The state of the MJP, denoted as X(t), is defined as a collection
of all token counts at a given moment in time, so that X(t) = (Xm(t))m∈M. We
assume that at time 0, only the precursor molecules are observed. Throughout
this work, we assume the state X(0) to be fixed. It follows that the state space of
the process, say E, is a finite subset of NM = {x = (xm)m∈M : ∀m∈Mxm ∈ N}.

From a given state x ∈ N
M, the system can evolve to another state following

one of the reactions in Figure 5. We denote the change in token numbers induced
by the transition R ∈ R as a vector δR = (δRm)m∈M, so that

δRm =







−1 if (m,R) ∈ F
1 if (R,m) ∈ F
0 otherwise.

We assume that the anion radicals do not deplete in time, and the spatial
interactions are negligible, so that each molecule (i.e. each token) reacts inde-
pendently of the other ones. This shows that process X(t) is in fact a sum of
independent, time-uniform Markov processes describing individual molecules.
Consider two neighbouring states, x and y = x + δR. Let u be the substrate
molecular species of R and v be one of it’s products. With the aforementioned
assumptions, the intensity of transition from x to y is the sum of reaction rates
λuv of molecules on u. The transition intensity Qxy for x ̸= y then equals

Qxy =

{

xuλuv if y = x+ δu→v,
0 otherwise.

Such form of Qxy results from an assumption that each molecule (i.e. each token)
reacts independently of the other molecules with rate λuv. We also define the
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outflow intensity, Qxx, as Qxx = −
∑

y∈NM Qxy. Similarly to λuu, Qxx can be
expressed in a simple form:

Qxx(t) =
∑

u∈M

xuλuu = −
∑

u∈M

xuIq
2
u.

The above equations fully describe our model. The model has L+3 parameters:
L probabilities of ETD (including cleavage of the N-terminal amino group), 2
probabilities of side reactions, and the base intensity.

2.2 Analytical results

We now describe theoretical results concerning the dynamics of the substrates
and products of some of the molecular species. In particular, we provide a full
description of the initial precursor’s dynamics, the description of the dynamics
of the expected evolution of all molecular species and results on the dynamics
of some of the second moments. Finally, we show when one should expect the
reaction to get totally depleted. The above results are vital for narrowing down
the space of parameters for the fitting procedure.

The following theorem fully describes the dynamics of the initial precursor.

Theorem 1. Let Xr(t) be the number of precursor molecules, r = (s, q0, 0), at
time t, and let N = Xr(0). Then, Xr(t) has a binomial distribution with N trials
and probability of success equal exp(−Iq2ot):

P(Xr(t) = n) =

(

N

n

)

exp(−nIq20t)(1− exp(−Iq20t))
N−n.

Corollary 1. Let Xr(t) be the number of precursor molecules r = (s, q0, 0) at
time t, and let N = Xr(0). Then,

EXr(t) = N exp (−Iq20t),

VarXr(t) = N exp (−Iq20t)−N exp (−2Iq20t).

In general, due to the complicated structure of the reaction graph and the
fact that the ETD reactions have more than one product, it is difficult to obtain
distributions of all molecular species. However, we can obtain a relatively simple
system of ordinary differential equations for the expected number and variance
of molecules, and solve them recursively by a numerical procedure:

Theorem 2. Let u, v ∈ M be two neighbouring molecular species (i.e. u → v
or v → u). Let EXu(t) and VarXu(t) denote the expected number and variance
of the number of u molecules, and let Cov(Xu(t), Xv(t)) denote the covariance
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between the numbers of u and v molecules. Then, we have

∂

∂t
EXu(t) =

∑

w : w→u

λwuEXw(t) + λuuEXu(t) (1)

∂

∂t
VarXu(t) =

∑

w : w→u

2λwuCov(Xu(t), Xw(t)) + 2λuuVarXu(t)

+
∑

w : w→u

λwuEXw(t)− λuuEXu(t). (2)

∂

∂t
Cov(Xu(t), Xv(t)) =

∑

w : w→u

λwuCov(Xw(t), Xu(t))

+
∑

w : w→v

λwvCov(Xw(t), Xv(t))

+ (λuu + λvv)Cov(Xu(t), Xv(t))

− λuvEXu − λvuEXu. (3)

Since we have defined λuv to be zero when u ̸→ v, Equation (3) can be also used
for most other molecular species. One important caveat is the case when both u
and v are products of the same ETD reaction, in which case their numbers can
increase simultaneously and the formula requires an additional term to account
for that possibility.

Theorem 2 allows us to obtain the analytical equations for mean number and
variance of the numbers of molecules of species connected to the precursor by a
single reaction.

Lemma 3. Let r = (s, q0, 0) be the precursor molecular species, and let N =
Xr(0). Let u be a daughter molecular species of r after reaction R (either PTR,
ETnoD or an ETD at a given residue with a given distribution of charges and
quenched protons among fragments). Then,

EXu(t) = NPR

q20
q20 − q2u

(exp(−Iq2ut)− exp(−Iq20t)) (4)

VarXu(t) = EXu(t)− (EXu(t))
2/N = N

EXu(t)

N

(

1−
EXu(t)

N

)

(5)

We end this section with an interesting result on the boundaries of reasonable
reaction times. The result is also useful to specify boundaries in which to search
for the base intensity when fitting the model to data.

Proposition 1. Let TEND be the expected reaction time in which all molecules
lose all their charges (i.e. become unobservable). Then,

q0
I

≥ TEND ≥
1

I

q0
∑

i=1

1

i2
.

11



2.3 Fitting the model to data

Here, we describe how to fit our model to the observed data. The input for
ETDetective consists of a mass spectrum parsed by the MassTodon software.
Given a mass spectrum and the precursor’s sequence and charge, MassTodon

outputs a list of intensities of observed molecular species (Ou)u∈M. We normalize
this list so that the intensities sum to 1 and look for a set of model parameters
that will best predict the observed molecule proportions. The homogeneity of
the considered MJP implies that reaction time and base reaction intensity are
exchangeable, and therefore only one of them can be identified. We thus set the
time of reaction to be equal to 1.

For the purposes of numerical stability, we reparametrize our model by the
following transformation of the original parameters:

θ =
(

log(IPPTR), log(IPETnoD), log(IPETD1
), log(IPETD2

), . . . , log(IPETDL
)
)

,

where L is the length of the precursor’s sequence, and PETDl
is the probability

of cleavage between l − 1-th and l-th amino acid, including dissociation of the
N-terminal amino group as PETD1

. The new parameters are therefore in R
L+2.

The general scheme of fitting the model is as follows: for a given starting point
θ0 (obtained using the estimates from MassTodon), we calculate the expected
number of all molecular species in the reaction graph, normalize it, and compare
to the observed molecule proportions. Next, we iteratively update θ to minimize
the discrepancy between the prediction and observation and obtain the optimal
vector of parameters θ̂.

The loss function is the sum of squared differences between predicted and
observed proportions, with an optional penalty term for decharged molecules
which are not observed in the spectrum,

∑

u∈M\{c}

[

EXu(1)−Ou

]2

+ ρ
[

EXc(1)
]2

,

where c is the cemetery. In our numerical experiments we analyze the cases of
ρ = 0 and ρ = 1. To minimize the loss function, we use the L-BFGS-B algorithm
with gradient approximation (Nocedal, 1980).

Obtaining analytical formulas for expected numbers of molecules is compli-
cated because of the complex structure of the reaction graph. However, we can
state the general form of a solution, and use it in numerical procedures.

The general form of solutions for Equation (1) is

EXu(t) =

nu
∑

i=1

Au
i exp(B

u
i t), (6)

where Au
i and Bu

i are coefficients constant in time, but dependent on the reaction
rates. Their overall number, nu, depends on the position of u in the reaction
graph (see Lemma 5 in the appendix and following Corollaries). From Corollary 1

12



it follows that the coefficients for the precursor molecular species are nu = 1,
Ar

1 = Xr(0) and B = −Iq20 . The coefficients for the other molecules satisfy a
recursive dependence,

nu = 1 +
∑

w : w→u

nw,

{(Au
i , B

u
i ) : i = 1, . . . , nu − 1} =

p
∪

j=1

{(

A
wj

k

λwj

B
wj

k − λuu

, Bk
wj

)

: k = 1, . . . , nwj

}

,

(Au
nu

, Bu
nu

) =

(

∑

w : w→u

nw
∑

i=1

Aw
i

−λwu

Bw
i − λuu

, λuu

)

, (7)

which allows us to compute them by a numerical procedure. Starting from the
precursor molecule, we proceed downwards and compute the coefficients using
the above recursive formulas, as formalized in Algorithm 1. The algorithm uses
memoization to reduce the computational time by storing coefficients of the
already visited nodes. Note that the number nu grows exponentially with the
depth of the reaction graph. However, it results from the proof of Lemma 5 that
the number of distinct Bu

i values is bounded by the number of molecules in the
graph. Summing Au

i coefficients corresponding to the same Bu
i values allows to

substantially limit the space complexity of the algorithm.

Algorithm 1 Computation of expected numbers of molecules
1: Input: Reaction graph G, time t

2: Output: Expected numbers of molecules at time t

3: Procedure get_coefficients(G, u): /decorates G with Eq. (6) coefficients/
4: If u = root(G):
5: Let u.coef_list := [(Ar

1, B
r

1)] /list of precursor coefficients/
6: Return u.coef_list
7: Else If exists u.coef_list: /if u was already visited, return the result/
8: Return u.coef_list
9: Else :

10: Initialize empty list C /list to store and update A
u

i , Bu

i coefficients/
11: For w in parents(u):
12: Let L := get_coefficients(G, w)
13: Update coefficients A

w

i according to Eq. (7)
14: Append L to C

15: Group and sum Ai coefficients
16: Let u.coef_list := C

17: Return u.coef_list

18: Let c := cemetery(G)
19: get_coefficients(G, c) /compute coefficients for all species in graph/
20: For u in G:
21: Compute expected number of u molecules using u.coef_list (Eq. 6)

13



This leads to the following theorem.

Theorem 3. The time complexity of Algorithm 1 is O(L2q40).

3 Validation & Results

We have applied our model to both in silico and on experimental data for Sub-
stance P, an 11 amino acid neuropeptide with sequence RPKPQQFFGLM.

3.1 Numerical simulations.

Numerical simulations of ETD process were performed to assess the quality
of the fitting procedure under fully controlled conditions. The simulation was
performed as follows: we start with a given number of Substance P precursor
cations. We then simulate the electrospray ionization by placing a given number
of protons on randomly chosen basic amino acids. Then, we simulate the Markov
Jump Process using standard simulation techniques (Gillespie, 1977), noting that
our process can be simulated as if the cations reacted independently of each
other. Ions that find themselves in the same state at the end of the simulation
are aggregated. The resulting counts of ions simulate results obtainable with
MassTodon.

We have also analyzed the robustness of the fitting procedure to noisy or
missing data. The random noise is modeled by adding Gaussian noise to the
counts, with zero mean and standard deviation expressed as a given percentage
of the count. Missing data is modeled by randomly removing a given proportion
of the peaks. Finally, the counts obtained in this way are normalized to sum to
one. Altogether, the simulation was repeated 100 times for 20 different values of
data distortion parameters, see Figure 6.

The fitting procedure turned out to be fairly robust toward a moderate noise
and missing data, see Figure 6. The results of the fitting procedure are unbiased.
On noiseless data and data with a moderate amount of noise (up to 50% of
variation in simulated intensities), the model was able to predict the reaction
intensities with very high accuracy (only after introducing more than 25% of
peak variation do the estimates start to surpass the limit of 50% relative error
in more than 20 percent of cases).

3.2 Application to the experimental data.

Mass spectra have been acquired for purified Substance P. The precise exper-
imental setting is described in detail by Lermyte et al. (2015b). The model
has been fitted to 53 substance P spectra, obtained at various travelling-wave
height/velocity combinations (the design of the instrument and physical mean-
ing of these parameters are described in detail by Lermyte et al. (2015b)). After
fitting the model to the data, the validity of the model was further investigated
by computing the percentage of the experimental spectrum accounted for by the

14
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Fig. 6: Relative errors of the fitting procedure on in silico Substance P data. The known true values
of parameters are respectively PETD = 30%, PETnoD = 25%, PPTR = 45%. Cleavage probabilities
were assumed to be uniform (proline being the obvious exception). Each boxplot summarizes the
results of 100 independent simulations: whiskers denote the first and ninth decile and the box lids -
the first and third quartiles. The left panel presents the response of the relative error of the estimates
to the increasing amount of noise in the intensities reported by MassTodon. On the right panel, we
study the impact of the random removal of information on the molecular species, both in noiseless
conditions and with a modest amount of noise (standard deviation set to 20% of the intensity of the
simulated molecule).

theoretically predicted spectrum. We call this value the Explanation Percentage
(EP) and define it to be the common part of the theoretical and experimen-
tal spectrum. Since both spectra are normalized so that they sum to one, the
Explanation Percentage can be expressed in a simple formula,

EP =
∑

u

min{yu, e
norm
u }.

Note that because of normalization of spectra, 0 ≤ EP ≤ 1. The Explanation
Percentage calculated for considered data sets is presented in Figure 7: the values
are between 50% and 98%, mostly around 60% for discharged-penalized loss
function (ρ = 1) and 80% for non-penalized loss function (ρ = 0).

The predicted total intensity of all reactions, I, was found between 10−3 and
10 in the unconstrained case and between 10−3 and 10−1 in penalized case (data
not shown). However, for reaction intensities above 0.6, the unreacted precursor
molecules constitute less than 1% of the predicted spectrum, and most molecules
in the spectrum are reaction products; therefore, the loss function becomes flat in
this region, as further increase of base intensity causes little change in molecule
proportions. This explains the large deviation between the two approaches in
this case.

In regions of low reaction intensity, the explanation percentage approaches
100%; however, in these conditions, the mass spectra contain mostly unreacted
precursors, and so the fitting is relatively easy to perform. In regions of high
reaction intensity (wave height between 0 and 0.3, wave velocity between 10 and
20 or between 1750 and 6000) the spectra are much more informative and even
then the model can explain around 70% of the input information. Similar results
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are obtained for different values of wave velocity. In the regions of high intensity
(wave velocity above 1750) the model explains around 75% of the input.

A notable source of discrepancy between the observations and our predictions
is the absence of doubly-charged precursor (i.e. product of one PTR or ETnoD),
which we observe in many mass spectra. This phenomenon of missing products
has been described in chemical literature by Schnier et al. (1995). However, the
reason for this is currently unknown. As for now, our model does not account
for such possibility.

In Figure 9 we present the results of fitting our model to the data. For
different values of wave velocity, in regions of relatively high reaction intensity,
we have obtained stable proportions of reaction probabilities. The proportions
start to differ considerably in the region between 100 and 1250. However, in this
region there are almost no reactions (less than 1% of reaction products), so the
spectrum contains very little information. On the contrary, for different values
of Wave Height, we have noticed a major change in reaction proportions in the
regions of high reaction intensity. For Wave Height between 0.3 and 0.4, ETD is
by far the most probable reaction. For higher Wave Heights, the side reactions
contribute more to the spectrum. Overall, both parameters influence the reaction
intensity, but only the Wave Height seems to influence the proportion of ETD
to side reactions.

Finally, Figure 8 show that the actual runtime of ETDetective is fairly limited
on the considered Substance P results.
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4 Discussion & Conclusions

In this article, we have presented a kinetic model of the electron transfer driven
reactions. The obtained results are promising for future work, as the model
can explain around 80% of the observed intensities of the molecular species.
The model is based on stochastic foundations and so the estimated parameters
have a probabilistic interpretation, such as the probability of a given cleavage or
reaction.

Due to its simplicity, the model described here can be used in further fun-
damental research into the ETD mechanism, as a discrepancy between experi-
mental observations and the model predictions is expected to have a relatively
straightforward physical interpretation. For instance, the underestimation of the
asymmetry of corresponding c and z fragment intensity in the current results
might indicate that a more sophisticated model of protonation sites should be
used (e.g. one that accounts for electrostatic repulsion, see (Morrison and Brod-
belt, 2016)). Similarly, using the MassTodon software, it has been recently
shown (Lermyte et al., 2017) that the observed ratio of PTR to ETnoD depends
on protein conformation for intermediate charge states of ubiquitin and, thus,
on the reaction history. A more detailed analysis could be easily performed (and
similar dependencies thus revealed) using ETDetective.

A natural way for this work to proceed is to explain the influence of the
instrumental settings and experimental conditions on the reaction intensity and
cleavage preferences. This can be investigated using the statistical methodology,
like the generalized linear models, Dirichlet regression in particular.
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Appendix

The following lemma will be used in proofs:

Lemma 4. If u > v, then λuu < λvv.

Proof. Since u > v, there exists a set of transitions by which v can be obtained
from u. As each transition leads to a loss of at least one charge (exactly one in
case of PTR and ETnoD), we have qu > qv; Since by definition I > 0, it follows
that −Iq2u < −Iq2v . ■

Proof of Theorem 1

Proof. Consider a single token of the precursor molecular species. Let τ be the
first time of any reaction of such token. By construction of the process, τ has an
exponential distribution with parameter Iq20 . It follows that

P(τ < t) = 1− exp(λrrt) = 1− exp(−Iq20t).

The probability that the considered token is on the precursor molecular species
at time t is equal to the probability that the first reaction occured after time t.
Since the tokens react independently, the total number of precursor molecules
realizes a binomial scheme with N trials and the probability of success equal to
exp(−Iq20t). ■

Proof of Proposition 1

Proof. Consider a single precursor molecule. Since each reaction leads to a neu-
tralization of one charge, there are exactly q0 reactions needed to fully neutralize
all of it’s charges. Let τ1 be the first reaction time and let τi be the time between
i− 1’th and i’th reaction. We have TEND = τ1 + τ2 + · · ·+ τq0 .

From the construction of the process, τ1 follows an exponential distribution
with parameter −λrr = Iq20 . Therefore,

Eτ1 = (Iq20)
−1.

If q0 = 1, then the above equation proves the proposition. Assume that q0 > 1.
We now have two scenarios:
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– The first reaction was either a PTR or ETnoD. Then, τ2 follows an expo-
nential distribution with parameter I(q0 − 1)2, and it’s expected value is
(I(q0 − 1)2)−1.

– The first reaction was an ETD. Then, since both fragments now react inde-
pendently, τ2 follows an exponential distribution with parameter I(q2c + q2z),
where qc and qz are the fragment charges, and it’s expected value is (I(q2c +
q2z))

−1

Now, since q2c + q2z ≤ (qc + qz)
2 = (q0 − 1)2, in both scenarios we have

Eτ2 ≥ (I(q0 − 1)2)−1.

Note also that since q0 − 1 > 0, we have Eτi ≤ I−1 for i = 1, 2. Iterating the
above reasoning, we get that

q0
I

≥

q0
∑

i=1

Eτi ≥
1

I

q0−1
∑

i=0

1

(q0 − i)2
,

which, after changing the summation index, proves the result. ■

Proof of Theorem 2

Proof. Let [t, t + h] be a time interval short enough that only one reaction can
occur. In such interval, the number of u molecules can either increase by 1,
decrease by 1, or stay unchanged. Consider the expected number of u molecules
at time t+h conditioned on the state of the process at time t. From the definition
of the expected value and construction of the reaction graph, we have

EXu(t+ h)|X(t) = (Xu(t) + 1)P(Xu(t+ h) = Xu(t) + 1|X(t))

+ (Xu(t)− 1)P(Xu(t+ h) = Xu(t)− 1|X(t))

+Xu(t)P(Xu(t+ h) = Xu(t)|X(t)).

Consider X(t) = x. From the definition of transition intensity, we have

P(Xu(t+h) = Xu(t)+1|X(t) = x) =
∑

y:yu=xu+1

(Qxyh+o(h)) =
∑

w : w→u

(xwλwuh+o(h)).

Since the state space is finite, we have
∑

w : w→u(xwλwuh+o(h)) =
∑

w : w→u(xwλwuh)+
o(h). By similar reasoning for the other terms, we get

EXu(t+ h)|X(t) = (Xu(t) + 1)
∑

w : w→u

Xw(t)λwuh+ (Xu(t)− 1)
∑

w : u→w

Xu(t)λuwh

+Xu(t)

(

1−
∑

w : w→u

Xw(t)λwuh−
∑

w : u→w

Xu(t)λuwh

)

+ o(h).

After basic algebraic manipulations, we get

EXu(t+ h)|X(t) =
∑

w : w→u

Xw(t)λwuh−
∑

w : u→w

Xu(t)λuwh+Xu(t) + o(h).
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By taking expectation with respect to X(t), we obtain

EXu(t+ h) =
∑

w : w→u

EXw(t)λwuh−
∑

w : u→w

EXu(t)λuwh+ EXu(t) + o(h).

Now, after subtracting EXu(t) from both sides, dividing by h and taking a limit
h → 0, we arrive at

∂

∂t
EXu(t) =

∑

w : w→u

EXw(t)λwu−
∑

w : u→w

EXu(t)λuw =
∑

w : w→u

EXw(t)λwu+λuuEXu(t),

which proves Equation (1).
Now, consider the second moment of the number of molecules of species u,

EX2
u(t). We have

EX2
u(t+ h)|X(t) = X2

u(t)P(Xu(t+ h) = Xu(t)|X(t))

+ (Xu(t) + 1)2P(Xu(t+ h) = Xu(t) + 1|X(t))

+ (Xu(t)− 1)2P(Xu(t+ h) = Xu(t)− 1|X(t)).

Substituting for the probabilities, we get

EX2
u(t+ h)|X(t) = X2

u(t)

(

1−
∑

w : w→u

λwuXw(t)h−
∑

w : u→w

λuwXu(t)h

)

+ (Xu(t) + 1)2
∑

w : w→u

λwuXw(t)h

+ (Xu(t)− 1)2
∑

w : u→w

λuwXu(t)h+ o(h).

After grouping terms and averaging over X(t), we get

EX2
u(t+ h) =

∑

w : w→u

2λwuEXu(t)Xw(t)h+
∑

w : w→u

λwuEXw(t)h

+
∑

w : u→w

λuwEXu(t)h−
∑

w : u→w

2λuwEX
2
u(t)h+ EX2

u(t),

which, after performing simple algebraic manipulations and taking a limit h → 0,
yields

∂

∂t
EX2

u =
∑

w : w→u

2λwuEXu(t)Xw(t) +
∑

w : w→u

λwuEXw(t)

+
∑

w : u→w

λuwEXu(t)−
∑

w : u→w

2λuwEX
2
u(t).

Now, from the fact that VarXu(t) = EX2
u(t)− E

2Xu(t), we have

∂

∂t
VarXu(t) =

∂

∂t
EX2

u(t)− 2EXu(t)
∂

∂t
EXu(t).
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Substituting for the time derivative of the expected value, we get Equation (2).
Now, assume that u → v, and consider the mixed moment, E(Xu(t)Xv(t)).

In the time interval [t, t+ h], we have the following possibilities:

– The number of u molecules increases,
– The number of v molecules increases due to reaction other than u → v,
– The number of u molecules decreases due to reaction other than u → v,
– The number of v molecules decreases,
– The number of u molecules decreases by 1, and the number of v molecules

increases by 1, due to reaction u → v,
– Their numbers stay unchanged.

E(Xu(t+ h)Xv(t+ h)|X(t)) = (Xu(t) + 1)Xv(t)
∑

w : w→u

λwuXwh

+Xu(t)(Xv(t) + 1)
∑

w : w→u

w ̸=u

λwuXwh

+ (Xu(t)− 1)Xv(t)
∑

w : u→w

w ̸=v

λuwXuh

+Xu(t)(Xv(t)− 1)
∑

w : v→w

λwuXvh

+ (Xu(t)− 1)(Xv(t) + 1)λuvXuh

+Xu(t)Xv(t)(1− c) + o(h),

where c = 1− P(Xu(t+ h) = Xu(t), Xv(t+ h) = Xv(t)|X(t)), equal to

c =
∑

w : w→u

λwuXwh+
∑

w : w→u

w ̸=u

λwuXwh+
∑

w : u→w

w ̸=v

λuwXuh

+
∑

w : v→w

λwuXvh+ λuvXuh.

By proceeding as before and using the identity Cov(Xu(t)Xv(t)) = EXu(t)Xv(t)−
EXu(t)EXv(t), we obtain

∂

∂t
Cov(Xu(t), Xv(t)) =

∑

w : w→v

λwuCov(Xw(t), Xu(t))

+
∑

w : w→u

λwvCov(Xw(t), Xv(t))

+ (λuu + λvv)Cov(Xu(t), Xv(t))

− λuvEXu.

Finally, note that for any two molecular species u and v, if λuv ̸= 0, then λvu = 0.
Therefore, we may freely add the term −λvuEXv to make the formula symmetric
with respect to Xu and Xv, and obtain Equation (3). ■
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Proof of Lemma 3

Proof. Since u is a daughter species of r, it has only one incoming reaction,
r → u. From Theorem 2, we get a differential equation for the mean value:

∂

∂t
EXu(t) = λruEXr(t) + λuuEXu(t).

The solution to this equation with boundary condition EXu(0) = 0 is

EXu(t) = N
λru

λrr − λuu

(exp(λrr)− exp(λuu)),

which, after substituting for λrr, λuu and λru, gives Equation (4). The equation
for covariance between Xr and Xu from Theorem 2 is

∂

∂t
Cov(Xr(t), Xu(t)) = λruCov(Xr(t), Xr(t))− λruEXr(t)

+ (λrr + λuu)Cov(Xr(t), Xu(t)).

By the identity Cov(Xr(t), Xr(t)) = VarXr(t), we can use Corollary 1 to substi-
tute for Cov(Xr(t), Xr(t)) and EXr(t). The differential equation for covariance
can now be solved to get

Cov(Xr(t), Xu(t)) = N
λru

λrr − λuu

exp(λrrt)(exp(λuut)− exp(λrrt)).

From Theorem 2, the equation for variance of Xr(t) is

∂

∂t
VarXu(t) = 2λruCov(Xr(t), Xu(t))+2λuuVarXu(t)+λruEXr(t)−λuuEXu(t).

After substituting and solving the above equation, we arrive at

VarXu(t) = −N
λ2
ru

(λrr − λuu)2
exp(2λuut) + 2N

λ2
ru

(λrr − λuu)2
exp((λrr + λuu)t)

−N
λ2
ru

(λrr − λuu)2
exp(2λrrt) +N

λru

λrr − 2λuu

exp(λrrt)

−N
λruλuu

(λrr − λuu)(λrr − 2λuu)
exp(λrr)−N

λru

λrr − λuu

exp(λuut),

which, after grouping terms, simplifies to

N
λru

λrr − λuu

(exp(λrrt)− exp(λuut))−N
λ2
ru

(λrr − λuu)2
(exp(λuut− λrrt)

2,

equal to EXu(t)− (EXu(t))
2/N . ■
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Derivation of general form of EXu(t) .

Lemma 5. The general form of solution for system from Theorem 2 is

EXu(t) =

nu
∑

i=1

Au
i exp(B

u
i t) (8)

for some positive integer nu and time-independent coefficients Au
i , B

u
i .

Proof. Proceed by induction. For the root molecule, the Equation (8) follows
from Corollary 1. Now, consider a non-precursor molecular species u, and assume
that the Equation (8) is true for all molecular species v such that v > u. From
Theorem 2, we have

∂

∂t
EXu(t) =

∑

w : w→u

λwuEXw(t) + λuuEXu(t).

Since in the above equation we have w > u, we can use the induction hypothesis
to obtain

∂

∂t
EXu(t) =

∑

w : w→u

nw
∑

i=1

λwuA
w
i exp(Bw

i t) + λuuEXu(t). (9)

Note that it follows that Bw
i = λvv for some w ≥ v. The corresponding homo-

geneous equation is ∂
∂t
EXu(t) = λuuEXu(t), which implies that the solution to

Equation 9 is
EXu(t) = c(t) exp(λuut).

By differentiating and substituting again into (9), we get

∂c

∂t
(t) =

∑

w : w→u

nw
∑

i=1

Aw
i λwu exp((B

w
i − λuu)t).

Since w > u and Bw
i = λvv for some v ≥ w, we have Bw

i ̸= λuu (Lemma 4). It
follows that, for some constant c, we have

c(t) = c+
∑

w : w→u

nw
∑

i=1

Aw
i

λwu

Bw
i − λuu

exp(Bw
i − λuu),

EXu(t) = c exp(λuut) +
∑

w : w→u

nw
∑

i=1

Aw
i

λwu

Bw
i − λuu

exp(Bw
i t).

Since u is not the precursor molecule, we have EXu(0) = Xu(0) = 0, which
implies that

c = −
∑

w : w→u

nw
∑

i=1

Aw
i

λwu

Bw
i − λuu

,

26



and therefore

EXu(t) =
∑

w : w→u

nw
∑

i=1

Aw
i

λwu

Bw
i − λuu

(exp(Bw
i t)− exp(λuut)) .

■

From the proof of Lemma 5, we immediately get an important corollary:

Corollary 2. Let w1, w2, . . . , wp be the parent molecules of a molecular species
u. Then, the coefficients in Equation (8) satisfy a recursive dependence

nu = 1 +
∑

w : w→u

nw

{(Au
i , B

u
i ) : i = 1, . . . , nu − 1} =

p
∪

j=1

{(

A
wj

k

λwj

B
wj

k − λuu

, Bk
wj

)

: k = 1, . . . , nwj

}

,

(Au
nu

, Bu
nu

) =

(

∑

w : w→u

nw
∑

i=1

Aw
i

−λwu

Bw
i − λuu

, λuu

)

.

The next corollary follows straight from Corollary 1.

Corollary 3. Let u be a molecular species, let r be the precursor molecular
species, and let N = Xr(0). Then, we have nr = 1, Ar

1 = N , and Br
1 = −Iq20.

Proof of Theorem 3

Proof. Observe that the algorithm is a modified DFS search, and over all the
recursive calls of the algorithm the loop in Line 11 will run once for each parent-
daughter molecular species pair.

Recall from Lemma 1 that there are O(Lq20) molecular species in graph G.
Moreover, we have assumed that the secondary fragments are unobserved; there-
fore, there are only O(q20) species that have O(L) daughters other than the ceme-
tery (the ones corresponding to the non-fragmented species), while all the other
species have only two children other than the cemetery. As such, the number
of parent-daughter pairs is linear with respect the number of vertices. It follows
that the loop in Line 11 will run O(Lq20) times.

Because of the grouping step in Line 15, the size of list L for a given parent
of u is bounded by the number of its ancestors, which is O(Lq20). The updating
of a single coefficient is performed in constant time. It follows that the time
complexity of one run of the loop in Line 11 is O(Lq20), and the time complexity
of the whole procedure is O(L2q40).
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