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Abstract—We present an uncertainty manage-
ment scheme in rule-based systems for decision
making in the domain of urban infrastructure.
Our aim is to help end users make informed
decisions. Human reasoning is prone to a certain
degree of uncertainty but domain experts fre-
quently find it difficult to quantify this precisely,
and thus prefer to use qualitative (rather than
quantitative) confidence levels to support their
reasoning. Secondly, there is uncertainty in data
when it is not currently available (missing).
In order to incorporate human-like reasoning
within rule-based systems we use qualitative con-
fidence levels chosen by domain experts in urban
infrastructure. We introduce a mechanism for
the representation of confidence of input facts
and inference rules, and for the computation of
confidence in the inferred facts. We also present
a mechanism for computing inferences in the
presence of missing facts, and their effect on the
confidence of inferred facts.

Keywords: uncertainty, decision support sys-

tems, reasoning.

I. INTRODUCTION: REASONING UNDER

UNCERTAINTY

Rule-based Systems also widely known as

Expert Systems [9], Knowledge Based Systems

(KBSs) [1] and Intelligent Systems [10] were

introduced in the 1970s [11] and have gained in-

creasing popularity in various domains such as

business, engineering, military, and medicine.

Rule based systems allow us to capture the

expert knowledge of humans in the form of

rules and data in the form of facts. Given a

set of facts in working memory, a forward

chaining inference engine uses the rules to

generate new facts until the desired goal is

reached. The following steps are taken by a

forward chaining inference engine: 1) match

the condition patterns of rules against facts

in working memory, 2) if there is more than

one rule that could be used i.e. that could

fire, select which one to apply (this is called

conflict resolution), 3) apply the rule, maybe

causing new facts to be added to working

memory, 4) halt when some useful conclusion

(or goal) is added to working memory or when

all possible conclusions have been drawn.

Rule-based systems for decision making

also known as intelligent decision support

systems (DSS) [2], [18] require some additional

functionality to emulate intelligent human be-

haviour. There is a degree of uncertainty [7]

attached to such human reasoning. Whilst

humans are adept at reasoning with uncertainty

that may involve different confidence levels

for different aspects of their knowledge, it is

very challenging to incorporate this in rule-

based systems for decision making that suitably

reflects human usage. This type of uncertainty

can be caused by problems with data, e.g.,

data might be missing or currently unavailable,

data might be unreliable or ambiguous due to

measurement errors, data representation might

be imprecise or inconsistent etc. Furthermore,

uncertainty may also be caused by represented

knowledge, e.g., expert guesses that might be

based on plausible or statistical associations

they have observed, the same knowledge might

not be appropriate for different situations etc.

All these types of uncertainties need to be

handled within reasoning in rule based systems

that capture human expert knowledge. Some

type of uncertainty management is crucial for

such systems. There are some important issues

that need to be dealt with when implementing

an uncertainty management scheme, such as:

(a) how to represent uncertain data and knowl-

edge? (b) how to combine two or more pieces

of uncertain data and knowledge? (c) how

to draw inferences using uncertain data and

knowledge?

Whilst certainty factors that indicate confi-

dence of experts for data and rules have been



previously implemented in systems such as

[3], [5] based on the MYCIN approach [19],

reasoning with missing information has only

been performed with restrictions where all

rules need to have the same number of an-

tecedents [14], [13]. Moreover, identifying

inference chains for conclusions that require

minimum missing information and the effect of

missing information on certainty factors does

not appear to have been previously investigated.

Other approaches have used certainty factors

that are based on probability theory [16], [17].

However, our novel scheme is a result of

discussions with experts in the field of ur-

ban infrastructure (which is the focus of our

investigations). In particular, we present (in

section II-A) a scheme in which confidence

levels for data and rules take qualitative rather

than numeric values as used in systems based

on Fuzzy Logic [15], [23], [22], which better

reflects the terminology and usage by experts

in our chosen domain of reasoning about asset

management in urban infrastructure [6], [4].

In section II-B, we present a mechanism that

enables reasoning with confidence levels. We

also present a mechanism to make inferences

in the presence of missing information in

section II-C. Furthermore, we combine both

approaches in section II-D. Implementation

details are presented in section III. Finally,

we present conclusion and future work in

section IV.

II. PROPOSED APPROACHES FOR HANDLING

UNCERTAINTY

We present two different approaches: one

to compute confidence levels, i.e., likelihoods

for both data and rules and the other that

enables computing inferences in the presence

of missing facts. We also present a mechanism

to combine both approaches to provide an

uncertainty management scheme that deals with

both confidence levels and missing information.

A. Confidence Levels: Qualitative Likelihoods

for Facts and Rules

We will allow rules to have a qualitative

certainty factor associated with them; e.g. the

conclusion is “very likely.” The inferred facts

will have that associated qualitative certainty

factor. Since we propose to specify confidence

factors qualitatively, we will find it convenient

to record the different levels of certainty for

the rules involved in the history of a derivation

of an inferred fact. As a result, although we do

not have a single numeric level of confidence

in a single fact (as would be the case in a

Mycin-like system) where confidences can be

easily computed as rules are applied, it will still

be possible to say which of two facts A and

B, with confidence vectors CA and CB we are

more confident in by comparing the values in

the confidence vectors as will be seen below in

section II-B. To reason under uncertainty, we

therefore define a confidence vector for facts

as follows. This vector records the number of

rules with different certainty factors used in

the derivation of a fact.

Definition II.1. Let CF denote the confidence

vector of a fact F . Let U , L, V , D be

the different confidence levels represented as

follows in ascending order of confidence:

1) U: Unlikely.

2) L: Likely.

3) V: Very Likely.

4) D: Definite.

Then, we define: CF = 〈U,L, V 〉, where

U , L, V can have any non-negative (≥ 0)

integer value. The confidence level D (Definite)

is implicit in the definition of CF when U , L,

V are all 0.

We have chosen confidence levels U , L, V ,

D in the above Definition II.1. However, any

finite set of values with a total order would

also be possible.

Definition II.2. We also need to be able to

specify the confidence CR an expert has given

for a rule R. We denote the CR as follows:

CR = 〈U,L, V 〉

U , L, V are the different confidence levels

given in Definition II.1 and U + L + V ≤ 1.

Thus, at most one of the U,L, V is 1. If all

are 0, then the rule has confidence level D

(Definite). This representation of the confidence

in a rule will facilitate the calculation of the

confidence of the consequent in a rule (see

Formula II.2).

The confidence levels given in Definition II.1

were elicited as a result of discussions with

domain experts following their difficulties in

giving numeric certainties to rules.



B. Reasoning with Confidence Levels

Figure 1. Handling uncertainty in rule-based systems

Three problems need to be addressed when

reasoning with confidence levels, as shown in

Figure 1. Each problem is defined below and a

mechanism to solve the problem is presented

as a formula which is followed by an example.

Problem II.1. Confidence level of conjunc-

tion of uncertain facts.

If A1 ∧ ... ∧ An then ...

If my confidence in each Ai is Ci, how confi-

dent am I in the conjunction (A1 ∧ ... ∧ An)?

Formula II.1. Let C1...n denote the confidence

in the conjunction (A1 ∧ .... ∧ An) where

the confidence of Ai is Ci = 〈Ui, Li, Vi〉.
Then, C1...n = 〈U1...n, L1...n, V1...n〉, where

〈U1...n, L1...n, V1...n〉 =

max(〈U1, L1, V1〉, ..., 〈Un, Ln, Vn〉)

where max(...) returns the maximum value of

the given arguments computed as follows.

〈U1, L1, V1〉 > 〈U2, L2, V2〉 iff

(U1 > U2) ∨ (U1 = U2 ∧ L1 > L2)∨

(U1 = U2 ∧ L1 = L2 ∧ V1 > V2)

The reason to take the maximum value is

because an antecedent is only as likely as its

most unlikely conjunct, and a higher value in

U, L or V indicates greater uncertainty at that

level of uncertainty.

Example II.1. Suppose C1 = 〈0, 1, 0〉, C2 =
〈0, 0, 1〉, C3 = 〈1, 0, 0〉, then confidence C1,2,3

in the conjunction (A1 ∧ A2 ∧ A3) can be

computed by using Formula II.1 as follows:

C1,2,3 = 〈U1,2,3, L1,2,3, V1,2,3〉

= max(〈U1, L1, V1〉, 〈U2, L2, V2〉, 〈U3, L3, V3〉)

Since, (U3 > U1∧U3 > U2), therefore, we get

C1,2,3 = 〈1, 0, 0〉.

Problem II.2. Confidence level of a rule’s

conclusion given the confidence level of its

premise.

If D then E

If my confidence in D is CD how confident

can I be in E?

Formula II.2. Let CE denote the confidence in

rule conclusion E and CD = 〈UD, LD, VD〉 be

the confidence in D, and CR = 〈UR, LR, VR〉
be the rule’s confidence. Then CE can be

computed thus:

CE = CD + CR

CE = 〈UD + UR, LD + LR, VD + VR〉

Example II.2. If CE denotes the confidence

in rule conclusion E and CD = 〈0, 0, 1〉 is

the confidence in D, and CR = 〈1, 0, 0〉 is the

rule’s confidence. Then CE can be computed

by using Formula II.2 as follows:

CE = CD + CR

CE = 〈UD + UR, LD + LR, VD + VR〉

CE = 〈0 + 1, 0 + 0, 1 + 0〉 = 〈1, 0, 1〉

Problem II.3. Combining confidence levels

of the same conclusion with two separate

rules.

If the same fact F is deduced from two

separate rules with confidences C1 and C2,

how confident am I in F?

Formula II.3. Let CF = 〈UF , LF , VF 〉 de-

note the confidence in the derived fact F de-

duced from two separate rules with confidences

C1 = 〈U1, L1, V1〉, C2 = 〈U2, L2, V2〉, where

U,L, V with subscripts 1, 2 are the confidence

levels defined earlier, then each element of

CF = 〈UF , LF , VF 〉 can be computed as

follows:

〈UF , LF , VF 〉 = min(〈U1, L1, V1〉, 〈U2, L2, V2〉)



where min(〈U1, L1, V1〉, 〈U2, L2, V2〉) returns

the lesser of the two arguments computed as

follows.

〈U1, L1, V1〉 < 〈U2, L2, V2〉 iff

(U1 < U2) ∨ (U1 = U2 ∧ L1 < L2)∨

(U1 = U2 ∧ L1 = L2 ∧ V1 < V2)

This formula can be applied in a similar way

to a fact deduced from any number of separate

rules by increasing the number of arguments.

The reason to choose the minimum is that this

represents the most likely of the confidences of

C1 and C2.

Example II.3. Suppose C1 = 〈0, 0, 1〉, C2 =
〈0, 1, 0〉 be the confidences of two separate

rules to derive the fact F , then the confidence

CF = 〈UF , LF , VF 〉 combining the two confi-

dences C1 and C2 can be computed by using

Formula II.3 as follows:

〈UF , LF , VF 〉 = min(〈U1, L1, V1〉, 〈U2, L2, V2〉)

Since, (U1 = U2 ∧ L1 < L2), therefore, we

get CF = 〈0, 0, 1〉.

We now present a worked example for

reasoning with confidence levels.

Example II.4. Suppose we have the following

initial facts with their confidence vectors:

• A1 : C1 = 〈0, 0, 1〉,
• A2 : C2 = 〈1, 0, 0〉,
• A3 : C3 = 〈0, 0, 1〉,
• A4 : C4 = 〈0, 0, 1〉,

Suppose we have the following rules:

• R1: IF A1 and A3 THEN A5, with

confidence vector CR1
= 〈0, 1, 0〉

• R2: IF A1 and A2 and A4 THEN A5,

with confidence vector CR2
= 〈0, 0, 1〉

Since A1 and A3 are input facts, and match

the premise of rule R1, therefore R1 is fired by

the inference engine. Suppose C1,3 represents

the confidence in the conjunction of facts A1

and A3, then C1,3 can be computed by using

Formula II.1 as follows:

C1,3 = 〈U1,3, L1,3, V1,3〉

= max(〈U1, L1, V1〉, 〈U3, L3, V3〉)

Therefore, C1,3 = 〈0, 0, 1〉 Now, the con-

fidence vector CR1

5
for the fact A5 in the

conclusion of rule R1 can be computed by

using Formula II.2 with CR1
= 〈0, 1, 0〉:

CR1

5
= C1,3 + CR1

CR1

5
= 〈U1,3 + UR1

, L1,3 + LR1
, V1,3 + VR1

〉

CR1

5
= 〈0 + 0, 0 + 1, 1 + 0〉 = 〈0, 1, 1〉

Since A1, A2 and A4 are input facts, and match

the premise of rule R2, therefore R2 is fired by

the inference engine. Suppose C1,2,4 represents

the confidence in the conjunction of facts (A1 ∧
A2 ∧ A4), then C1,2,4 can be computed by

using Formula II.1 with C1 = 〈0, 0, 1〉, C2 =
〈1, 0, 0〉 and C4 = 〈0, 0, 1〉 as follows:

C1,2,4 = 〈U1,2,4, L1,2,4, V1,2,4〉,

= max(〈U1, L1, V1〉, 〈U2, L2, V2〉, 〈U4, L4, V4〉)

Therefore, C1,2,4 = 〈1, 0, 0〉 Now, the con-

fidence vector CR2

5
for the fact A5 in the

conclusion of rule R2 can be computed by

using Formula II.2 with CR2
= 〈0, 0, 1〉 as

follows:

CR2

5
= C1,2,4 + CR2

CR2

5
= 〈U1,2,4 + UR2

, L1,2,4 + LR2
, V1,2,4 + VR2

〉

CR2

5
= 〈1 + 0, 0 + 0, 0 + 1〉 = 〈1, 0, 1〉

Since, CR1

5
= 〈0, 1, 1〉 and CR2

5
= 〈1, 0, 1〉

are the confidence vectors of two separate

rules to derive the fact A5, the confidence

C5 = 〈U5, L5, V5〉 of the derived fact A5

combining the two confidences CR1

5
and CR2

5

can be computed by using Formula II.3 as

follows:

〈U5, L5, V5〉 = min(〈UR1

5
, LR1

5
, V R1

5
〉, 〈UR2

5
, LR2

5
, V R2

5
〉)

Therefore, we get C5 = 〈0, 1, 1〉.

C. Reasoning with Missing Facts

Just as SPARQL [20] allows rules to have

optional preconditions, we also want to allow

a rule to fire even if not all of its preconditions

are present in the working memory. We propose

a method to make inferences even if some of

the premises of a rule are missing, by attaching

these missing facts M as assumptions to the

conclusion of the rule. This approach differs

from that of SPARQL mentioned above since

that does not remember the optional facts not

found to be present; in our domain the experts

want to know what facts were assumed to

be present in the derivation of a conclusion,



so that if the derived facts which depend on

these are of interest/concern to them, then they

can conduct further investigations to check

whether these missing facts hold or not. We

will also propagate the given facts G used in

any inference forward to the conclusion so that

the user can also see which facts were used in

the derivation; this does not affect the reasoning

at all, but is merely for user convenience.

As shown in Figure 2, three problems need

to be addressed. Each problem is defined below

and our proposed mechanism to solve the

problem is presented as a formula which is

followed by an example.

Figure 2. Handling missing information in rule-based
systems

Problem II.4. Deriving a rule’s conclusion

given some missing facts in its premise.

If A1 and A2 and A3 then F

If facts A1 and A2 are given and fact A3 is

missing, how can I derive fact F?

Formula II.4. Let facts A1 and A2 be given

and fact A3 be missing in the premise (con-

junction of facts) of the rule. Let G1,2 denote

the set of given facts in the conjunction of

(A1 ∧ A2) and let M1,2 denote the set of

missing facts in the conjunction of (A1 ∧ A2)

then we can derive fact F in the conclusion

by attaching two sets consisting of given facts

denoted by G and missing facts denoted by

M . G and M can be computed by using the

following formulae:

G = G1,2 ∪A1 ∪A2

M = M1,2 ∪A3

Example II.5. If facts A1 and A2 are given

and fact A3 is missing in the premise (con-

junction of facts) of the rule. G1,2 = {B1, B3}
is the set of given facts in the conjunction of

(A1 ∧ A2) and M1,2 = {B2} is the set of

missing facts in the conjunction of (A1 ∧ A2)

then we can derive fact F in the conclusion

by attaching two sets consisting of given facts

denoted by G and missing facts denoted by

M . G and M can be computed by using

Formula II.4 as follows:

G = G1,2 ∪A1 ∪A2

= {B1, B3} ∪A1 ∪A2 = {A1, A2, B1, B3}

M = M1,2 ∪A3 = {B2} ∪A3 = {A3, B2}

Problem II.5. Combining assumptions

within a conjunction of facts.

If A1 ∧ .... ∧ An then F

Let fact Ai be derived from given facts Gi and

missing facts Mi, then how can I compute set

of given facts G1..n and set of missing facts

M1...n in the conjunction of (A1 ∧ ... ∧ An)

Formula II.5. If fact Ai is derived from given

facts Gi and missing facts Mi, then we can

compute the set of given facts G1...n and the

set of missing facts M1...n in the conjunction

of (A1 ∧ ... ∧ An) thus:

G1...n = G1 ∪ ... ∪Gn

M1...n = M1 ∪ ... ∪Mn

Example II.6. Suppose fact A1 is derived from

a set of given facts G1 = {B1, B2} and a

set of missing facts M1 = {B3}, fact A2 is

derived from a set of given facts G2 = {B4}
and a set of missing facts M2 = {B5}, and

fact A3 is derived from a set of given facts

G3 = {B7, B8} and a set of missing facts

M3 = {B3}, then we can compute the set of

given facts G1,2,3 and the set of missing facts

M1,2,3 in the conjunction of (A1 ∧ A2 ∧ A3)

using Formula II.5 as follows:

G1,2,3 = G1 ∪G2 ∪G3

= {B1, B2} ∪ {B4} ∪ {B7, B8}

= {B1, B2, B4, B7, B8}

M1,2,3 = M1 ∪M2 ∪M3

= {B3} ∪ {B5} ∪ {B3} = {B3, B5}

Problem II.6. Combining given and missing

facts of the same conclusion derived by two



separate rules. If the same fact F is deduced

from two separate rules with the attached

sets of given and missing facts G1,M1 and

G2,M2, how can I conclude F by combining

the attached sets of given and missing facts?

Formula II.6. If there is a fact F deduced

from two separate rules with the attached sets

consisting of given and missing facts G1,M1

and G2,M2 respectively, then we can compute

the combined sets of given and missing facts

G1,2,M1,2 for F using the following formula:

〈G1,2,M1,2〉 = min(〈G1,M1〉, 〈G2,M2〉)

where min(〈G1,M1〉, 〈G2,M2〉 returns the

vector with the fewer missing facts computed

as follows.

〈G1,M1〉 ≤ 〈G2,M2〉 iff length(M1) ≤
length(M2)

Example II.7. Suppose fact F is deduced

from two separate rules with the attached

sets consisting of given and missing facts

G1 = {A,B,C},M1 = {D} and G2 =
{A,E},M2 = {B,G}, then we can compute

the vector consisting of sets of given and miss-

ing facts 〈GF ,MF 〉 for F using Formula II.6

as follows:

〈GF ,MF 〉 = min(〈G1,M1〉, 〈G2,M2〉)

〈GF ,MF 〉 = min(〈{A,B,C}, {D}〉, 〈{A,E}, {B,G}〉)

〈GF ,MF 〉 = 〈{A,B,C}, {D}〉

D. Reasoning with Confidence Levels and

Missing Facts

To reason with uncertainty, in particular

to show the effect of missing facts on the

confidence of an inferred fact, we define the

confidence vector for facts as follows. (Note:

here we modify our previous Definition II.1 to

take into account the number of missing facts

in the inference path for a deduced fact.)

Definition II.3. Let CF denote the confidence

vector of a fact F . Let U , L, V , D be

the different confidence levels as given in

Definition II.1 and N be the number of missing

facts accumulated in the inference path of fact

F . (Note: N will be 0 for initial input facts)

Then, we define CF as follows:

CF = 〈U,L, V,N〉

The confidence vectors for facts computed

in Formulae II.1, II.2 given in section II-B can

now be modified to add the number of missing

facts N for a set of missing facts M , where

N = length(M).

Problem II.7. Combining confidence levels

of the same conclusion (having missing facts)

with two separate rules. If the same fact F is

deduced from two separate rules with sets of

missing facts M1 and M2, how confident am

I in F?

The are two approaches to this problem:

(1) we assume the user is prepared to assume

that the missing facts are in fact true with high

confidence; in this case we should compute the

confidence of F using Formula II.3, and propa-

gate the missing facts from those derived from

the chosen rule according to that computation.

(2) we assume that the user is rather uncertain

about the missing facts, even more so than facts

derived with a low 〈U,L, V 〉 confidence vector;

in this case we should compute the confidence

of F according to which derivation has the

fewer missing facts, using Formula II.6. For

space reasons we omit the formal definition of

this here but present an example.

Example II.8. Suppose fact F is deduced

from two separate rules with the attached sets

of given and missing facts G1 = {A,B,C},

M1 = {D} and G2 = {A,E} , M2 = {B,G}.

Let CF denote the confidence in the concluded

fact F deduced from two separate rules with

confidences C1 and C2, and C1 = 〈2, 1, 2, 1〉,
C2 = 〈2, 1, 1, 3〉.

If we follow approach (1) above then we

can compute that C2 < C1 since U1 = U2

and L1 = L2 but V2 < V1, so CF = C2 =

〈2, 1, 1, 3〉, with the set of missing facts and

given facts as M2 and G2.

However, if we follow approach (2) then we

compute that M1 < M2 and hence CF = C1

= 〈2, 1, 2, 1〉, with the set of missing facts and

given facts as M1 and G1.

III. IMPLEMENTATION DETAILS

Our techniques are not written for any

specific languages or tools and can be imple-

mented in any off the shelf tool of choice that

is based on a forward chaining rule inference

engine. We use Jess [12] for implementing

our proposed approaches for evaluation pur-

pose. Jess is a forward chaining rule inference



engine implemented in Java. It is a partial

reimplementation of the CLIPS [21] Expert

System shell. Jess uses an enhanced version of

the Rete algorithm [8] to process rules. Rete

has a very efficient mechanism for solving the

difficult many-to-many matching problem, i.e.,

comparing a large collection of patterns to a

large collection of objects.

We have implemented our three different

reasoning approaches:

Reasoning with confidence levels: The confi-

dence vector defined for facts in Definition II.1

is attached with each fact and confidence vector

defined for rules in Definition II.2 is attached

with each rule. Whenever, each rule is fired

the confidence vector for the conjunction of

premise is computed by using Formula II.1 and

the confidence vector for the newly deduced

fact (i.e., conclusion) is computed by using

Formula II.2. During the execution of the

inference engine, the confidence vectors for

all deduced facts that are same but computed

by using different rules are combined by using

Formula II.3.

Reasoning with missing facts: All initial

input facts have empty sets of missing and

given facts (as they are not deduced by an

inference chain). When a rule is fired the

sets of missing and given facts are computed

in the conjunction of the premise by using

Formula II.5 and the sets of missing and

given facts for the newly deduced fact in the

conclusion are calculated by using Formula II.4.

During the execution of the inference engine,

the sets of missing and given facts for all

deduced facts that are same but computed by

using different rules are combined by using

Formula II.6.

Combined reasoning with confidence levels

and missing facts: We combine both our

approaches, and compute the confidence vector

given in Definition II.3 for each newly deduced

fact by giving the count of missing facts in

the inference chain of the deduced fact. This

allows us to see the effect of missing facts

on the confidence of the conclusion. We use

all formulae used in the previous approaches

and additionally use the reasoning exemplified

in Example II.8 for combining the confidence

vector of the conclusion with two supporting

arguments.

The following are the steps that occur when

our system is used: 1) The user inputs the

data in the form of facts with an associated

confidence. 2) The confidence vectors of all

the derived conclusions are calculated. 3) If

there are multiple conclusions (inferring the

same fact), the combined confidence vector

is calculated. 4) The final confidence vector

is transformed into a textual representation.

5) The conclusion and its confidence vector

(textual representation) are displayed.

An example rule from the domain of urban

infrastructure [6] is as follows: If “Soil wet-

ting is large” and “Soil Moisture Content is

medium” then “Soil Moisture Content goes to

wet”. In the above rule, “Soil wetting is large”

and “Soil Moisture Content is medium” are the

conditions in the conjunction of the premise

and “Soil Moisture Content goes to wet” is

the inferred fact in the conclusion. For making

inferences in the presence of missing facts, we

impose a condition that the rule can fire when at

least one of the facts (in the conjunction) of the

premise is given and the rest can be optional.

Similarly, we can also impose a condition that

the rule can fire when only one fact (in the

conjunction) of the premise is optional and

the rest of the facts must be given, having an

additional condition that if there is a single

fact in the premise then it needs be given (i.e.,

not optional).

IV. CONCLUSION AND FUTURE WORK

We have presented an uncertainty manage-

ment scheme for rule-based systems that en-

ables reasoning with qualitative confidence lev-

els for data and rules to emulate the reasoning

of domain experts for decision making in the

urban infrastructure. Moreover, our proposed

scheme allows us to make inferences even in

the presence of missing information and its

effect on the certainty factors. The novelty of

our scheme with respect to previous research

is threefold: (1) unlike Mycin-like or fuzzy

rule based methods which represent uncertainty

using a numeric scheme, our method is entirely

symbolic (though counts of different levels

of uncertainty are still maintained); (2) whilst

previous systems have allowed optional or miss-

ing antecedents in rules, these have not been

retained in the subsequent inference system for

subsequent analysis/reporting (e.g. identifying

inference chains for conclusions that require



minimum number of missing antecedents or to

facilitate abductive reasoning); (3) these two

aspects are integrated into a single representa-

tion and method to compare uncertain inferred

facts. We have implemented our methods in an

off the shelf forward chaining inference engine.

In the future, we aim to use a backward

chaining inference engine for a goal-based

approach; we expect the representations and

mechanisms we have presented here to be

applicable to this. We will also include data

from various sources and extend our uncer-

tainty management scheme to deal with the

issues such as data inconsistency and reliability

that arise when integrating data from different

sources. Although the main focus of our inves-

tigation was for decision making in the urban

infrastructure, our proposed scheme is likely

to be applicable to many other domains.

Another extension we envisage is to change

the treatment of what happens when a fact

is inferred in two different ways with two

different sets of missing facts. At present, we

just take the derivation with the smallest set of

missing facts, and allow the possibility that

one could backtrack and explore the other

derivation if needed later (e.g. if a missing

fact in the smaller set turns out to be false).

Alternatively, both derivations could be prop-

agated forward simultaneously, disjunctively,

which would eliminate the need to backtrack

but at the expense of a possible blowup in the

number of disjunctive derivations (note that

the number of derived facts would not explode,

only the length of the associated uncertainty

descriptions). Another avenue to explore is to

allow costs to be associated with the difficulty

of verifying the truth of an unknown fact; this

would be particularly useful when combined

with the extension mentioned immediately

above of propagating all derivations forward.
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