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Abstract—A method is proposed for reducing the effect of

white noise in wideband sparse arrays via a combination of a

judiciously designed transformation followed by highpass filters.

The reduced noise level leads to a higher signal to noise ratio for

the system, which can have a significant effect on the performance

of various beamforming methods. As a representative example,

the reference signal based (RSB) and the Linearly Constrained

Minimum Variance (LCMV) beamformers are employed here

to demonstrate the improved beamforming performance, as

confirmed by simulation results.

I. INTRODUCTION

The area of wideband beamforming has been in the focus

of research with various applications such as radar, sonar and

wireless communications for many years [1], [2], [3]. The

spacing between adjacent sensors for uniform linear arrays

(ULAs) must be half the wavelength of the highest frequency

of the desired signal for preventing the spatial aliasing prob-

lem. Considering arrays with a large aperture size, the cost

of a large number of required sensors can be problematic.

Sparse arrays are a good alternative [1], [4], [5], as they allow

adjacent sensor spacings to be greater than half the wavelength

of the corresponding desired signal with the highest frequency,

while avoiding grating lobes, since the sensor locations have a

non-uniform structure. In addition, an optimum beam response

can be achieved, since sparse arrays provide more degrees of

freedom with the same number of sensors.

Generally, the performance of all wideband beamforming

algorithms for both ULAs and sparse arrays is affected by

the amount of white noise, so a better performance can be

achieved by reducing the noise level in the system. In most

cases, noise in a wideband array is temporally and spatially

white, therefore, the noise between the sensors is uncorrelated

with each other. After processing designed for the signal part,

there will be some level of noise left, which we can not do

much about it.

In our previous work [6], a method was developed for

reducing the effect of white noise in wideband ULAs via a

combination of a judiciously designed transformation followed

by highpass filters to improve the performance for wideband

direction of arrival (DOA) estimation. In this paper, we extend

that idea to sparse arrays and as a result, the transformation is

re-designed using the least squares method to adjust the noise

reduction method for the non-uniform sensor layout of sparse

arrays.

To make sure the transformation is invertible, a prototype

filter is first designed and then modulated to different subbands

to cover the full normalised frequency band from −� to �.

The diagonal loading method is used to keep the condition

number to a low level [7]. Similar to the ULA case, the overall

signal to noise ratio (SNR) of the system can be improved by

up to 3dB, which then leads to performance enhancement for

beamforming as demonstrated using two well-known adaptive

beamformers, namely the reference signal based (RSB) [8],

[9], [10], [11], and the linearly constrained minimum variance

(LCMV) beamformers [3], [12].

This paper is organised as follows. In Sec. II, the proposed

white noise reduction method for sparse arrays is introduced.

In Sec. III, the least squares approach for designing the trans-

formation matrix is explained. Simulation results are presented



1θ

−1

n[  ]

n[  ]
n[  ]

n[  ]

n[  ]

n[  ]

n[  ]

n[  ]

n[  ]

n[  ]

n[  ]
n[  ]

n[  ] n[  ] n[  ]−1M −1M −1M −1M

−1M

^

^

x

x

x

q

q

z

z

x

x
h  

h  

h      

A A

 0

 1

0

1

0

1

q z ^x

1

0 0

Fig. 1: The general structure of the proposed noise reduction

approach for sparse arrays.

in Sec. IV, followed by conclusions in Sec. V.

II. THE PROPOSED WHITE NOISE REDUCTION METHOD

FOR SPARSE ARRAYS

The general structure of the proposed white noise reduc-

tion approach for sparse arrays is presented in Fig. 1. �

array signals ��[�], � = 0, . . . ,� − 1, are received by

the sensors, which are then transformed by an � × �

transformation matrix A, in the next stage, its outputs ��[�],

� = 0, . . . ,� − 1, are processed by highpass filters with

ℎ�[�], � = 0, . . . ,� − 1, as their impulse responses.

The outputs of the highpass filters are denoted by ��[�],

� = 0, . . . ,� − 1. Finally ��[�], � = 0, . . . ,� − 1, are

block-transformed by A−1.

There are two components for the received array signal

��[�] at the �-th sensor: the signal part ��[�] and the white

noise part �̄�[�]. Therefore,

��[�] = ��[�] + �̄�[�]. (1)

The total signal vector x[�] is

x[�] = s[�] + n̄[�], (2)

where

x[�] = [�0[�], �1[�], ⋅ ⋅ ⋅ , ��−1[�]]
� ,

s[�] = [�0[�], �1[�], ⋅ ⋅ ⋅ , ��−1[�]]
� ,

n̄[�] = [�̄0[�], �̄1[�], ⋅ ⋅ ⋅ , �̄�−1[�]]
� .

By applying the transformation matrix A to the received

signal vector x[�], the output signal vector q[�] is processed

as

q[�] = Ax[�], (3)

where q[�] = [�0[�], ⋅ ⋅ ⋅ , ��−1[�]]
� .
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Fig. 2: The ideal frequency response of a sample row vector

of A, and its corresponding highpass filter.

The element of A at the �-th row and �-th column is

denoted by ��,�, i.e., [A]�,� = ��,�. Each row vector of A

acts as a beamformer, and the output ��[�] is

��[�] =
�−1
∑

�=0

��,���[�]. (4)

The beam response ��(Ω, �) of this simple beamformer

where Ω and � are the normalized frequency and the DOA

angle respectively, is given by

��(Ω, �) =

�−1
∑

�=0

��,��
−�

��
���

(Ω sin �) = ��(Ω sin �), (5)

where �� is the spacing between the zero-th sensor and the

�-th sensor (where �0=0), Ω = ���, c is the wave propagation

speed, �� is the sampling period, � =
√
−1 and � is the

angular frequency of the signals.

With Ω̂ = Ω sin �, we have

��(Ω̂) =

�−1
∑

�=0

��,��
−�

��
���

Ω̂, (6)

where ��(Ω̂) is the frequency response of the �-th row vector

of the transformation matrix A, considering each row vector

as the impulse response of a finite impulse response (FIR)

filter. Similar to [13], the frequency responses ��(Ω̂), � =

0, 1, ⋅ ⋅ ⋅ ,� −1, are set to have bandpass characteristics, each

with bandwidth of 2�/� . The row vectors of A all effectively

cover [−�;�] which is the entire frequency band.

The bandpass filters, which are used as row vectors of A,

have highpass filtering behaviour, considering the whole range

of � for the received signal. As an example, the frequency

response of the l-th row vector is given by

∣

∣

∣
��(Ω̂)

∣

∣

∣
=

{

1, for Ω̂ ∈ [Ω̂�,�; Ω̂�,� ]

0, otherwise.
(7)

Since Ω̂ = Ω sin �, for Ω̂�,� > 0, the frequency range of

the output of the �-th row vector is ∣Ω∣ ≥ Ω̂�,�, with the lower

bound equal to Ω̂�,�. So, the frequency components of the

received signal with Ω ∈ [−Ω̂�,�; Ω̂�,�], do not pass through



the �-th row vector, regardless of the DOA angle �. Similarly,

when Ω̂�,� < Ω̂�,� < 0, the lower bound is equal to ∣Ω̂�,� ∣
and the frequency components with Ω ∈ [−∣Ω̂�,� ∣; ∣Ω̂�,� ∣] do

not pass through the corresponding row vector.

So, the �-th row vector has a highpass filtering effect on the

spectrum of the directional signal part of its output ��[�] as

shown in Fig. 2. As mentioned before, the noise component

at the array sensors is spatially white, therefore, the spectrum

of the noise at the output of the row vectors is constant, and

covers the entire spectrum. Assume that the row vectors of A

are normalized to unity norm, then the total power of the noise

before and after the transformation A would be the same.

As illustrated in Fig. 1, every highass filter ℎ�[�], � =

0, ⋅ ⋅ ⋅ ,� − 1, processes its corresponding input ��[�], � =

0, ⋅ ⋅ ⋅ ,� − 1. The highpass filters ℎ�[�], � = 0, ⋅ ⋅ ⋅ ,� − 1,

have the same highpass frequency responses as their corre-

sponding row vectors of the transformation A and are designed

to cover the entire bandwidth of the directional signal. So

ideally, the directional signal part should not experience any

distortion after being processed by the highpass filters and the

highpass filters will not remove any part of the directional

signal. In contrast, the highpass filters remove parts of the

white noise with frequency components matching their stop-

band. z[�] = [�0[�], ⋅ ⋅ ⋅ , ��−1[�]]
� denotes the output of the

aforementioned highpass filters.

By processing z[�] with the inverse transformation A−1,

the original array signal will be recovered without distortion

in the ideal case, while the noise power will be reduced,

leading to an improved overall SNR. Following the same

analysis in the ULA case as discussed in [6], when A is

unitary, we can draw the same conclusion that up to 3dB

total SNR improvement can be obtained by the proposed

method. However, in practice, the SNR improvement will be

less than 3dB due to limited number of sensors and difficulty

in designing a unitary transformation matrix with the required

bandpass responses.

The transformation matrix A is required to be unitary to

make sure that the row vectors of both A and A−1 have unity

norm and preserve the signal power after transforming the

signal and also after transforming it back. If A is not unitary,

then the noise might be amplified by some significant amount

during the process even if some of it has been removed, this

subsequently leads to a reduced output SNR. Moreover, a

unitary matrix automatically ensures that A is of full rank.

III. LEAST SQUARES BASED DESIGN FOR THE

TRANSFORMATION MATRIX

As an example for a unitary matrix with a satisfactory

bandpass response, we could consider the discrete Fourier

transform (DFT) matrix as in the ULA case of [6]. However,

it is not really applicable here since the sparse array does not

have a uniform spacing and the resultant beams by each row

vector of such a transformation matrix will be significantly

distorted.

Therefore, we have to adopt a different approach for the

design of the transformation matrix for sparse arrays and

introduce a least squares based design method here. The

idea is to use an ideal unitary beam response such as those

of a DFT matrix as the reference response for the least

squares method to design a sparse prototype filter p (where

[p]� = ��, � = 0, ⋅ ⋅ ⋅ ,� − 1). Then, we modulate it into

different subbands in a uniform way to form the required

transformation matrix.

The least squares filter design method has been well studied

in the past [14], [15]. Given the desired beam pattern ��(Ω̂)

and considering d(Ω̂) as the steering vector of the sparse array

with

d(Ω̂) =

[

1, �−�
�1
���

Ω̂, ⋅ ⋅ ⋅ , �−�
��−1

���
Ω̂

]�

, (8)

the problem can be solved by minimizing the sum of the

squares of the error between the designed response � (Ω̂) and

��(Ω̂) over the desired frequency range, i.e.,

min
p

∑

Ω̂��

∣� (Ω̂)− ��(Ω̂)∣2. (9)

The standard least squares solution is achieved by minimiz-

ing the above cost function with respect to the coefficients

vector p, so

p��� = G−1
�� g��, (10)

where

G�� =
∑

Ω̂��

d(Ω̂)d�(Ω̂),

g�� =
∑

Ω̂��

(d�(Ω̂)��,�(Ω̂) + d�(Ω̂)��,�(Ω̂)),

with {⋅}� denoting the Hermitian transpose, d�(Ω̂) and

��,�(Ω̂) are the real parts of d(Ω̂) and ��(Ω̂), d�(Ω̂) and

��,�(Ω̂) are their imaginary parts and Ω̂�� is the passband of

the prototype filter p.



Then, we modulate p to cover the whole normalized fre-

quency band [16],

��,� = �−� 2�
�

�
��
��� ��, (11)

where � = 0, ⋅ ⋅ ⋅ ,� − 1, � = 0, ⋅ ⋅ ⋅ ,� − 1.

At this point, if the condition number of the resultant

transformation matrix is high, we can reduce it using the

diagonal loading method [7],

A� = A + �I , (12)

where I denotes an �×� identity matrix and � is a constant

representing a small loading coefficient.

Note that the transformation matrix obtained by the above

procedure will not be unitary in general and how to design

a unitary matrix with the required bandpass filtering effect is

still an open problem for our future study. However, we will

see in our simulations that the transformation matrix obtained

by the above procedure works well and provides a satisfactory

performance improvement.

IV. SIMULATION RESULTS

In this section, simulation results are provided and compared

to verify the effectiveness of the proposed noise reduction

preprocessing method for sparse arrays. They are based on a

sparse array example provided in [17] and the sensor locations

are listed in Table I, where � is the wavelength corresponding

to the normalized frequency of Ω = �. It has 15 sensors

(� = 15) and the desired signal arrives from the broadside

(�� = 0). The transformation matrix A is a 15 × 15 matrix

obtained by the design procedure described in Sec. III, and its

frequency response is shown in Fig. 3.

� ��/� � ��/� � ��/�

1 0 6 4.09 11 6.72

2 0.81 7 4.24 12 7.58

3 1.62 8 5.00 13 8.38

4 2.42 9 5.81 14 9.19

5 3.28 10 5.96 15 10

TABLE I: Sensor locations for the wideband sparse array

example.

The received signals are processed by the designed sparse

transformation and after that, they are passed through the

highpass filters. For highpass filters, 50-tap linear-phase FIR

filters with a common delay of 25 samples are employed.
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Fig. 3: The frequency response of the row vectors of the

15× 15 sparse transformation A.

Then, the signals are transformed back by inverse of the

transformation matrix A−1.

Now we examine the effect of the proposed method on the

performance of both the RSB beamformer and the LCMV

beamformer. A desired bandlimited wideband signal with a

bandwidth of [0.3�, �] is received by the aforementioned

sparse array from the broadside. Seven interfering signals are

applied to the system, each with a -10dB input SIR and

their DOAs are �� = 10∘, 20∘, 30∘, 40∘, 50∘, 60∘ and

70∘, respectively. A tapped delay-line (TDL) with length of

� = 100 is used for these beamformers [3].

The results are shown in Fig. 4, and we can see that a higher

output SINR is achieved by the proposed noise reduction

method for both beamformers, especially when the input SNR

is greater than 0dB and generally the improvement becomes

larger when input SNR increases.

However, one issue which cannot be clearly explained is

that for an input SNR smaller than 0dB, there is not much

improvement. In theory, we should always have a good im-

provement for all input SNR ranges. We checked the designed

transformation matrix, and found that it has a relatively large

condition number, which could be the reason for such a lower

than expected performance for low SNR. As we mentioned at

the end of Sec. III, further research is needed for designing

a unitary transformation matrix with the desired frequency

responses.

V. CONCLUSIONS

A method for mitigating the effect of white noise without

affecting the directional signal in wideband sparse arrays has

been introduced. With the proposed method, similar to the
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Fig. 4: SINR performance of both beamformers with and

without the proposed noise reduction (NR) method for the

sparse array specified in Table I.

uniform linear array case, a maximum 3dB improvement is

achieved for the total signal power to noise ratio (TSNR),

which leads to possible performance enhancement in many

sparse array signal processing applications. As an example, the

effect of the method on adaptive beamforming was studied.

The simulation results which were achieved by both the

RSB and the LCMV beamforming methods, showed a clear

improvement in performance, with respect to the output SINR

for a large range of input SNR values.
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