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Abstract

This paper explores the contact of soft elastic and poroelastic bodies rotatinglaamend inspects the
differences in load carrying capacity between the two types of matol.materials hae been widely used to
describe the behaviour of biological systems such as articular cartilagemmatian joints, however we
demonstrate here that there are fundamental differences between the regponassted in which the poroelastic
response has an additional fluid contribution to the solid structural respormeéer to produce the same load
carrying capacity it is shown that the poroelastic material must defonm timan an incompressible soft elastic
material with the same stiffness and that the solid load generated by a poroedéestial is the same as a soft
elastic material with a zero Poisson’s ratio.

Keywords: Contact mechanicSoft elasticity; Poroelasticity; Load carrying capacity.

1. Introduction

Soft tribological interfaces are frequently encountered in natural systemshaielevolved over millenni&uch
interfaces include those of the natural synovial joints encounteredxdonple, in mammalian knees and hips
Such systems have demonstrated ultra-low friction coefficients (0.008)0[1] in operating conditions more
typical of the boundary lubrication regime. A number of explanations haen proposed for such low friction
and while there is nat universal agreement as to the mechanisms describing the lubricationral sghovial
joints, many of the general concepts are well accgpt&dl. This includes describing the cartilage material as a
porous matrix with a pressurised interstitial fluid, leakage out of treupanatrix to provide some load bearin
capability and, more recently, the role of long chained molecules attachedcartitage surface to provide an
immobilised lubricious layer. The mechanisms by which the sueieity of biological materials functions has
been explored historically by a number of authors who have condeqtedments on cartilage and use biphasic
theories to describe the interactions observed].[6R&cent researchas confirmed the ultra-low friction of
cartilage in operation and discesshe so called tribological rehydration of synovial jointslf9-

Poroelastic models such as the work of Biot [12] address many olfidienges of modelling such systems, but
many still remain to be addressed as more realistic representations of themaeck of cartilage are considered.
The potential for poroelasticitp describe the phenomena observed in articular cartilage has beenvekgensi
explored [13, 14], such biphasic theories use a combination of finibencktion and porous flow to derive the
constitutive equations for the solid stress and fluid pressure respectiveindgs from the development of the
biphasic theorjhavedemonstrated that a significant fluid pressure can be maintained sslthgcontact moves
to hydrated regions faster than the rate of leakage [15, 16]. Modellipgtbelastic lubrication mechanisms has
been a considerable challenge, with the large deformation of the cartilage anthghazsrgneability with
compression, as well as numerical problems in obtained computational molotimg some of the challenges
[17-19].

This work examines the role of the porous fluid in a simplifi#toblogical system when compared to purely
elastic contacting materials, the role of the fluid pressurisation and how it relates éguivalent elastic
material’s compressibility are considered and compared. The load carrying capacity of soft elastic and poroelastic
materials are investigated demonstrating a significant difference in the mechhyisrhich they operate. The
model introduces an Eulerian frame of reference in in which twogbastic faced bearings rotate under load, this
allows steady compression-sliding to be considered and the potential load ceayyacgy of both the solid and
fluid phases to be investigated. Contact mechanics are also considerethtgrthee between the two bodies
under frictionless conditions, no flow is permitted across the interfatassuch fluid is confined to each of the
contacting bodies and dry conditions apply.



2. Theory

In this paper the contact between two rotating bodies is investigated,sthestogies conducted analyse the
following: (i) soft elastic contact; and (ii) poroelastic contact. The remainder afetbiimn outlines the equations,
parameters and assumptions which define each of these models.

2.1 Elastic Contact

In Figure la two elastic bodies with given inrRer;, R,; and outer radiR, o, R, , are rotatng with angular
velocities,, Q, about their origins. Figure 1b illustrates that when the sepati@tween the two bodies is
reduced beyond zero they come into contact and are deformed sutiteteds no penetratiods a result the
contacting region is defined #nby wherey = 0 and in which the contact pressure is positive, outside this region
the contact pressure is zero. Since the angular velocities of the bodies aret ¢bastdastic deformation in
contact can be calculated using steady-state assumptions in which the bodiegpeeesiognand sliding against
each other. The outf-plane dimensiorz is assumed to be orders of magnitude larger than the remaining
dimensions and therefore plane strain assumptions apply to the 2isttinodel developed.

Q4

Q

Figure 1- (a) Schematic of two rotating bodies coming into contact, positive separadi@iose up view of the
contacting region, negative separation.

Due to contact pressure, stresses are generated in the material and forlimbhedastic model is assumed to
describe the structural behaviour of the material under [28d $uch materials define that the stress-strain
relationship is given by Egs. (1)-(3). Deformation is therefetated to the material stresses by specifydng
Young’s modulus E and Poisson’s ratiov asmaterial properties (see Eq. (4)). Wharis the deformation fieldg

the strain tensouy the stress tensor, apg) are the Lamé parameteHastic materials with a Poisson’s ratio of

v = 0.5 are considered incompressible since the volumetric contribution to stress derowvetéhe isochoric
component, this is a well-established approach to modelling soft elastidatsatehich exhibit lineafrubber-
like’ behaviour under load [21].
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In order to solve for the solid elastic deformation the model is constrasiad the following boundary
conditions. Each of the contacting surfaces is allowed to freely defdihtamtact is reached, once contact is
identified a frictionless Augmented Lagrangian approach is used to keepfmesudrom penetrating into each
other [22] This method applies a contact pressure at the interface which varies accordingagniade of the
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separation and is defined to cause a normal stress at the interface, snclsthat-p.n wherep.. is the contact
pressure. The penalty contact method is also capable of implementing the cwmthahics required, however
this method was not selected because improved numerical stability was &ogdhe Augmented Lagrangian
approach. The remaining surfaces of the bodies are constrained epdnation such that the interface contacts
about the lingy = 0, for the upper body deformation is specifiednaan = §/2 and for the lower bodu - u =
—&/2 where the separatiahis negative in contact. This condition is implemented such that thedaoes are
free to deform tangentially arisltherefore consistent with the assumptions of steady compression-slitieg at
contacting interface which arise from the constant values assigned to thanabtediocities of the bodies

The load carrying capacity of the elastic confagl.:i. is given by the integral of the contact pressure aloeg th
interface between the two bodies. This is described by Eq. (5) whiefines the arc length of the boundary
(ds)? = (dx)? + (dy)?, n is the boundary normal vectdt,,);4 is the solid load, and subscripts 1 and 2 represent
integrals for each of the two bodies in contact. Because contact presappdiesl only where the two bodies
intersect the solid material supports the total load applied at the interface casthef poroelasticity the fluid
volume also contributes to the total load carrying capacity of the material as derSection 2.2.

I:elastic: I:solid = I”n ’ 6” d% + I”n ’ 6” d% ©)

2.2 Poroelastic Contact

In contrast to elastic contact this section develops a poroelastic model in which the cohtaiéagre no longer
considered to be solid but rather biphasievhich pores in the solid material are filled with an interstitial fluid.
For such a model the fluid flow in the porous media is described by Darcy’s law and the solid deformation by a
linear elastic relationship. Critically the coupling between these two phasdsdagseatby implementing a zero
value forthe material Poisson’s ratiov = 0 and subsequently specifying a source term in the fluid flow equation
related to volumetric strain. This ensures conservation of volume irphaties such that the change in volume
due to solid deformation is equal to the volume of fluid exuded frenporous domairiLp], this type of analysis

is well-established for biphasic materials [18Fasinvestigated in this article.

For the fluid phase Eq. (6) is derived frdbarcy’s law in order to describe, under steady compression-sliding
conditions, the relationship between fluid pressuesd volumetric strain,,,; [23, 24].

(6)
n Dt

The left-hand-side term represents the pressure driven flow and thdaighside term describes the effect of
compressing the material. In Eq. (6)is the permeabilityn is the fluid viscosity andx is the Biot-Willis
coefficient.a describes the ratio of fluid volume squeezed into and out of the dotmaiaforea = 1 because
the Poisson’s ratio for the material is zero and all changes due to the material compressing must be accounted for

by an equivalent change in the fluid phase.

The steady-state form for the fluid phase is described by Eq. i&)rew is the solid velocity of the rotating
bodies. By implementing an Eulerian frame of referemég subsequently given dyg. (8) [18, 19], wheredr
each body the centres of rotation arg¢ = 0,y.1 = Ry, andx., = 0,y., = —R,,. Additionally, under linear
elastic assumptions the volumetric strain is defined as the divergencedefdhmation fielde,,; = V - u.

v

v=0(y- Y., X-X) (8)
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In order to couple the fluid phase to the solid phase pressure gradientpkmented as a body force in the
stress-strain relationship, leading to Egs. (9)-(12) as based dn fBitries for a zero Poisson’s ratio material
[25-27]. Note that in Eq. (2) the second term on the right-hand-side contgjns tr(e) = V - u which in Eq.
(10) for the solid stress vanishes because for a poroelastic material volugtnainidnstead causes a change in
the fluid phase (Eq. (7)), which in turn has an effect orethetion of state for the solid phase (Eqg. (9)). Based
on these assumptions in a poroelastic material the solid stress therefore onleslé¢keribochoric response of
the structure, the response due to volumetric changes instead causevarréqthiange in the fluid pressure.
The constitutive equations derived are similar to those which form bipthasicy for articular cartilage [13-17]
and in general describe the poroelastic response of the material under load inian Ealae of reference [18,
19.
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Boundary conditions for the solid deformation in the poroelastic mod@haiemented using the same method
as described in Section 2.1 for elastic contact. For the fluid flow a zero pressut®egne: 0 is applied to the
extents of the contacting bodies, these locations are modelled to be fah érmmghe contacting region to

assume that there is no change in fluid conditions. A zero flux conditi(]ﬁ Vp) = 0 is applied to the upper

and lower surfaces of the bodies, this assumes that no fluid is transfietnedboundaries and the flow comes to
rest (wall type condition). At the contacting interface this latter conditiobeamterpreted as no leakage between
the bodies as they are compressed and as such mass is conserved. Medsdemaleveloped to explore the
potential of a lubricating region along the contacting boundary in whichiflawd out of the poroelastic material
is permitted 18], however in this model no lubrication is assumed and fluid doefeave the contacting bodies.

The load carrying capacity of the poroelastic conggt,eiastic is given by Eq. (13) as the sum of two terms each
representing the solid and fluid contributions respectively. The solidFigag is calculated from Eq. (5) and is
identical to that of only contribution to load in elastic contact, the fluid Fpad is describedy Eq. (14) as the
integral of pressure over the contacting interfades demonstrates the fundamental difference between elastic
and poroelastic contacts whereby in the latter there is an additional contribution degtesénce of a fluid
phase.
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3. Materialsand M ethods

This section outlines the selection of model parameters and materials ugedérimoomodel soft elastic and
poroelastic contacts.

3.1 Model Parameters

In order to simulate soft elastic and poroelastic contacts the model parametersosereictorder to reproduce
typical conditions observed in biological systems such as articular cartilage ifo mammalian jointd=or the

purpose of simplicity the geometry and material properties are kept thefezatime two contacting bodies. The
Young’s modulus of the materials was considered over the range&Ecet 0.5 -5 MPa which is several orders of



magnitude less than the materials used in hard mechanical bearingsaangwher& > 100 GPa). Therefore

the elastic material modelled is considered soft and the poroelastic material modelled &shililes magnitude

of stiffness.For the soft elastic material a Poisson’s ratio of almost v = 0.5 was assumed as to represent an
incompressible solid. Simulations of soft elastic materials with0 are also analysed, this represents the case
of the poroelastic material without any fluid contribution. The fluid visc@sity permeability of the porous media
were determined from papers investigating the material properties of synaidaarfid articular cartilage [28

29]. The inner and outer radii of the contacting bodies were given valus30ainm and 99 mm respectively,
resulting in a 1 mm thickness for the cartilage layée size and thickness of the contacting bodies were chosen
based on a survey of literature investigating the physiology of hipimaa and their operation, this also allowed
the values of angular velocities to be established from a typical human gvajkile.

3.2 Solution Procedure

Both the elastic and poroelastic contact models were setup and solved usingphiéecsoftware COMSOL
Multiphysics [30]. For the poroelastic model this required the constitutive egsdtineach of the fluid and solid
phases to be programmed into the software which subsequently dpplaggpropriate numerical discretisation,
particular attention was needed in order to fully couple the Eulerian frareéecénce used to define rotation of
the solid bodies. The computational domain was discretised using 406 2@@00 quadrilateral elements for
each body (32000 total elements), the spacing between elements was umifpand grown with increasing
distance from the contact region in x. This mesh resolution was foymddace grid independent results for both
models, with a < 1% change in the load carrying capacity obsenmmchfieshes with more th&2000 elements.
For the range of simulations undertaken in Section 4 the minimum calculat®mwétis 1 min 13 seconds and the
maximum 4 mins 37 seconds, these were computed on a CPU with Ktebdéeon processors running at 3.3
GHz and 16 GB RAM.

Parameter Value/Range [Unit]
Elastic Young’s Modulus E 0.5 - 5 [MPa]
Elastic Poisson’s ratio v 0.4999
Poroelastic Young’s Modulus E | 0.5 - 5 [MPa]
Poroelastic Poisson’s ratio v 0

Outer RadiiR; 4, R, , 100 [mm]
Inner RadiiRy;, R, 99 [mm]
Angular Velocities),, Q, 1, -1 [rad/s]
Penetration Depth -100 [um]
Fluid Viscosityn 0.001 [Pa.s]
Permeabilityk 1x10%5[m?
Biot-Willis Coefficienta 1

Table 1- Material properties and operating conditions

4, Results and Discussion

Results are presented in this section investigating the differences betwgmnfthmance of soft elastic and
poroelastic contacts under load.

4.1 Soft Elastic Contact Simulations

Figure 2 presents an example of the von Mises’ stress distribution in the soft elastic solid under load, for this result
the indentation depth was selectedas —100 um, the Young’s modulus as E = 1 MPaand Poisson’s ratio as
v = 0.4999. The von Mses’s stress indicates the magnitude of the stress tensor such that larger values are closer
to the yield point of the material. There is a concentration of higher streghescientre of the contacting region



than those toward the domain extents, demonstrating how stresstlaeetmtact causes the material to deform
such that there is no penetration of the bodis maximum von Mises’ stress was found to be 59.7 kPa and was
positioned in the centre of the contact (x = 0) on the opposite sides torttaeting interface (same for both
bodies). Moving away from the centre of the contact, stress is redweadi ta minimum value before increasing
and plateauing at the edge of the contact region, this analysis is useful iryidgitié distribution of stress in a
soft solid contact and further to compare with the poroelastic solutions preseSeattion 4.2.
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Figure 2— von Mises’ stress distribution in the soft elastic contact. E = 1 MPa,8§ = —100 pm.

4.2 Porodlastic Contact Simulations

Figures 3 and 4 respectivallyow examples of the von Mises’s stress and pressure distributions in the poroelastic
material under load. In these results the separation was sele@ee -a300 um and the poroelasti€oung’s
modulus ag€ = 1 MPa. Concentrations of solid stress are observed in the contacting aediavhich decay with
increasing distance from the centre of the contact, as was similaviyngor the soft elastic contact. Additionally,
Figure 3 shows an increased magnitude and rate decay of solid stredistaitbe from the centre of the contact
than that presented in FigureThe maximum von Mises’ stress reached in the poroelastic material was 81.4 kPa
which is significantly larger than the 59.7 kPa reached in theekstic material. This maximum was found to
occur at the same location in both materials.The maximum and minimessupes reached in the poroelastic
material were found to b8l6 kPa and -26.9 kR#ese were respectively located directly in the centre of the
contacting region (x=0, y=0) aradthe two locations where contact is onset. It is interesting to note thécsigni
negative pressures reached in the contact, these are generated as a result of theresmtgmosluced as the
bodies penetrate. Fluid is moved as the solid body rotates into and outohthet region, in order to maintain
such and interface under contact conditions fluid is moved towardrtga&ve pressure regions from the centre
of the contact where pressure is largest.
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Figure 3 - von Mies’ stress distribution in the poroelastic contact. E = 1 MPa,§ = —100 pm.
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Figure 4 - Pressure distribution in the poroelastic confast1 MPa,8§ = —100 pm.

Figure 5 furthers this analysis by presenting the poroelastic fluid peessd contact pressure along the length
of the contacting interface, also given is the contact pressure faothelastic solid. Under purely elastic
conditions a typical Hertzian type distribution is given for the contact presshieh is symmetrical in shape
about the centre of the contact. In the poroelastic case neither the contact pordhiidepnessure are symmetric
and overall the contact area (the region in which the contact pressuriii&pisslarger. This asymmetry relates
to non-linearity introduced by the rotating frame of reference iptheelastic model, as material is deformed
into and out of the contact the poroelastic material responds by moving fluid.

Authors have demonstrated that poroelastic materials are capable of very low éhigtito their biphasic nature
[7-11, 13-17], and the results presented in this section describe some Hanisms by which this is achieved.
However fluid flow is not permitted into or out of the material in this ehoander flooded conditions this could
be a possible means for even further improvements to the tribofdfg system. Experiments have identified
the benefit of such flows in cartilage which boost the lubrication pednce, recently this has been referred to
as tribological rehydration [9-11]. This model indicates the potential meawkiblj this is facilitated, in which
flow across the contacting interface would be permitted and lubricatiorytheed to govern fluid flow outside
the contact [18].
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Figure 5— Comparison of the poroelastic fluid pressure, poroelastic contact pressudidmbrstact pressure
along the interface between the rotating bodies.1 MPa,6 = —100 um.

4.3 Load Carrying Capacity

In order to demonstrate the difference between the load carrying capfesitfy elastic and poroelastic contacts
the separatio® was parametrically varied between 0 an@0-pum, the resulting values df, . atv = 0.5,
Felastic atv = 0 andFporoelastic @re presented in Figure 6. For this analyisisy oung’s modulus was chosen as

E = 1 MPa for all cases. Figure 6 indicates that the poroelastic contact carries lessidhd #udt elastic contact
atv = 0.5 for any given separation, or in other words to achieve the samedHheaabroelastic material must
deform more than the soft elastic material. This showsrthmtroelastic materials the presence of interstitial fluid
in the pores of the solid structure causes a greater resistance to lofmlitithim soft elastic solids with= 0.5.

It is also shown that the contribution of the solid and fluid phasé®ettotal load capacity of the poroelastic
contact are almost equal because the load given by the elastic materiakntlis half that of the poroelastic
case, which itself represents the exact same solid response with an addititritalitton due to fluid pressure.
Further to this, and given the results presented in Section 4.2, as the poroeltestial mmust deform more to
carry the same load the corresponding peak solid stress will be highahét found in the soft elastic material
with v = 0.5 under the same conditions. These results coincide with the findliregticles published exploring
the biphasic nature of cartilage, in which it is known that the material raftha more to carry the same load
as an elastic material with an equivalent stiffness [15-18
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Figure 6- Comparison of the load carrying capacity of soft elastic and poroelastiftiastion of the separation
between the contacting bodiés= 1 MPa.

4.4 Effect of Young’s Modulus

In this section the effect of varyingoung’s modulus on the load carrying capacity is investigated, this is
undertaken for the soft elastic materials witk 0, 0.5 and the poroelastic material over a rangg ef 0.5 — 5
MPa. A separation df = —100 um was chosen for this study. Figuréémonstrates that increasing the Young’s
modulus leads to a linear increase in the load for all cases, the rateeabimis larger for the soft elastic material
with v = 0.5 than for the poroelastic material, the difference between the two loads shalgo to increase with
E. This result indicates that the Young’s modulus scales the stiffness of the load-deformation response and that,
for any given separation, the soft elastic material with 0.5 carries more load than the poroelastic material
This further implies that for the poroelastic material to hold the same loagl saftlelastic material with= 0.5

at any given separatiothe Young’s modulus must take a larger value and thattherefore the solid structure would
therefore be stiffefThe Young’s modulus is also shown to not change the ratio of solid and fluid contributions to

the total load carrying capacity of the poroelastic contact, that is where the ekgstimhwithv = 0 gives half
the load capacity of the poroelastic material for all valuds aklditionally, it is seen that reducing the Poisson’s
ratio toward zero for a solid material has the effect of reducing the loadyaiven depth. This is an interesting
effect similar to that observed when modelling the presence of an intkfistidian the poroelastic material. This
demonstrates findings similar to articles investigating biphasic th&sry 8] in which an increase in load with
stiffness is exhibited and that this differs significantly to those predgtitate for soft elastic materials.
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Figure 7— Effect of Young’s modulus on the load carrying capacity of soft elastic and poroelastic materials in
contactd = —100 pm.

5. Conclusion

In this paper computational models for the contact of soft elastic and poroelastic btadieg under load were
developed and used to investigate differences in the load carrying capddltited between the two types of
material. The parameters used were chosen to represent human joints inrgpetegieboth types of material
have been previously employed to investigate biological tribologyreesas to simulate the interactions observed
in practice. For the models developed steady-state conditions were impdstt aotational velocities of the
bodies were considered in an Eulerian frame of reference, this led tstheption of steady compressing-sliding
at the contacting interface. Linear elasticity was used to describe the strudtdraébaviour of both materials.
The soft elastic material was assigned a Poisson’s ratio of almost v = 0.5 which is a well-established approach
for modelling biological materials under load. The poroelastic material was defimgBiot’s theories in which

the Poisson’s ratio was set to zero and all changes due to volumetric strain caused an equivaieyg in the
fluid pressure as described by Darcy’s law. The load carrying capacity of the two types of contact was
subsequently investigated, for the soft elastic material only solid stresstgzhload whereas in contrast in the
poroelastic material both solid stress and fluid pressure contributed to the Iganhozapacity.



Results presented showed that a more negative value of the separation betweetattimg bodies led to a
monotonic increase in the load, this applied to both cases investigatatievithft elastic material with= 0.5
capable of carrying more load than the poroelastic material at any given sepdtaisoiurther implied that to
carry the same load the poroelastic material must deform further thanttleéast€ material wittv = 0.5, this
potentially explains how poroelastic materials operate in biological systems bynhefanore than would be
expected due to the presence of a fluid phase, as is consistent with ipapstigating biphasic theory [15-18]
An increase in the Young’s modulus of both types of material was shown to scale the load carrying capacity at
any given separation, this demonstrated how the Young’s modulus changes the stiffness of the solid structure and
therefore the load which can be carried in the contact, which is again iwitmébiphasic theory [15-18]
Additionally, it was shown that the solid and fluid contributionkgal in the poroelastic material were equal and
independent of the separation and solid stiffness. Visualisation oflitiestsess and fluid pressure distributions
generated in the poroelastic material under load demonstrated that in ordertéomlaginterface between the
bodies fluid is moved from the centre of the contact toward the regions wietact is onset. It was also shown
that in a poroelastic material the solid stresses generated in the contact are large thasehesinksoft solid
contacts under the same condition, this is interesting to note given thecpreban interstitial fluid which carries
part of the poroelastic load.

Overall this paper highlights the differences between soft elastic materia|soeoelastic materials when they
come into contact while rotating under load. Due to the difference betweerohdws carried there is a
fundamental change to how the materials respond when deformedrdefgstic materials this could explain in
biological systems how large deformations can be observed for rebsdmadis which cannot be described
without the biphasic approach. Further development of this model wlilida the addition of lubrication at the
contacting interface and elastohydrodynamic effects to be incorporated intwradleéaptic model, this will allow

the analysis of dry contacts as explored here to be expanded to flood@tbos. Large deformations expected
in biological systems will require hyperelasticity to describe the structural ibeinaf the material, this would

further the applicable range of parameters over which the biphasic model ceateastuulate such phenomena
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