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Abstract: Ribosome inactivating proteins (RIPs) form a class of toxins that was identified over a
century ago. They continue to fascinate scientists and the public due to their very high activity and
long-term stability which might find useful applications in the therapeutic killing of unwanted cells
but can also be used in acts of terror. We will focus our review on the canonical plant-derived RIPs
which display ribosomal RNA N-glycosidase activity and irreversibly inhibit protein synthesis by
cleaving the 28S ribosomal RNA of the large 60S subunit of eukaryotic ribosomes. We will place
particular emphasis on therapeutic applications and the generation of immunotoxins by coupling
antibodies to RIPs in an attempt to target specific cells. Several generations of immunotoxins
have been developed and we will review their optimisation as well as their use and limitations in
pre-clinical and clinical trials. Finally, we endeavour to provide a perspective on potential future
developments for the therapeutic use of immunotoxins.
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1. Introduction

Ribosome inactivating proteins (RIPs) are a family of toxins that irreversibly inhibit eukaryotic
protein synthesis [1–3]. Although most commonly found in plants, RIPs have also been identified in
bacteria, fungi and even in two mosquito species [4]. RIPs form a heterogeneous group of proteins
with varied enzyme functionalities and several classifications have been proposed [1,5]. This review
will focus on the canonical plant-derived RIPs as they are the most characterised and commonly
used toxins in immunotoxin development. In particular, we will review how these RIPs have been
utilised in the potential treatment of cancer which currently holds the most promising applications for
immunotoxin therapy.

Purification of the RIP ricin and subsequent immunological experiments carried out by Paul
Ehrlich in the early 19th century led to the concept of the ‘magic bullet’ [2]. This is the idea of
an exceptionally toxic molecule that can specifically attack and kill target cells [6]. It became a
highly attractive concept for the treatment of cancer and was built upon in the 1970s when the
first immunotoxins—a protein synthesis inhibiting toxin conjugated to a targeting antibody—were
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generated [7]. As recombinant technology has started to dominate immunotoxin design incorporating
bacterial toxic enzymes, the use of plant RIPs has recently decreased; however, these toxins still
display a number of characteristics that make them attractive in immunotoxin technology. Moreover,
pre-clinical studies using plant RIPs are showing promise for their use in future therapy.

2. Ribosome Inactivating Proteins with Ribosomal RNA N-Glycosidase Activity

RIPs are found almost ubiquitously among plants and are thought to act as a form of immune
defence, as upregulation of expression can be seen following viral infection and contamination with
microorganisms [8] as well as abiotic stress [9]. RIPs are renowned active substances that have been
used in traditional Chinese medicine for centuries. Trichosanthin is one typical example that shows
promising outcomes in the killing of cancer cells, particularly hepatocellular carcinoma, both in vitro
and in vivo in a murine xenograft model [10]. There are currently almost 250 proteins that irreversibly
inactivate protein synthesis. They can be divided into several broad groups with a two-category
classification (type 1 and 2) prevailing (reviewed in [1,2,5]). Type 1 RIPs are monomeric proteins
of approximately 30 kDa with enzymatic activity, and type 2 RIPs are heterodimeric proteins that
contain an enzymatic domain of approximately 30 kDa (A-chain) linked via a disulphide bond to a
second lectin-like domain of approximately 35 kDa (B-chain) which is able to bind to cells and facilitate
internalisation [11].

Type 2 RIPs such as ricin are able to bind to sugars on the cell surface via their lectin-like B-chain.
Although this means that type 2 RIPs are generally more potent than type 1 RIPs, cell binding alone is
not sufficient to confer potency, as toxicity can vary greatly between type 2 RIPs—some RIPs being
considered non-toxic. For instance, Ricinus agglutinin (RCA) and ricin are both type 2 RIPs found
in castor beans, but ricin shows around 68-fold higher potency than RCA in cells, likely due to a
decreased ability of RCA to translocate into the cytoplasm [11]. Similarly, some type 2 RIPs isolated
from some Sambucus species, such as nigrins or ebulins, exhibit high ribosome-inactivating activities in
cell-free systems but lack toxicity both in vitro and in vivo. This is because these RIPs follow a different
intracellular trafficking route with the majority of molecules being either recycled to the cell surface
or degraded [12,13]. These examples highlight the importance of intracellular trafficking following
binding for mediating cytotoxicity. Studies using ricin show that, following binding, the toxin is taken
up by both clathrin-dependent and -independent endocytosis and a small percentage localises with
the trans-Golgi network, followed by retrograde transport to the ER [14]. Once in the lumen of the
ER, it is thought that the A-chain is cleaved from the B-chain by the protein disulphide isomerase
and is then processed by the ER as a misfolded protein, meaning that it is exported to the cytosol for
degradation [15,16]. Upon entering the cytosol, the A-chain is refolded by the sequential utilisation of
the Hsc70 and Hsp90 chaperone systems and the correctly folded native A-chain is then able to carry
out its catalytic activity at the ribosomes [17].

Type 1 RIPs such as saporin and gelonin lack the cell-binding B-chain of type 2 RIPs and are
therefore much less cytotoxic than most type 2 RIPs. It is thought that uptake generally occurs through
a passive manner, such as by fluid-phase pinocytosis [18]. It has also been proposed that saporin can
enter cells in a receptor-dependent manner, via binding to α2-macroglobulin receptors [19]. However,
similar sensitivities to saporin have been observed between α2-macroglobulin receptor expressing
and non-expressing cell lines which would indicate that saporin internalisation does not occur via
this receptor [20]. The mechanism of endocytosis of type 1 RIPs remains unclear, but studies with
saporin appear to show an internalisation mechanism that is independent of the Golgi apparatus,
suggesting that it follows a distinct pathway to ricin [21]. Nevertheless, upon reaching the cytosol,
many type 1 RIPs display a highly active enzymatic action, and artificial delivery into the cell or
attachment to a targeting ligand leads to cytotoxicity with high potency [11,22].

Types 1 and 2 RIPs display ribosomal RNA N-glycosidase activity (EC 3.2.2.22) and cleave the
28S rRNA by removal of a single adenine residue (A4324 in rat rRNA) from a GAGA sequence at the
universally conserved α-sarcin/ricin loop [1,2,5]. This further prevents the recruitment of eukaryotic
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elongation translation factors eEF1/2 to the 60S ribosomal subunit and translocation of the ribosome
and protein synthesis [23–25] thus causing a complete and irreversible block of protein synthesis [26].
It was initially thought that cells underwent apoptosis after exposure to RIPs solely due to the ribotoxic
stress response after inhibition of protein synthesis. However, more recent data suggests that RIPs
may also exhibit other activities independently of their targeting of protein synthesis. For instance,
it has been shown that RIPs show adenine glycosidase activity in DNA, RNA and poly (A) [27].
Additionally, ricin has been shown to cause early nuclear DNA damage independently of protein
synthesis inhibition, and saporin S6 was shown to induce apoptosis through mitochondrial cascade
prior to the onset of protein synthesis inhibition [28,29]. It has therefore been proposed that RIPs may
induce apoptosis by a number of different mechanisms, of which inhibition of protein synthesis plays
an important but not always essential role [30].

3. The Development of RIP-Based Immunotoxins

A common feature of many RIPs is their extraordinarily high level of potency. As with other
protein synthesis inhibiting toxins, such as diphtheria toxin, it is thought that only a few molecules are
needed to enter the cytosol of a cell for cell death to occur. This potency makes them highly attractive
as a possible cancer therapeutic. However, this is a double-edged sword as toxicity is achieved in both
healthy and malignant cells, meaning that these toxins must be efficiently targeted to cancer cells to
convey specific anticancer activity. The main methods by which toxins are targeted to cancer cells are
either by conjugation to an antibody to make an immunotoxin, or to a targeting ligand such as a growth
factor or cytokine [31]. Immunotoxins are becoming the predominant choice as they allow for greater
selectivity and flexibility when choosing a target. Selecting an appropriate target is of high importance
when generating a targeted toxin, as it has a large impact on specificity and potency. The chosen target
must be highly expressed on the surface of the cancer cell, but have relatively restricted expression
in healthy tissue, as this limits on-target off-tumour toxicity [32]. For immunotoxins, this generally
means targeting to tumour-associated antigens, which are highly expressed on the cell surface as a
result of transformation [33]. Since the generation of the first immunotoxins in the 1970s, more than
450 immunotoxins have been used considering RIPs alone [31]. The most common plant-based RIPs
used in immunotoxin development are the chain A of the type 2 RIP ricin as well as type 1 RIPs saporin
and gelonin which all exhibit high potency and stability. It has also been recently suggested to use
type 2 RIPs with low in vitro and in vivo toxicity but potent ribosomal RNA N-glycosidase activities
in cell-free systems, such as the chains A of ebulins and nigrins from the Sambucus species, to generate
alternative immunotoxins with very high cytotoxicity [12,13].

As antibody therapy and recombinant technology has advanced, so too has immunotoxin design,
progressing from simple chemical conjugation of a native toxin to a whole antibody, to the recombinant
engineering of modified toxin domains fused with humanised antibody fragments. The progression of
development can be broadly split into three generations.

3.1. First-Generation Immunotoxins

The first-generation immunotoxins were developed in the early 1970s and were usually made
using a full toxin chemically linked to a whole monoclonal antibody (Figure 1a).

Initial studies with first-generation immunotoxins were primarily carried out with the diphtheria
toxin: a bacterial toxin that is analogous to type 2 RIPs in that it has two distinct domains for targeting
and enzymatic action to inhibit protein synthesis [7,34,35]. Although these often gave promising
results in vitro, a number of issues were encountered upon testing in vivo. The major drawback of
these immunotoxins was the presence of the targeting domain, which meant that the protein was
able to bind to and enter a wide range of different cells, irrespective of target antigen expression.
This caused a high level of non-specific toxicity and intolerable side effects. At around this time
the type 2 RIPs ricin and abrin were gaining attention as anti-cancer agents as they were found to
more efficiently inhibit protein synthesis in certain tumour models than in healthy cells. Additionally,
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these unmodified toxins were shown to have anti-tumour properties in Ehrlich ascites tumour mouse
models [36]. However, non-specific toxicity was still an issue with only very low doses needed to cause
lethality [37]. Re-targeting of RIPs to cancer cells was therefore necessary, and they were increasingly
used in the design of second-generation immunotoxins.
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Figure 1. Diagram depicting the different generations of immunotoxins. (a) First-generation
immunotoxins. Purified toxins were chemically linked to a targeting antibody; (b) Second-generation
immunotoxins. Purified type 1 ribosome inactivating proteins (RIPs) or type 2 RIPs with B-chain
either blocked or removed were chemically linked to a targeting antibody; (c) Third-generation
immunotoxins. Recombinant purified toxins were fused to antibody targeting fragments; (d) Future
generation immunotoxins. Toxins are modified to remove immunogenic epitopes and exhibit dual
targeting abilities to improve specificity. They can be co-administered with endosome disruptive
agents, such as pore-forming agents, endosome disruptive peptides, or photosensitisers, to increase
intracellular delivery and potency.

Despite a large number of issues with these original toxins, impressive in vitro data displayed the
potential of immunotoxins for cancer treatment and a large amount of effort was applied to increase
effectiveness in vivo.

3.2. Second-Generation Immunotoxins

A greater understanding of toxin structure and function led to the second generation of
immunotoxins in the mid-1970s. These usually consisted of a toxin lacking a cell-binding domain,
which greatly reduced non-specific internalisation, allowing for the administration of higher doses and
a greater therapeutic window (Figure 1b). The use of RIPs was, and still is, popular for this generation
of immunotoxins as purification techniques are well established and they are highly stable proteins.
Ricin-based immunotoxins of the second generation were produced in 1976 and consisted of the castor
bean ricin A-chain chemically linked to cancer-targeting antibodies [38]. By the mid-1980s, a number
of ricin A-chain conjugates had been developed which demonstrated efficacy against various cancer
models in vitro including leukaemia and breast cancer, as well as showing efficacy in vivo [39].

In these second-generation toxins, the A-chain was isolated by purification of the complete
protein followed by removal of the B-chain by reduction of the disulphide bond that joins the two
domains. This made purification of utmost importance as, due to the high potency of native ricin, any
residual full toxin would cause unwanted side effects. A second issue with the A-chain is that it is
glycosylated, meaning that it can bind to and be internalised by cells expressing appropriate mannose
receptors, leading to reduced stability in blood circulation and residual non-specific toxicity [40].
The A-chain therefore needed to be deglycosylated before use in immunotoxins, further complicating
production. An alternative method was to use the entire ricin toxin with the B-chain blocked by
chemical modification or the addition of lactose (Figure 1b). These conjugates often showed higher
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in vitro potency than A-chain only conjugates, and it was postulated that this was due to the B-chain
facilitating entry into the cell cytosol [41], or unblocking of the B-chain upon cell binding, allowing
for increased cellular interaction with galactose binding sites [42]. However, these blocked-ricin
immunotoxins also demonstrated higher non-specific toxicity than their “A-chain only” counterparts.

The first type 1 RIP-based immunotoxin was generated in 1981 and consisted of gelonin conjugated
to an anti-Thy1.1 antibody [43]. This showed high cytotoxicity in vitro in lymphoma cell lines and
significantly prolonged the life of mice bearing lymphoma allografts. Pokeweed antiviral protein (PAP),
another type 1 RIP, was also used in immunotoxin generation and showed similar potency against
Thy1.1 positive cells when directly compared to a ricin A-chain immunotoxin [44]. Type 1 RIPs have
an advantage over type 2 RIPs in that they natively lack a cell-binding domain, so further modification
of the toxin is not necessary before antibody conjugation. Since then, saporin has become the more
popular type 1 RIP for immunotoxin development due to its high thermodynamic stability [2].

The second generation of immunotoxins also saw the use of recombinant technology for toxin
production and the ricin A-chain was expressed in Escherichia coli in 1987 [45]. Despite issues expressing
plant-based toxins, recombinant expression holds a number of advantages over traditional purification
methods. Firstly, it is a much more straightforward process and does not require complex and lengthy
procedures to eliminate the residual B-chain. Secondly it is much safer, as no highly potent full toxin
needs to be handled. Finally, prokaryotic expression means that the protein is not glycosylated, helping
to prolong toxin stability and reduce toxicity in vivo. A number of type 1 RIPs, including saporin and
gelonin, have also been generated recombinantly [46,47].

More promising in vivo data obtained from second-generation immunotoxins led to the first
clinical trial in 1986 [48]. This trial used the ricin A-chain linked to a pan-T-lymphocyte antibody
(T101) in the treatment of two leukaemia patients, and showed promising results with large drops in
target cell numbers. Follow-up phase I and II trials also demonstrated efficacy, but revealed a number
of dose-limiting side effects including a drop in serum albumin levels, weight gain, and oedema,
caused by off-target toxicity of the immunotoxin [49]. The first clinical trial with a type 1 RIP-based
immunotoxin was carried out in 1992 using a saporin-anti-CD30 conjugate for the treatment of
Hodgkin’s disease. It successfully led to a 50 to 75% reduction of the tumour mass in 3 out of 4 patients,
but also caused side effects such as oedema [50]. Similar dose-limiting side effects were seen in a
number of other immunotoxin clinical trials [51,52] and this was later attributed to vascular leak
syndrome (VLS) [53]. VLS occurs when non-specific uptake of the toxin into endothelial cells causes
cell death and leakage of fluid from the circulatory system into the interstitial space, leading to oedema,
weight gain, hypoalbuminemia, pulmonary infiltrates, and hypotension [54].

As well as dose-limiting toxicity, further problems persisted in second-generation immunotoxins.
As with the first generation, second-generation immunotoxins were chemically linked to targeting
antibodies through a disulphide bond so that, upon entry into endosomes, an increase in reducing
conditions breaks the bond and frees the toxin. However, premature nucleophilic attack of the
disulphide bond, particularly in the anaerobic reducing environment of tumours, caused low stability
in vivo [55]. Inefficient chemical linking also led to heterogeneous compositions of bound and unbound
components which could interfere with antigen binding [56]. As well as instability and non-specific
binding, these conjugates were also very large (180–200 kDa) which affected tumour penetration [57].
This is why the most promising results were seen in haematological cancers rather than solid tumours.
Another factor affecting tumour penetration was the short half-life, which was around 30 min in native
ricin A-chain immunotoxins. This issue was addressed by de-glycosylation of the toxin which helped
to increase circulating half-life to 4–6 h [57]. Longer treatment periods and higher concentrations
unveiled a further problem with immunotoxins, which is immunogenicity [58]. Both the antibody
and toxin were obtained from non-human sources—mice and plants respectively—meaning that
they contained many immunogenic epitopes. Repeated exposure would therefore elicit an immune
response, negating the anti-tumour effect of the immunotoxin.
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The second generation of immunotoxins showed large improvements over the first generation,
allowing higher tolerance in animals and the first clinical trials. However, many problems persisted
that limited the therapeutic benefit of this treatment. Advances in recombinant technology allowed for
greater control over design and production of immunotoxins, so that a number of these issues could
be addressed.

3.3. Third-Generation Immunotoxins

Third-generation immunotoxins utilise advanced genetic engineering techniques to generate
fully recombinant toxins fused to the targeting domain of a monoclonal antibody [59] (Figure 1c).
These are commonly known as recombinant immunotoxins (RITs). Most RITs are generated from
bacterial toxins such as diphtheria toxin or pseudomonas exotoxin A, as these are easier to express
in bacteria. A RIT consisting of the enzymatic and translocation domains of pseudomonas exotoxin
A fused to the heavy and light chain portions of a monoclonal antibody targeting B3 was reported
in 1995 [60]. This RIT demonstrated selective cytotoxicity in vitro and in vivo that was several-fold
higher than an equivalent, chemically linked immunotoxin. The main advantage of this approach is
that a homogenous population is produced which gives increased stability and reduced interference of
antigen binding. This approach also allows the incorporation of more stable linkers that are cleavable
only by intracellular enzymes. For instance, furin-sensitive linker sequences between the targeting
and enzymatic domains have shown significant improvements in toxicity of pseudomonas exotoxin A
immunotoxins [61].

The use of antibody fragments allowed the generation of immunotoxins of much smaller sizes.
The smallest antibody fragments that retain targeting ability consist of one variable heavy chain and
one variable light chain (scFv) and allow for the generation of immunotoxins as small as 60 kDa [56].
Although these showed increased tumour penetration, they were rapidly cleared from the blood
(circulating half-life of approximately 20 min) leading to decreased therapeutic efficacy. Another issue
with smaller RITs is that they are cleared by renal filtration and can accumulate in the kidney, leading to
renal toxicity [62]. It is therefore thought that RITs should be over 65 kDa in size as this is the cut-off
limit for macromolecules cleared by renal filtration [63]. Thus, a balance needs to be found between
decreasing size to increase tumour penetration, without affecting plasma half-life. Another issue with
the use of a single scFv antibody portion is instability, as this lacks the stabilising disulphide bond
found in the absent portion [64]. As a result of this, the heavy and light chains can dissociate and bind
to other dissociated chains leading to aggregation and loss of activity. However, further engineering
introduced a disulphide bond into the Fv domain which prevented dissociation without affecting
binding affinity [65]. Another alternative is the use of nanobodies, monomeric and variable heavy
chain antibodies that occur naturally in the Camelidae family [66]. These offer a number of advantages
over conventional antibodies, including their small size, low immunogenicity, high stability, and
ease of production. They have been recently used successfully in the development of a number of
immunotoxins [67–69].

Bacterial toxins are much more common in fusion immunotoxins as they are easier to express in
bacterial systems. Type 1 RIP-based fusion proteins have been successfully produced in bacteria [70,71],
but are less common as they often suffer from low stability and activity due to incorrect folding.
However, it has been demonstrated that the yeast Pichia pastoris may be used for RIT generation [72],
and a recent study has shown that saporin-antibody fusions generated using this system demonstrate
comparable in vitro potency to bacterial-based immunotoxins [73]. Yeast may be a more suitable
system for RIT production as they are eukaryotic and therefore capable of the complex folding and
post-translational modifications necessary to generate functional RITs. A drawback is that they are
eukaryotic and therefore susceptible to the cytotoxic mechanism of the toxin. However, certain strains
of Pichia pastoris (e.g., GS115) have displayed a high level of resistance to toxic action which is attributed
to the rapid secretion of the protein into the culture medium [72].
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Due to the issues with generating recombinant RIP-based immunotoxins, the vast majority of
clinical trials have been, or are being, carried out with bacterial-based immunotoxins, particularly
pseudomonas exotoxin A. Indeed, most recent trials using ricin are based on deglycosylated A-chain or
blocked-ricin second-generation immunotoxins [31,74–76]. Two earlier phase I trials using recombinant
ricin were carried out in breast cancer patients, but significant off-target toxicity was still observed
in both variants [77,78]. Phase I clinical trials have also been carried out using the recombinantly
generated type 1 RIPs gelonin and bouganin. VB6-845 is a recombinant fusion protein consisting of
modified bouganin and an anti-epithelial cell adhesion molecule (epCAM) Fab moiety which was
tested in a phase I trial for treating epithelial tumours (Clinicaltrials.gov identifier: NCT00481936).
However, results from this trial remain unpublished. Recombinant gelonin conjugated to a humanised
anti-CD33 antibody (M195) has also been tested in a phase I trial for the treatment of refractory myeloid
leukaemia [79]. Although low response rates were reported, this conjugate nevertheless exhibited
promising characteristics when compared to bacterial immunotoxins, including low immunogenicity
and an absence of VLS as a side effect.

4. Current Limitations and Future Generations of Immunotoxins

Advances in antibody therapy and recombinant technology have sparked a resurgence in interest
for targeted toxins as a possible therapeutic approach, and a number of promising results have
been obtained for the treatment of haematological malignancies. However, issues still need to be
addressed to make these therapies more effective, particularly in solid tumours, including increasing
bioavailability and tumour penetration, reducing immunogenicity and reducing off-target toxicity.
Indeed, due to these issues, only one targeted toxin, denileukin diftitox, has FDA approval for cancer
therapy in humans. Denileukin diftitox (also known as Ontak) is a targeted toxin made up of the
enzymatic and translocation domains of Diphtheria toxin recombinantly fused to IL-2 used in the
treatment of lymphoma [80]. The most successful application of a type 1 RIP-based targeted toxin
is the use of recombinant saporin linked to Substance P for the treatment of bone cancer pain in old
dogs [81,82]. The FDA has already approved Minor Use/Minor Species (MUMS) designation for
this drug providing extended market exclusivity to treat the >10,000 annual cases of canine bone
cancer-related pain.

Numerous groups are working on the inherent problems, and incorporation of their findings
into immunotoxin design may drastically improve the efficacy of future generations. For example,
an antibody can target the toxins only to a specific subset of cells, meaning that any heterogeneity
within the tumour with regards to antigen expression will lead to resistant cancer cells. To overcome
this, immunotoxins that can simultaneously target different antigens are being tested (Figure 1d).
Combotox is the co-administration of ricin A-chain-based immunotoxins such as those that target
CD19 and CD22 to treat B-lineage lymphoblastic leukaemia. This treatment has shown efficacy
in phase I clinical trials [74]. A recent study demonstrated that the use of antibodies targeting the
Neuron-glia 2 (NG2) or Ganglioside D3 (GD3) antigens can greatly increase the efficacy of saporin
immunotoxins in in vitro models of glioblastoma [83]. NG2 and GD3 are respectively associated with
two distinct cell sub-populations, fast dividing NG2 positive cells and GD3 positive cells that are
involved in survival and migration. Targeting known sub-populations within a cancer will help to
improve response rates and decrease relapse. As well as the co-administration of immunotoxins,
the use of bi-specific antibodies allows one molecule to target multiple antigens. For instance, tandem
scFv segments have been successfully used to target CD19 and CD22 in both pseudomonas exotoxin A
and diphtheria toxin immunotoxins. These fusions have shown increased efficacy in B-cell lymphoma
mice models when compared with immunotoxins targeting just one antigen [84,85]. As well as helping
to overcome tumour-heterogeneity, dual-antigen targeting may help to decrease on-target, off-tumour
toxicity caused by low-level antigen expression on healthy cells. Antigens found exclusively on cancer
cells are rare which severely limits targeting choices [63]. Indeed, unexpected, low-level expression of
a target antigen in certain tissues has limited the use of a number of immunotoxins [32]. The selection
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of two TAAs expressed on a cancer cell surface will help to increase specific tumour cell binding and
reduce internalisation into healthy cells.

Off-target toxicity due to non-specific uptake of toxin leads to dose-limiting side effects such as
VLS, hepatotoxicity, renal toxicity, and cardiac dysfunction. As mentioned previously, VLS was
observed as a side effect in the first clinical trials and has continued to affect all immunotoxin treatments
tested to date. It is particularly severe in ricin-based therapies, even resulting in fatalities in some
trials [63,86]. One study identified short amino-acid motifs (x)-D-(y) (where x is L, I, G or V and y is V,
L or S) which may bind to endothelial cells resulting in internalisation of the toxin and cell death [87].
Modification of these motifs in ricin led to the generation of a toxin with reduced ability to cause
vascular leak syndrome in mice [88]. Pre-treatment of patients with steroids to reduce inflammatory
responses has also been shown to help combat VLS [89].

Improved cytosolic delivery of the toxin would also help to reduce side effects, as lower doses
would need to be administered to observe the same therapeutic effect. Additionally, more efficient
cytosolic entry may give increased efficacy in solid tumours where only a small number of molecules
reach target cells. It is thought that only a small percentage of internalised toxin is able to evade
lysosomal degradation and enter the cytosol. Indeed, a study using targeted gelonin found a
near-universal requirement of 5 million molecules needed to be internalised for cell killing, despite
different routes of binding and internalisation [90]. Considering the high potency of RIPs with in vitro
turnover of 28S rRNA depurination of 700–800 molecules/min, this strongly suggests that escape from
the endolysosomal compartment is the rate-limiting step that determines efficacy. Various methods are
in development to improve endosome escape, including the co-administration of endosome disrupting
agents (Figure 1d). For instance, one study found that co-administration of targeted gelonin with
listeriolysin targeted to the same antigen led to a large increase in efficacy and was well tolerated
in vivo [91]. Lysteriolysin is a cytolysin protein produced by the bacterium Listeria monocytogenes which
can lyse endosomes in a pH-dependent manner. Co-administration of plant-based saponins, glycosides
that can form pores in membranes, has also been found to increase potency whilst maintaining target
specificity of targeted toxins [92]. A range of endosome escape peptides are available which are able to
disrupt membranes in a pH-dependent manner. For instance, the GALA peptide is a short, 30-residue,
synthetic peptide with a repeating Glu-Ala-Leu-Ala sequence [93]. GALA mimics the function of
viral fusion protein segments that mediate the escape of viral genes from endosomes into the cytosol.
Endosomal acidification causes a rearrangement of the peptide structure from random to helical, giving
it a high affinity for neutral or negatively charged membranes, leading to the formation of pores and
destabilisation of the endosomal membrane [93]. An alternative method is the use of photochemical
internalisation which utilises an endocytic vesicle-localising photosensitiser that generates reactive
oxygen species upon exposure to light, triggering vesicle rupture [94]. Preferential retention of the
sensitiser in tumour cells and focused light application using a laser adds a degree of selectivity to this
technique which, combined with specific targeting by the toxin, can reduce side effects and increase the
therapeutic window [95]. Photochemical internalisation has been used successfully in vivo to enhance
the efficacy of a saporin-based immunotoxin that targets the cancer stem cell marker CD133 [96].

Development of humanised antibodies by combining the recognition domain with human
framework regions has largely stopped immune reactions to the targeting moiety of immunotoxins [97],
but problems persist with the toxins themselves. Methods employed to reduce immunogenicity of the
toxins include chemical modification and removal of immunogenic epitopes. Chemical modification
with polyethene glycol (PEGylation) is a common technique used to increase the plasma half-life
of therapeutic proteins [98]. Moreover, site-specific PEGylation of an IL-2 targeting pseudomonas
exotoxin A based immunotoxin was found to dramatically reduce immunogenicity in mice, and
was thought to act by reducing protein degradation in antigen-presenting cells as well as shielding
some epitopes following degradation [99]. Immunogenicity of toxins can be greatly reduced by the
removal of immunogenic epitopes. In one study, the antigenic domains of gelonin were successfully
mapped and deleted to create smaller, modified toxins that retained enzymatic activity but exhibited
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reduced antigenicity in vitro [100]. T-cell recognition epitopes were identified and mutated in the
type I RIP bouganin to create an epitope-depleted mutant de-bouganin [101]. An immunotoxin
based on de-bouganin has been shown to be well tolerated in vivo with minimal side effects and low
immunogenicity [102]. B-cell epitopes have been successfully removed from pseudomonas exotoxin A
by isolating antibodies from patients with immune resistance to this toxin and constructing a phage
display library [103]. Alanine scanning mutagenesis was then used to locate the epitopes and an
alternative toxin was generated (LR-O10) which showed low reactivity with human antisera but
maintained high cytotoxic and anti-tumour activity. Another possibility is to utilise the wide range of
plant-based RIPs that are available. These RIPs are often immunogenically distinct and so development
of a treatment regimen that utilises a combination of immunotoxins containing different RIPs may
help to prolong the number of treatment rounds whilst avoiding an immune response.

An additional way to improve the success of immunotoxin therapy may be to alter how these
proteins are utilised. The majority of trials for solid cancers are carried out in patients with advanced
disease and high tumour burden. A more effective strategy may be the use of immunotoxins following
traditional chemotherapy to clear up minimal residual disease. This is the small number of cells
that are often resistant to chemotherapy and remain circulating in the body with the ability to cause
relapse [104]. This would be a more suitable target for immunotoxins as issues with tumour penetration
would be bypassed. Immunotoxins have been thought to be particularly applicable to bladder cancer as
this organ could be thought of as an “external” environment that would restrict the immune reactions
and side effects caused by immunotoxins [105,106]. Moreover, it was recently reported that a complete
and at least a 3 year long-lasting elimination of bladder cancer was observed following treatment with
an immunotoxin prepared with the ricin A-chain [107].

5. Perspectives

A number of advances have been made in immunotoxin design which have taken them
closer to clinical use as a therapy for a variety of cancers. RIPs have been instrumental in this
advancement, from the original concept of the ‘magic bullet’ in the late 1800s to modern-day clinical
trials. Recombinant technology has seen a rise in the use of bacterial toxins over RIPs. More recently,
human cytotoxic enzymes such as granzyme B and ribonuclease have also been utilised in what has
been called the fourth generation of immunotoxins [108–110]. However, numerous groups are still
utilising plant-based RIPs to tackle current problems with these treatments including production [73],
cell delivery [91,92] and immunogenicity [100,101]. These toxins are therefore useful tools for
immunotoxin design and may yet be seen in future clinical trials.
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