

This is a repository copy of A review of the principles of turbidity measurement.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/123243/

Version: Supplemental Material

## Article:

Kitchener, B.G.B., Wainwright, J. and Parsons, A.J. (2017) A review of the principles of turbidity measurement. Progress in Physical Geography, 41 (5). pp. 620-642. ISSN 0309-1333

https://doi.org/10.1177/0309133317726540

## Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

## Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ **Table 1.** A selection of turbidity literature references illustrating the ambiguity associated with theassignment of scattering-regime nomenclature to the actual scattering-angle.

| Reference                      | Scattering-regime and scattering-angle referenced in the text. |                   |                   |  |
|--------------------------------|----------------------------------------------------------------|-------------------|-------------------|--|
|                                | Transmitted                                                    | Back-scattered    | Forward-scattered |  |
| Agrawal et al. (2008)          | Implied 0°                                                     |                   | <10°              |  |
| Bilro et al. (2010)            | 180°                                                           |                   |                   |  |
| Campbell et al. (2005)         |                                                                | 180°              |                   |  |
| Fugate & Friedrichs (2002)     |                                                                | Angle not defined |                   |  |
| Green & Boon (1993)            |                                                                | >150°             |                   |  |
| Guillén et al. (2000)          |                                                                | Angle not defined |                   |  |
| Gumprecht & Sliepcevich (1953) | Angle not defined                                              |                   |                   |  |
| Jansson (1992)                 | Implied 0°                                                     |                   | 12°               |  |
| Morais et al. (2006)           | Angle not defined                                              |                   |                   |  |
| Pavanelli & Bigi (2005)        |                                                                | 90°               |                   |  |
| Sadar (2004, Fig.4, p.8)       | 180°                                                           |                   |                   |  |
| Sadar (2004, Fig.5, p.9)       | Implied 0°                                                     | 140°              |                   |  |
| Xu (1997)                      |                                                                | Angle not defined |                   |  |
| Yang & Hogg (1979)             | Angle not defined                                              |                   |                   |  |

| Units of Measu                                                                                                                                                       | rement for Turbidity Senso                                   | ors                                                               |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                      | Wavelength of Light Source                                   |                                                                   |  |  |  |  |
|                                                                                                                                                                      | White or broadband:<br>peak spectral output of<br>400-680 nm | Infrared, monochromatic:<br>typical output in 780-900<br>nm range |  |  |  |  |
| Single Illumination Beam Light Source                                                                                                                                |                                                              |                                                                   |  |  |  |  |
| 90° to incident beam; single detector                                                                                                                                | Nephelometric Turbidity<br>Unit (NTU) <sup>a</sup>           | Formazin Nephelometric<br>Unit (FNU) <sup>b</sup>                 |  |  |  |  |
| 90° and other angles; multiple detectors;<br>instrument algorithms use combination<br>of detector readings and ratio<br>techniques                                   | Nephelometric Turbidity<br>Ratio Unit (NTRU)                 | Formazin Nephelometric<br>Ratio Unit (FNRU)                       |  |  |  |  |
| 30°±15°to incident beam (backscatter)                                                                                                                                | Backscatter Unit (BU)                                        | Formazin Backscatter Unit<br>(FBU)                                |  |  |  |  |
| 30°±15° and other angles; multiple<br>detectors; instrument algorithms use<br>combination of detector readings and<br>ratio techniques                               | Backscatter Ratio Unit<br>(BRU)                              | Formazin Backscatter Ratio<br>Unit (FBRU)                         |  |  |  |  |
| 0° to incident beam (attenuation)                                                                                                                                    | Attenuation Unit (AU)                                        | Formazin Attenuation Unit<br>(FAU)                                |  |  |  |  |
| Multiple Illumination Beam Light Source                                                                                                                              |                                                              |                                                                   |  |  |  |  |
| 90° and possibly other angles; multiple<br>detectors; instrument algorithms use<br>combination of detector readings                                                  | Nephelometric Turbidity<br>Multibeam Unit (NTMU)             | Formazin Nephelometric<br>Multibeam Unit (FNMU)                   |  |  |  |  |
| <sup>a</sup> <b>NTU:</b> limited to instruments that comply<br><sup>b</sup> <b>FNU:</b> pertains to instruments that comp<br>This includes many of the most commonly | ly with ISO 7027, the Europe                                 |                                                                   |  |  |  |  |

**Table 2.** Units of Measurement for Turbidity Sensors, after USGS website (USGS 2013).

**Table 3.** Summary of turbidity test methods after Ziegler (2003), where NTU are nephelometricturbidity units, FTU are formazin turbidity units, andFAU are formazin attenuation units.

| Characteristic                                  | USEPA<br>Method180.1<br>(non-ratio mode) | ISO Method 7027<br>(diffuse radiation) | ISO Method 7027<br>(attenuated<br>radiation)    | GLI Method 2                                   |
|-------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------|------------------------------------------------|
| Use of data                                     | Drinking water                           | Drinking water                         | Wastewater                                      | Drinking water                                 |
| Range of method                                 | 0-40 NTU (dilution permitted)            | 0-40 FTU (dilution permitted)          | 40-4000 FAU                                     | 0-40 NTU (dilution permitted)                  |
| Light source                                    | Tungsten lamp                            | Photodiode                             | Photodiode                                      | Photodiode                                     |
| Wavelength                                      | 400-600 nm                               | 860 nm                                 | 860 nm                                          | 860 nm                                         |
| Spectral bandwidth                              | Not specified                            | 60 nm                                  | 60 nm                                           | 60 nm                                          |
| Detector<br>orientation<br>measurement<br>angle | 90° ± 30°                                | 90° ± 2.5°                             | 90° ± 2.5°                                      | Two sources, two<br>detectors at 90° ±<br>2.5° |
| Aperture angle                                  | Not specified                            | 20°-30°                                | 20°-30°                                         | Unknown                                        |
| Path length                                     | Less than 0.1 m                          | Less than 0.1 m                        | Less than 0.1 m                                 | Less than 0.1 m                                |
| Primary standards                               | Formazin polymer                         | Formazin polymer                       | Formazin polymer                                | Formazin polymer                               |
| Secondary<br>standards                          | Polymer<br>microspheres                  | Polymer<br>microspheres                | Polymer<br>microspheres,<br>cubes, or filaments | Polymer<br>microspheres                        |

 Table 4. Stability of formazin standards, after Buzoianu (2000).

| Formazin standard concentration | Stability duration              |
|---------------------------------|---------------------------------|
| > 400 NTU                       | 1 year                          |
| 20 – 400 NTU                    | 1 month                         |
| 2 – 20 NTU                      | 12 – 24 hours                   |
| < 2 NTU                         | <= 1 hour                       |
| <= 1 NTU                        | Difficult to prepare accurately |