
This is a repository copy of Future Energy Efficient Data Centers With Disaggregated
Servers.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/123105/

Version: Accepted Version

Article:

Mohammad Ali, HM, El-Gorashi, TEH, Lawey, AQ et al. (1 more author) (2017) Future
Energy Efficient Data Centers With Disaggregated Servers. Journal of Lightwave
Technology, 35 (24). pp. 5361-5380. ISSN 0733-8724

https://doi.org/10.1109/JLT.2017.2767574

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

Abstract—The popularity of the Internet and the demand for

24/7 services uptime is driving system performance and
reliability requirements to levels that today’s data centers can no
longer support. This article examines the traditional monolithic
conventional server (CS) design and compares it to a new design
paradigm: the disaggregated server (DS) data center design. The
DS design arranges data centers resources in physical pools, such
as processing, memory, and IO module pools, rather than
packing each subset of such resources into a single server box. In
this work, we study energy efficient resource provisioning and
virtual machine (VM) allocation in DS-based data centers
compared to CS-based data centers. First, we present our new
design for the photonic DS-based data center architecture,
supplemented with a complete description of the architectural
components. Second, we develop a mixed integer linear
programming (MILP) model to optimize VM allocation for the
DS-based data center, including the data center communication
fabric power consumption. Our results indicate that, in DS data
centers, the optimum allocation of pooled resources and their
communication power yields up to 42% average savings in total
power consumption when compared with the CS approach. Due
to the MILP high computational complexity, we developed an
energy efficient resource provisioning heuristic for DS with
communication fabric (EERP-DSCF), based on the MILP model
insights, with comparable power efficiency to the MILP model.
With EERP-DSCF, we can extend the number of served VMs
where the MILP model scalability for a large number of VMs is
challenging. Furthermore, we assess the energy efficiency of the
DS design under stringent conditions by increasing the CPU to
memory traffic and by including high non-communication power
consumption to determine the conditions at which the DS and CS
designs become comparable in power consumption. Finally, we
present a complete analysis of the communication patterns in our
new DS design and some recommendations for design and
implementation challenges.

Index Terms— Disaggregated Server, Data Center, Silicon

Photonics, Energy Efficiency, Resource Provisioning, Data
Center Communication Fabric.

I. INTRODUCTION

IRTUALIZED data centers provide key efficient services
to clients with variable requirements. However, today’s

Manuscript received January 2017; revised …... This work was supported

by the Engineering and Physical Sciences Research Council (EPSRC),
INTERNET (EP/H040536/1), and STAR (EP/K016873/1). The first author
would like to support the Higher Committee for Education Development in
Iraq (HCED Iraq) for funding her PhD. All data is provided in full in the
results section of this paper.

The authors are from the School of Electronic and Electrical Engineering,
University of Leeds, Leeds LS2 9JT, U.K.

data center architectures are rigid in that they are composed of
“server boxes”, where each box has a predetermined ratio of
CPU to memory to I/O that is unchangeable [1]. The single
box server adds barriers and difficulties, including inefficient
resource utilization, prolonged provisioning, and difficulties in
big data management, as well as a high risk of blocking when
deploying virtual data center resource instances. To
understand the usefulness of the DS concept, consider the
example of a conventional ‘server in a box’ (CS), where a
processing intensive task occupies the processor while the
input-output (IO) module is idle. Such an idle resource cannot
be accessed in this case by other servers due to the current CS
constrained architecture. Similarly, a server running an
application involving intensive IO usage may have a large idle
fraction of the CPU processing capability not accessible by
other tasks that require access through the bottleneck IO
module. The DS concept removes the barriers of the CS
approach and allows VMs to construct servers on the fly with
the required specifications for a specific duration and release
these resources at the end of the task, thus removing many
barriers and improving data center efficiency significantly.
Another challenge facing current data centers is the energy
consumption of the physical infrastructure that provides
resources for the cloud. Thus, energy management is a key
challenge for data centers in reducing all their energy related
costs [2, 3].
Significant efforts have been dedicated to optimizing the
power consumption of conventional data centers, including
energy efficient data center designs [4, 5], energy efficient
inter- and intra-data center network architectures [6-8],
designing energy efficient cloud computing services [9], [10],
designing energy efficient network topologies [11], using
renewable energy optimally [12], and introducing energy
efficient resource provisioning and virtual network embedding
for cloud systems [13].

 The above work has a major shortcoming in that it relies
on the single-boxed server approach, where flexible addition
and removal of physical resources is very limited.
Accordingly, in this paper, the disaggregated server (DS)
architecture is considered as a potential approach to minimize
data centers’ power consumption. In this approach, servers’
resources are separated into discrete pools of resources that are
mixed and matched in real time to create differently sized and
shaped systems. This technique brings a new server vision for
data centers and motivates a plethora of potential new
applications and services [14].

The revolutionary concept of DS can bring about radical
change to traditional data centers and can simplify the vertical
scalability of virtual machines (VMs) by decoupling the server

Future Energy Efficient Data Centers with
Disaggregated Servers

Howraa M. Mohammad Ali, Taisir E. H. El-Gorashi, Ahmed Q. Lawey, and Jaafar M. H. Elmirghani

V

2

components from each other. On the other hand, resources are
combined according to their types in a standalone and type
homogenous “resource rack”, constructing resource pools,
where elements in the pool are interconnected using an optical
backplane. Here, a data center network directly interconnects
all resource racks via a high bandwidth and low latency inter-
rack switching fabric [15]. Therefore, DS design introduces
the sharing of CPU, memory, and network components’
modularity and independent allocation of resources, such that
a certain resource is no longer tightly coupled to any other
resource, meaning that resources can be used more efficiently.

Fig. 1. DS concept.

Fig. 1 highlights the main concept of DS. In Fig. 1, we
consider hybrid Electronic/Optical switching fabric in addition
to the disaggregated resources pools. Therefore, resources in
both the electronic IP layer (packet switched) and the optical
layer (circuit switched) are needed. IP switches are needed to
aggregate traffic from resources, and each IP switch is
connected to an optical switch, which is connected to other
optical switches by optical fiber links. Optical fibers provide
the large capacity and fast data transmission required to
support the communication between the disaggregated
resources. Intel Silicon Photonic connectors (SiPh) [16]
provide OEO processing for full wavelength conversion at
each node. This architecture will be discussed in more detail in
Section III, where we present the architecture of our DS
design with a full description of all the components and
communication patterns.

The main aim of this paper is to analyze the energy
efficiency of the DS approach compared to CS using the
MILP model and real-time heuristics. In addition, this paper
gives a detailed description of the DS concept and provides a
detailed architecture. In this work, we developed an energy
efficient resource provisioning MILP model and simulation
heuristic, considering the DS, and compared it to CS design.
We accounted in our MILP model for the impact of the
communication power on the total power saving and
developed a heuristic which enables real time operation and
verifies the MILP model. We have also designed a new
switch-based communication architecture for the new DS-
based data center.

It should be noted that the performance of the DS-based
data center can be measured using several metrics and these
include power consumption, latency, resilience, security,
scalability and other metrics. It is not possible to study all
these dimensions in a single article. Therefore our work
reported here focuses on performance along the power
consumption saving dimension. We however ensure that we
serve all the VM requests, as serving a lower number of VM
requests / rejecting VM requests results in unrealistic low

power consumption and potential service level agreement
violation. We also outline the improvements needed in
electrical and optical switching technology to achieve the DS
vision and outline further rack-clustering measures that can be
introduced to help reduce latency. Performance along other
known dimensions such as security, resilience and scalability,
while interesting is outside the scope of this paper.

The remainder of this paper is organized as follows.
Section II briefly reviews the related work. In Section III, we
present our disaggregated server design. A description is
presented in Section IV of the resource provisioning strategy
in DS design with communication fabric. In this section, we
introduce our MILP model for resource provisioning in DS,
discuss its results, and propose the EERP-DSCF real-time
heuristic. Section V presents a detailed evaluation of our
disaggregated server design and the implementation of our
proposed architectures. Finally, Section VI concludes the
paper.

II. RELATED WORK

The idea of server disaggregation became prominent when
pioneers, Intel and Facebook, announced their Open Compute
Project [15-17] in the 2013 Open Compute Summit.
Subsequently, a series of companies, including Cisco,
Tencent, Mellanox, and some research groups, dedicated
extensive time and effort to developing this topic. Before the
2013 Open Compute Summit, Mellanox Technologies [18]
had shown that their Infiniband switching fabric can
disaggregate the IO and storage subsystem, isolating these
from the main computing system. The authors in [19-22]
studied the DS idea and presented the design of a new general-
purpose architectural building block, a memory blade, which
allows memory to be “disaggregated” from the rest of the
system ensemble. In [23] the authors discussed the ability of
current data center communication networks to support the
idea of disaggregation. The authors in [24] proposed a cloud
architecture that disaggregates resources into virtual resource
pools in order to provide virtual machines with the right
amount of resources. Their cloud architecture creates a
distributed and shared physical resource layer by providing a
virtual layer and a cloud resource aggregation layer between
applications and physical servers in real time. In [25], the
authors presented Marlin, a memory-based addressing model
for both I/O device sharing among multiple hosts and inter-
host communications. Marlin is a PCI-based rack area network
system which was designed to support the communications
and resource sharing between disaggregated racks. In [26],
Cisco presented the Cisco Composable Infrastructure, a
software-defined infrastructure (SDI) solution which allows
the infrastructure to be treated as a code, disaggregating
compute resources so they can easily be programmed and
automatically managed. A number of companies and
university research groups have, in [27], provided their vision,
work, and some metrics for the disaggregated data center. The
authors in [28] and [29] presented an all-optical FPGA-based
optical switch and interface card (SIC) for an optical
programmable disaggregated data center network. In [30], a
collaboration was set up between Tencent and Intel on a proof
of concept project to demonstrate that the disaggregated data
center and resource pooling, even in the early stages of

3

development, can introduce improved performance and
reduced power consumption and can enhance the end users
experience. The authors in [31] studied the trade-off between
cost and performance of building a disaggregated memory
system; they constructed a simple cost model that compares
the savings expected from a disaggregated memory system to
the expected costs, such as latency and bandwidth costs, and
then identified the level at which a disaggregated memory
system becomes cost competitive with a traditional direct-
attached memory system. In [32], the authors proposed a
software-defined architecture for the next generation data
center, dRedBox, and presented a design prototype hardware
architecture where system-on-chip (SoC)-based microservers,
memory modules, and accelerators are placed in separated
modular server trays interconnected via a high-speed, low-
latency optoelectronic system fabric and are allocated in
arbitrary sets. In [33-35], we presented a detailed description
and comprehensive review of the idea of DS, with a focus on
the energy efficiency benefits of this design. We presented a
summary of our MILP model and heuristics for resource
provisioning and VM allocation in DS-based data centers and
compared the performance of the new server approach to the
CS-based data center. The idea of VM migration in DS was
discussed and is augmented in this work with detailed results.
Our contributions in this paper beyond the conference versions
[33-35] are: (i) to the best of our knowledge, we are the first to
develop a MILP model for energy efficient resource
provisioning and VM allocation in disaggregated resources
(CPU, memory, and IO) at the hardware level; (ii) we extend
our MILP model in [33-35] to account for inter-rack
communication power consumption; (iii) we develop simple
and efficient heuristics that converge to near optimal solutions
in a shorter time when compared with the MILP model; and
(iv) we introduce a detailed architecture including a
communications fabric that supports and enables interaction
among the disaggregated resources.

III. DISAGGREGATED SERVER DESIGN

In this section, we present our photonically enabled design,
which uses Intel’s new photonic interconnect [16]. The design
shares the memory and IO modules among multiple
processors to form resource pools connected through a
distributed switching fabric. The concept of distributed switch
functionality and modular architecture design supports very
granular resource deployment approaches, which allow for
greater resilience and upgradability, and scaling up a VM can
be done directly and seamlessly with this modular
architecture. This architecture can potentially enable re-
partitioning of the resources in such a way that system
resources can be better shared between different compute
elements.

Based on the ideas and guidelines given in [16-18] and
[27], we built our modular architecture for the disaggregated
server, and proposed a new interconnect topology to support
the communication between the disaggregated server blocks.
Given a data center system, the main communication
components are inter- and intra-rack communications.
Considering the inter-rack communications, the
communicating units (e.g. servers or disaggregated devices)
are located in different racks, while, for the intra-rack

communication, these communicating units are located within
the same rack. Thus, for DS, the communication that used to
be confined inside single servers is now an inter-rack traffic
and traverses the whole data center communication fabric.

To show the functionality of the suggested architecture and
clarify its performance, we will define each type of these
communications while describing our design. Moreover, we
will show how each part of the architecture will perform its
assumed function in supporting these communications. The
following sections detail all the distributed components,
focusing on each part of the architecture and the
interconnecting components.

A. Disassembled Memory Controller (DMC)

The main driving factor we consider in the DS design is
that resources are to be disaggregated while maintaining the
same original interfaces they connected to before
disaggregation. Based on this vision and design approach, the
memory controller is disassembled into functional blocks to
enable its disaggregation motivated by the fact that it has been
moved over time from the motherboard's north bridge to other
locations such as the CPU die. In this design, we split the
memory controller into three functional blocks. The first block
is attached to the CPU itself, named the CPU attached memory
controller (CPUMC), and the second block is general to the
whole memory rack, named the middling memory controller
(MMC), while the last block is attached to the memory
module directly and is the memory attached memory
controller (MEMC). Before we present our new Disassembled
Memory Controller (DMC), we need to examine the current
classical memory controller. Fig. 2.a displays the complete
architecture of the current memory controller [36]. It is mainly
composed of two segments, the front end and the back end.
While the front end is independent of the memory module
type and provides an interface to the back-end segment of the
memory controller, the back end is memory type dependent. It
translates requests from the front end to the target memory.

Functions such as buffering and instruction mapping and
sequencing are performed in the front-end segment, which
consists of buffers to store memory requests and responses.
The buffers are attached to multiplexers/demultiplexers in
order to send/receive one data word at a time [37]. The
memory mapping decodes the memory address from the CPU
address view to the memory address view (virtual memory to
physical memory), and the arbiter decides the sequence in
which requests from the CPU can access the memory
modules. Thus, memory access requests are queued in the
arbiter. The back-end command generator generates the
commands for the target memory. It is memory-type
dependent; thus, we will keep it attached to the memory, and it
is customized to handle different timings so that different
components having different clock rates can access the same
memory module.

When disassembling the memory controller, we construct
the three functional blocks shown in Fig. 2.b. The first block
of Fig. 2.b, starting from the left, is the CPU directly attached
to the CPUMC, as the CPU needs to see the same old
interface. Buffers from the memory controller are attached to
the CPU directly, and data is selected from these buffers in
order to be sent to its destination memory rack.

4

(a) Classical Memory Controller

(b) Disassembled Memory Controller

Fig. 2. Memory controller.

 In this block, we have added a packetizer [38], after
multiplexing the incoming memory access requests from the
CPU. The packetizer’s role is to packetize the memory
controller data to be switched between the CPU rack and the
memory rack. On the other hand, the depacketizer puts the
responses from the memory in normal data form to be read by
the CPU. The block in the middle is the MMC, where the
memory mapping and the arbiter functional blocks are
integrated with the top of the memory rack switch. The
memory mapping and the switch arbiter form the control plane
of the switch. When receiving memory access requests, in
packets form, the control plane of the memory controller reads
the header of the packets and, according to the ID of the
destination memory module, a path is established to the
intended memory module. Finally, the command generator is
attached directly to the memory modules to form the MEMC,
as shown in Fig 2.b. It generates commands to read from/write
to the memory through the control path for control signaling
and through the data path for receive and send data.

B. Design Description

The architecture is wavelength division multiplexing (WDM)
over hybrid optical and electrical switching, utilizing

components such as the optical cross connect (OXC) switch
and the electronic core packet (EXC) switch, in addition to
Intel Silicon Photonic (SiPh) interconnect and optical fiber
links, as shown in Fig. 3. In this architecture, Intel’s new SiPh
interconnect, which uses light as a speedy way to shuffle data
between components, is used to perform the electrical to
optical transformation function and to feed each fiber link.
This new SiPh interconnect is designed especially for data
center applications, using new materials and manufacturing
techniques to be smaller, more resilient to dust and other
pollutants, more reliable, and cheaper [38]. Our optically
enabled modular architecture is a composition of different
components, and the key ones are presented in Table I.

C. Racks Interconnect Topology

We have designed a modular software-defined architecture
that can replace the traditional single rack of servers with three
racks: the CPU rack, memory rack, and IO rack. These racks
are connected and communicate using the new communication
fabric described. In this architecture, our DS design is built up
by disaggregating the server into its main components, where
the switching between the racks is accomplished in a
distributed manner through the use of the previously

M
u

ltip
le

x
e

r
D

e
m

u
ltip

le
x
e

r

M
e

m
o

ry
 M

o
d

u
le

M
e

m
o

ry

M
a

p
p

in
g

A
rb

it
e

r

C
o

m
m

a
n

d

G
e

n
e

ra
to

r

Request Buffers

Response Buffers

Front End Back End

Data Path

Memory Controller

C
P

U

CPU attached controller

M
u

ltip
le

x
e

r
D

e
m

u
ltip

le
x

x
e

r

Request Buffers

Response Buffers
P

a
ck

e
tize

r
D

e
p

a
ck

e
tize

r

CPU

S
iP

h
S

iP
h

Memory

attached

controller

C
o

m
m

a
n

d

G
e

n
e

ra
to

r

D
e

p
a

ck
e

ti
ze

r

S
iP

h

Data

Plane

M
e

m
o

ry
 M

o
d

u
le

P
a

ck
e

ti
ze

r

S
iP

h

Control Plane

A
rb

it
e

r

M
e

m
o

ry

M
a

p
p

in
g

Switching

Fabric

To/From other
Memory attached

controllers

Electrical
Optical To/From other

racks

Middling

controller

Silicon Photonic
Connectors

5

Fig. 3. DS architecture

mentioned components in Table I. Despite the fact that the
single CS rack is replaced by three DS racks, power saving is
still possible as the same number of resources (CPU, memory,
IO, hard disks etc) are distributed (no increase in number of
resources) and are utilized in an energy efficient manner in the
DS racks as in [33]. In this work, DS racks consume extra
power in the communication fabric, however, power saving is
still possible as long as the increase in power in the
communication fabric (DS communication fabric power minus
CS communication power) is outweighed by the power saving
due to efficient resource utilization as a result of the DS
concept.

The DS design concept requires attention to the non-IT
components that consume power. These non-IT components
include networking, cooling and power supplies for example.
The design of a custom networking architecture and
subsystems for the DS has been considered in this work. The
number of components to be cooled, i.e. CPUs, IO cards, and
memory remain the same in the DS and CS cases (despite the
fact that a single CS rack may be replaced by three DS racks).
Therefore, the amount of cooling required in the data center
remains the same provided custom cooling systems are
introduced at the rack level instead of replicating the full
server cooling system next to the CPU and replicating the full
server cooling system next to (each of) memory and IO. The
power supply unit has to be redesigned at the rack level
instead of individual power supplies for each component
(CPU, IO and memory). Such custom cooling and power
supply designs for rack scale data centers are starting to
appear in the industry [16]. Developments in this direction are
already starting to appear in blade servers. Each server blade
slides into a blade bay in a system chassis and plugs into a
backplane to share common support components, such as

power supplies, fans, CD-ROM, Ethernet and fibre channel
and system ports [39].

Starting with the CPU rack, in this implementation, the
new photonic interconnects and fiber cables are used to
connect the CPUs throughout the rack via a point-to-point to a
Top of Rack electronic memory switch (MEXC). These intra-
rack connections are all optical, i.e. different wavelengths are
used for the set of computing trays in each rack. In this design,
the computing systems have been configured in trays, and
each tray contains a single CPU die and its associated cache
memory and control. Having large L1, L2, or even L3 caches
reduces the impact of the main memory latency since the CPU
can retrieve
cached data faster from its caches. The control consists of a
CPUMC and PCIe interface connecting the CPU with the IO
packet engine. Thus, both PCI and Ethernet networking
protocols can be implemented in the same rack system, all
enabled by the functionality of the MEXC and IOEXC
switches, using light as the transmission medium over fiber
channels.

TABLE I
MAIN COMPONENTS IN OUR DS DESIGN

Optical Connectors (SiPh) Intel Silicon Photonic interconnects [16]

MEXC
Electronic switch that grooms CPU traffic
to access RAM racks

IOXC
Electronic switch that grooms CPU traffic
to access IO racks

IO Packet Engine IO adapter [40]
IO CTRL IO controller

OXC Switch
Top of Rack (ToR) optical switching units
[22]

DMC Blocks Disassembled memory controller blocks

Two IO packet engines are used in this design: one for each
side of the CPU-IO link. This serial interface is configured to

CPU

attached

memory

controller

IO

CTRL

IO

Modules

IO

CTRL

IO

Modules

IOEXC

SiPhSiPh

IO Packet

Engine

OXC

RAM

M
e

m
o

ry

A
tta

ch
e

d

M
e

m
o

ry

C
o

n
tro

lle
r

RAM

RAM

SiPh

OXC

SiPh

Switch
Middling

Memory

Controller

IO Rack

CPU Rack Memory Rack

SiPh

CPU

attached

memory

controller

SiPh

OXC

PCIe

PCIe

SiPh

Cache

layer

CPU

SiPh

IOEXC MEXC

IO Packet

Engine

Cache

layer

CPU

SiPhSiPh SiPh
SiPh SiPhSiPhSiPh

SiPhSiPh

IO Packet

Engine

Electrical
Optical

IO Packet

Engine

S
iP

h

S
iP

h

M
e

m
o

ry

A
tta

ch
e

d

M
e

m
o

ry

C
o

n
tro

lle
r

M
e

m
o

ry

A
tta

ch
e

d

M
e

m
o

ry

C
o

n
tro

lle
r

S
iP

h
S

iP
h

S
iP

h

S
iP

h

S
iP

h
S

iP
h

S
iP

h

6

transfer the data and address and control information required
to communicate with external IO modules, such as hard disks
and Ethernet ports, using a serial packetized protocol. The
CPU side IO packet engine provides an interface to the CPU
and supports the IO switch IOEXC on top of the CPU rack by
packetizing/depacketizing the IO control/data signals to be
sent to their intended destination. The IO side IO packet
engine provides an interface to peripheral devices, such as IO
cards, to support the support the communication between the
disaggregated resources. This relies on the design idea given
in [18], where the IO modules are disaggregated from the rest
of the server box.
Due to differences between the memory and IO packet
formats, two separate switches have to be implemented: one
for the CPU-MEM, and the other for the CPU-IO
communications. Another reason for separating the electronic
switches is that the CPU-MEM communication is latency
intolerant. Here, application specific switches have to be used,
which are normally expensive but are high performance, in
contrast to the CPU-IO traffic, which is latency tolerant, and
commodity switches can be used to transfer such traffic.
Furthermore, the separation of the two types of traffic reduces
the load on the bottleneck MEXC and results in fast
communication. These switches are very important for traffic
grooming in collecting traffic from different CPU cards to
optimize the number of wavelengths used in the optical layer.
These switches can be programmed to assign all traffic
associated with a particular CPU to a specified port. The
switch is programmable in order to allow software-based
implementation of the protocols used for communications at
any particular port. The output from these switches is fed into
an OXC switch, which is the gateway for the rack to connect it
with its neighboring racks. The connecting inter-rack links,
linking the OXCs, are all optical in order to achieve a high
bandwidth, low latency data transmission and simplicity of
wiring through the use of fewer cables/fibers, which is an
essential issue for certain dense applications.

The number of output ports of each WDM OXC switch
depends on the number of neighbors of the rack where the
switch resides, where these outputs are connected to their
neighboring OXCs. In the memory rack, starting from the top,
the OXC is connected to the middling memory controller via
the fibers and silicon photonic interconnects. The middling
memory controller, in turn, provides a path to the selected
memory module. The middling memory controller combines
both the switching and the MMC functionalities.

After switching, the data is sent to the MEMC, attached to
the required memory module, optically. Additionally, our
design supports direct memory access (DMA), such that the
memory rack can communicate with the IO rack directly
without interrupting the busy CPU. This is because the
memory and IO racks are interconnected through their top of
rack WDM OXC switches, either by passing the OXC on top
of the intermediate CPU rack in the bypass scenario or
through the intermediate top of CPU rack OXC, in a non-
bypass scenario.

The IO rack structure is relatively similar to the memory
rack, and it is disaggregated in a similar way to what is done
in [18], with the use of the IOEXC to support the OXC. All
the communication links here are optical to achieve fast and

high bandwidth transmission. In this rack, the WDM OXC on
the very top of the IO rack is connected to the electronic
switch on top of the IO modules, IOEXC, and the IOEXC is
connected optically to the different IO modules, which reside
in the IO rack, through their packet engines and passing their
IO controllers.

Communication integrity, control, and management are
provided by a global data center operating system (GOS). This
operating system is a general control layer that has an
inclusive view for the whole disaggregated racks with their
connectivity in order to be able to provide fluency in
communication and manage the connectivity.

A hypervisor, which is a software layer that runs on top of
the hardware resources and provides virtual partitioning
capabilities to higher-level virtualization services, can be
coupled with the GOS. The hypervisor enables the GOS to
supervise and multiplex multiple operating systems in order to
maintain and control every resource at all times and enable
different operating systems to operate cooperatively.

CPU-to-CPU communication is managed by the top of
memory rack electronic switch, MMC, and the MEXC, as
communicating CPUs will interconnect through the remote
memory modules, shared memory, they are using [41, 42].
CPU-MEM rack communication is performed by mutual
functionality between the OXCs, DMC blocks, and the
MEXC. The CPU-IO communication is facilitated by the
functionality of IO packet engines on both racks to support the
switching fabric implemented by the IOEXCs and the OXCs.

In brief, in the CPU rack, there are CPU trays whose traffic
is aggregated using an electronic switch and is forwarded to
the destined rack through optical layer switching using the
OXC switch.

IV. ENERGY EFFICIENT RESOURCE PROVISIONING IN DS

SERVER WITH COMMUNICATION FABRIC

In the literature, a number of energy efficient inter-data
center communication networks and architectures have been
proposed and previously studied in [43-45]; however, data
center energy management is still a hot topic for both industry
and academia. We believe that implementing the DS-based
data centers architecture can bring a variety of benefits,
considering different prospects which include improved
energy efficiency. In this section, we focus on the energy
efficiency gains of resource provisioning and VM allocation in
a DS-based data center. Data centers are large computing
facilities which are built for applications that have very
diverse resource requirements and are supposed to last for 15
to 20 years. Some applications are network intensive, such as
video streaming applications, while others are latency
sensitive and/or CPU intensive, such as web searching. The
loads on a data center vary throughout the day and are related
to our daily life events. This, in turn, creates challenges in
attempting to reduce power consumption while maintaining
the data center’s performance. Precise resource provisioning
and management directly influence overall data center energy
efficiency and are of extreme importance in data center
design. Under-provisioning of data center resources means
that resources will be bottlenecked, while over-provisioning
data center resources means a loss of power and capital. Thus,

7

accurate provisioning is of vital importance and motivates the
efficient design of data centers. Our vision is that
implementing DS to provide a solution for the problem of
good resource provisioning can result in notable outcomes.

Most of the previous work in the area of resource
provisioning in data centers has focused on dealing with the
VM itself, such as slicing [46], queuing, and migration [47],
and multiple VM multiplexing [48]. In this paper, and due to
the limitations of current server design, we study the DS
approach as a means of improving data center resource
provisioning and resource utilization. In this sense, the main
aim is an efficient data center in terms of power consumption.

 In the following paragraphs, we describe the type of data
center we considered and how we can account for the power
consumption associated with a requested VM running in the
data center. We present details of the assumptions and system
configuration for the resource provisioning and VM placement
using disaggregated resources. Each VM request is identified

by a unique id, denoted by index ݅; in addition, each CPU,
memory, and IO module in the data center is similarly
identified by a unique id, denoted by index ݆. Throughout the
rest of the paper, we use VM and VM requests
interchangeably to refer to requested resources by a VM.

In order to optimize the VM placement in DS-based data
centers, consideration has to also be given to the inter-rack
communication power consumption, which is very important
due to the new DS design structure. In the CS data center,
resource utilization may not be as efficient as in the DS data
center; however, the traffic which used to be contained within
the same server or the same rack in the CS data center, now
typically navigates through several racks spanning part of the
data center fabric.

In this section, we highlight the main components required
to establish an end-to-end connection and guarantee a fast and
durable communication path from source

to destination based on our novel design for the DS
architecture. We present our MILP model, followed by a
heuristic that mimics the MILP model behavior and expands
the scope of the MILP model by providing lower complexity
algorithms that enable real-time operation of the DS data
center and enable the evaluation of relatively large size DS
data center clusters.

A. Resource Provisioning MILP model with Communication
Fabric

As explained in Fig. 1 and in Section III, each processing
resource rack is served by two electrical switches, one for
CPU-MEM communication and the other for CPU-IO
communication; in addition, there is an optical switch on the
top of the rack. The memory rack and IO rack are each served
by a single electrical switch and a top of rack optical switch.
All optical switches on top of the racks are connected in a
semi- mesh connection. Inside each rack, the transceivers [49]
shown in Fig. 3 (SiPh) support each port in each electronic
switch. Each link is supported by transceivers and packetizers
(packet engines for communications with IO modules) [50] at
each end, one next to the source resource and one next to the
destination resource. In addition, an optical Mux/Demux [51]
is added after the transceivers at the link ends near the
resources. As each transceiver is a 100 Gb/s in our design, and
single resource traffic could exceed this 100 Gb/s, more
transceivers can be used by a single resource, imposing the
need to add multiplexing units. For the added functionalities
of the memory mapping and arbiter to the MMC, we consider
an additional 5 W to each working MMC to account for the
power consumption of these units.

 VMs demand resources in both the IP layer and the optical
layer, in addition to the underlying DS resources. For
evaluation, we define the following sets:

Sets: ܴܰ Set of all racks ܴܲ Set of CPU racks ܴܯ Set of memory racks ܴܱܫ Set of IO racks ܰ Set of neighbor racks of rack ܽ ܸܯ Set of VMs to be served ܰܲ Set of CPUs in each CPU rack

 Set of IOs in each IO rack ܱܫܰ Set of memories in each memory rack ܯܰ

The power consumption of a data center based on the DS
architecture is composed of two parts, the first is the power
consumed by active resources:

1) The power consumption of active processors ሺሺܺ ܲ ή ܲ݉݅݊ሻאே ሺοܲ ߜ ܲሻሻאோ

2) The power consumption of active memories ሺሺܺܯ ேெאሻ݊݅݉ܯ ሺοܯ ெோאሻሻܯߜ

3) The power consumption of active IO modules ሺሺܺܫ ܱ ேூைאሻܱ݊݅݉ܫ ൫οܱܫ ܫߜ ܱ൯אூைோ

The second part is the power consumed by networking
elements:

1) Power consumption due to CPU-MEM traffic, which
in turn is composed of:
a) The power consumed by the electrical switches ܴܲܵ ή ோ א ܯܲܳ ܫܴܲ ή ேோאேೌאǡܾܽܯܹܲ

b) The power consumed by the optical switch ܱܲאைோ

2) Power consumption due to CPU-IO traffic, which is
composed of:
a) The power consumed by the electrical switch ܴܲܵ ή ܫܲܳ ܱאோ ܫܴܲ ή ܫܹܲ ܱܽǡܾאேೌאேோ

b) The power consumed by the optical switch ܱܲאெோ

3) Power consumption due to Memory-IO traffic, which
consists of:

8

a) The power consumed by the electrical switch ܴܲܵ ή ெோאܱܫܯܳ ܫܴܲ ή ܫܯܹ ܱܽǡܾאேೌאேோ

b) The power consumed by the optical switch ܱܲאூைோ

The MILP model is defined as follows:

Objective: minimize: ሺሺ݆ܺܲ ή ܲ݉݅݊ሻ݆ܲܰא ሺοܲ ܴܲאሻሻ݆ܲߜ

 ሺሺ݆ܺ݉ܯ ܯܰאሻ݆݊݅݉ܯ οܯ ݆݉ܯߜ ሻሻܴ݉ܯא

 ሺሺ݆ܱܺ݅ܫ ܱܫܰאሻ݆ܱ݊݅݉ܫ ቀοܱܫ ܴܱܫאቁ݆ܱ݅݅ܫߜ

 ܴܲܵ ή ܴܲאܯܲܳ

 ܫܴܲ ή ܴܰאܽܽܰאǡܾܾܽܯܹܲ

 ܴܲܵ ή ܴܲאܱܫܲܳ

 ܫܴܲ ή ܴܰאܽܽܰאǡܾܾܱܽܫܹܲ

 ܴܲܵ ή ܴܯאܱ݉݉ܫܯܳ

 ܫܴܲ ή ܴܰאܽܽܰאǡܾܾܱܽܫܯܹ

 ܴܰאܱܽܲ (1)

Equation (1) gives the MILP model objective, which is to
minimize the resource provisioning power consumption and
the communication fabric power consumption, where ܺ ܲ is a binary indicator and ܺܲ =1 indicates that processor ݆ in CPU rack is active; otherwise, ܺ ܲ = 0. ܺܯ, and ܺܫ ܱare defined in a similar manner for the memory and IO
respectively. οܲ=Pmax-Pmin, where οܲ is referred to as the CPU
power factor (Watt), Pmax and Pmin are the CPU maximum
and idle (i.e. minimum) powers respectively (Watt). οܯ and οܱܫ are the memory and IO power factors respectively. ߜ ܲ

is

the total utilization of processor ݆ in CPU rack (unitless). ܯߜand ܫߜ ܱ are the memory and IO total utilization
respectively. ܲ ܴܵ and ܲ are the electrical switch port power ܫܴ
for the source and intermediate nodes respectively (Watt). ܴܲܵ and ܲ will be explained later in detail in order to show ܫܴ

the difference between their values. ܳܲܯ and ܳ ܫܲ ܱ are the
number of aggregation ports of the MEXC and IOEXC
electrical switches in CPU rack respectively, and ܳ isܱܫܯ
the number of aggregation ports of the electrical switch at
memory rack ݉ ܫܹܲ ,ǡܾܽܯܹܲ . ܱܽǡܾ and ܹܫܯ ܱܽǡܾ are the number of
wavelengths that carry the CPU-MEM, CPU-IO and MEM-IO
traffic in the physical link (ܽ ǡ ܾ) respectively.

For simplicity and due to their small power consumption,
we assume that the optical switches are always on. Note that ܴܰ unites all of ܲ ܴ, Mܴ, and ܴܱܫ, and therefore the optical
switch power ܲ ܱ (Watts) is summed once over ܴܰ.

The minimization is subject to:

1) Resource Allocation Constraints.

Capacity Constraints: ݆ܲߜ ൌ ǡ݆݅ܲߠ ܯܸא݅ ݈ݐܷ א ݆ ܰܲǡ א ܴܲ
(2)

 ǡ݆݅ܲߠ
ܴܲא ܲܰ א ݆ ൌ א ݅ ܱܴܸܲ݅ܲ ǡ݆݅ܲߠ (3) ܯܸ ܹ ή ܻܲ݅ǡ݆

א ݅ ǡܯܸ א ݆ ܰܲǡ א ܴܲ

ǡ݆݅ܲߠ (4) ݁ ܻܲ݅ǡ݆ െ ͳ א ݅ ǡܯܸ א ݆ ܰܲǡ א ܴܲ
݆݉ܯߜ (5) ൌ ǡ݆݉݅ܯߠ ܯܸא݅ ݈ݐܷ א ݆ ǡܯܰ א݉ ܴܯ
(6)

 ܴܯא݉ ܯܰ א ݆ ǡ݆݉݅ܯߠ ൌ א ݅ ܯܧܯ݅ܯܸ (7) ܯܸ

ǡ݆݉݅ܯߠ ܹ ή ܻ݅ܯǡ݆݉
א ݅ ǡܯܸ א ݆ ǡܯܰ ݉ א ܴܯ

ǡ݆݉݅ܯߠ (8) ݁ ǡ݆݉݅ܯܻ െ ͳ א ݅ ǡܯܸ א ݆ ǡܯܰ ݉ א ܴܯ
݆ܱ݅ܫߜ (9) ൌ ǡ݆ܱ݅݅ܫߠ ܯܸא݈݅ݐܷ א ݆ ǡܱܫܰ א݅ (10) ܴܱܫ ǡ݆ܱ݅݅ܫߠ

ܴܱܫאܱ݅ܫܰ א ݆ ൌ ܱܫܱ݅ܫܸ א ݅ (11) ܯܸ

ǡ݆ܱ݅݅ܫߠ ܹ ή ܻܱ݅ܫǡ݆݅

א ݅ ǡܯܸ א ݆ ǡܱܫܰ ݅ א ܴܱܫ
ǡ݆ܱ݅݅ܫߠ (12) ݁ ǡ݆ܱ݅݅ܫܻ െ ͳ א ݅ ǡܯܸ א ݆ ǡܱܫܰ ݅ א ܴܱܫ
(13)

Constraint (2) calculates the total processing utilization of
each processor ߜ ܲand ensures that it is less than the
maximum allowed utilization ሺܷ݈ݐሻ. Constraint (3) calculates
the utilization of each processor per allocated VM, ߠ ܲǡ ,
where ܸ ܲ is the processing demand of VM ݅ and ܲ ܴܱ is the
CPU processing capacity (GHz). Constraints (4) and (5)
allocate each VM to a certain processor in a certain CPU rack
by evaluating ܻ ܲǡ , which is 1 if processor j in CPU rack p

9

hosts request ݅; otherwise, ܻ ܲǡ =0, using a very big number, ܹ, and a very small number ݁ǡ both numbers are used to help
in the conversion to binary variables. Constraints (6)-(9) and
(10)-(13) repeat the same steps of constraints (2)-(5), where
the variables are defined in a similar manner but for the
memory and IO modules respectively.

2) SLA Constraints: ݅ܭ ܯܸܰ ή ܯܸא݅ܣܮܵ ݅ܭ (14) ܻܲ݅ǡ݆ܴܲא ܲܰא݆ א ݅ (15) ܯܸ

ܹ ή ܭ ܻ ܲǡאேאோ א ݅ (16) ܯܸ

݉݅ܭ א ݅ ܴܯא݉ܯܰאǡ݆݆݉݅ܯܻ (17) ܯܸ

ܹ ή ܭ א ݅ ெோאேெאǡܯܻ (18) ܯܸ

݅݅ܭ ܴܱܫאܱ݅ܫܰא݆ǡ݆ܱ݅݅ܫܻ א ݅ (19) ܯܸ

ܹ ή ܭ ܫܻ ܱǡאேூைאூைோ א ݅ ݅ܭ (20) ܯܸ ൌ ݅ܭ ൌ ݉݅ܭ ൌ א ݅ ݅݅ܭ (21) ܯܸ

Constraint (14) ensures that the total number of served

VMs is within an acceptable predefined percentage of the

incoming VMs requests according to the service level

agreement ሺܵܣܮሻ value. The total number of served VMs, ܭ depends on the outcomes of constraints (15)-(21)

collectively; if all these constraints yield a value of 1, then ܭ is 1, otherwise ܭ is 0, where ܭ ǡ ܭ and ܭ are binary

variables indicating if the processing, memory and IO

requirements of request ݅ are, respectively, served or

blocked.

3) Slicing Constraints: ܻܲ݅ǡ݆ܴܲאܲܰא݆ ͳ א ݅ (22) ܯܸ ܴܯא݉ܯܰאǡ݆݆݉݅ܯܻ ͳ א ݅ (23) ܯܸ ܴܱܫאܱ݅ܫܰא݆ǡ݆ܱ݅݅ܫܻ ͳ א ݅ (24) ܯܸ

Constraint (22) ensures that a VM i processing requirement
is served by only one CPU, i.e. this constraint prevents VM
slicing. Constraints (23) and (24) repeat constraint (22) for the
memory and IO requirements. If multiple VM copies or VM
slicing is required, equations (22)-(24) should be upper
bounded by an appropriate number greater than 1, however,

for consistency with the CS design, we considered a scenario
where each of the VM resource requirements in the DS design
is also served by a single physical resource.

4) Active resources constraints:

Active processors ݆ܺܲ ܹ ή ݆ܲߜ א ܴܲǡ א ݆ ܰܲ (25) ܹ ή ܺ ܲ ߜ ܲ
 א ܴܲǡ א ݆ ܰܲ (26)

Active memory modules ݆ܺ݉ܯ ܹ ή ݆݉ܯߜ ݉ א ǡܴܯ א ݆ ܹ (27) ܯܰ ή ܯܺ ݉ ܯߜ א ǡܴܯ א ݆ (28) ܯܰ

Active IO modules ݆ܱܺ݅ܫ ܹ ή ݅ ݆ܱ݅ܫߜ א ǡܴܱܫ א ݆ ܹ (29) ܱܫܰ ή ݆ܱ݅ܫܺ ܫߜ ܱ ݅ א ǡܴܱܫ א ݆ (30) ܱܫܰ

Constraints (25) and (26) jointly find the active processors
by checking the utilization ߜ ܲ. Constraints (27) and (28)
together check the active memory modules and constraints
(29), and (30) repeat the same steps but for the IO modules.

5) Communication constraints

Generating the index matrix for the CPU-MEM traffic ܲ݅ܯǡ݉ ή ʹ ൌ ܻܲ݅ǡ݆ܲܰא݆ ܯܰאǡ݆݆݉݅ܯܻ (31)

א ݅ ǡܯܸ א ܴܲǡ ݉ א ǡ݉݅ܯܼܲ ܴܯ ǡ݉݅ܯܲ

א ݅ א ǡܯܸ ܴܲǡ ݉ א ܴܯ
(32)

ǡ݉݅ܯܼܲ ǡ݉݅ܯܲ െ ͲǤͷ
א ݅ א ǡܯܸ ܴܲǡ ݉ א ܴܯ

(33)

Generating the index matrix for the CPU-IO traffic ܱܲ݅ܫǡ݅ ή ʹ ൌ ܻܲ݅ǡ݆ܲܰא݆ ݅ܰא݆ǡ݆ܱ݅݅ܫܻ (34)

א ݅ ǡܯܸ א ܴܲǡ ݅ א ܴܱܫ

ǡܱ݅݅ܫܼܲ ǡܱ݅݅ܫܲ

א ݅ א ǡܯܸ ܴܲǡ ݅ א ܴܱܫ

(35)

ǡܱ݅݅ܫܼܲ ǡܱ݅݅ܫܲ െ ͲǤͷ

א ݅ א ǡܯܸ ܴܲǡ ݅ א ܴܱܫ

(36)

Generating the index matrix for the Memory-IO traffic ܱ݉݅ܫܯ ǡ݅ ή ʹ ൌ ܲܰאǡ݆݆݉݅ܯܻ ܱܫܰא݆ǡ݆ܱ݅݅ܫܻ (37)

א ݅ ǡܯܸ א ݉ ǡܴܯ ݅ א ܱ݉݅ܫܯܼ ܴܱܫ ǡ݅ ܱ݉݅ܫܯ ǡ݅

א ݅ א ݉ ǡܯܸ ݅ ǡܴܯ א ܴܱܫ

(38)

10

ܱ݉݅ܫܯܼ ǡ݅ ܱ݉݅ܫܯ ǡ݅െ ͲǤͷ

א ݅ א ݉ ǡܯܸ ݅ ǡܴܯ א ܴܱܫ

(39)

 Constraint (31) connects each source CPU rack to its
destination memory rack. ܲܯǡis an integer indicator that
connects the ݅௧ VM CPU-MEM traffic to the relevant CPU
and MEM racks. Constraints (32) and (33) collectively
generate source-destination index matrix, ܼܲܯǡ for all
CPU-MEM traffic, depending on constraint (31). ܼܲܯǡ ൌ ͳ
if the VM ݅ generates traffic between CPU rack and MEM
rack ݉; otherwise, ܼ ǡܯܲ ൌ Ͳ. Constraints (34)-(36) and
constraints (37)-(39) repeat the same steps of (31)-(33), where
the variables are defined in a similar manner but for the CPU-
IO traffic and Memory–IO traffic, respectively.

Generating the traffic demand matrix: ܶܲܯǡ݉ ൌ ܯܸא݅݅ܯܸܲ ή ǡ݉݅ܯܼܲ
א ܴܲǡ ݉ א ǡܱ݅ܫܲܶ (40) ܴܯ ൌ ܯܸאܱ݅݅ܫܸܲ ή ǡܱ݅݅ܫܼܲ
א ܴܲǡ ݅ א ǡܱ݅݉ܫܯܶ (41) ܴܱܫ ൌ ήܯܸאܱ݅݅ܫܯܸ ܱ݉݅ܫܯܼ ǡ݅

א ݉ ݅ ǡܴܯ א (42) ܴܱܫ

Constraint (40) generates the CPU-MEM traffic matrix ܶܲܯǡ based on the index matrix ܼܲܯǡcalculated
previously in constraints (32) and (33), and ܸ ܯܲ ǡ which is the ݅௧ VM CPU-MEM traffic demands. Constraints (41) and (42)
generate the CPU-IO and Memory-IO traffic matrices
respectively, using the relevant variables.

Traffic flow conservation: ܽܰאǡܾ݉ǡܾܽܯܹܲ െ ൌܽܰאǡܾ݉ǡܾܽܯܹܲ ቐ ሺܶܲܯǡ݉ Ȁܤሻ ܽ ൌ ܽ ሻܤǡ݉ Ȁܯെሺܶܲ ൌ ݉Ͳ ݁ݏ݅ݓݎ݄݁ݐ

(43)

א ܴܲǡ ݉ א ǡܴܯ ݏ א ܴܰ ܽܰאܾǡ݅ǡܾܱܽܫܹܲ െ ൌܽܰאܾǡ݅ǡܾܱܽܫܹܲ ቐ ሺܱܶܲܫǡ݅ Ȁܤሻ ܽ ൌ ܽ ሻܤȀ ǡܱ݅ܫെሺܶܲ ൌ ݁ݏ݅ݓݎ݄݁ݐ Ͳ݅

(44)

א ܴܲǡ ݅ א ǡܴܱܫ ݏ א ܴܰ ܽܰאܾǡܾ݉ǡܱ݅ܽܫܯܹ െ ൌܽܰאܾǡܽ݉ǡܾܱ݅ܫܯܹ ቐሺܱܶ݉ܫܯǡ݅ Ȁܤሻ ܽ ൌ ݉െሺܱܶ݉ܫܯǡ݅ Ȁܤሻ ܽ ൌ ݁ݏ݅ݓݎ݄݁ݐ Ͳ݅

(45)

א ݉ ǡܴܯ ݅ א ǡܴܱܫ ݏ א ܴܰ

 Constraints (43)-(45) are the flow conservation constraints
for the CPU-MEM, CPU-IO, and Memory-IO traffic
respectively in the networking elements switches, ensuring

that the total incoming traffic is equal to the total outgoing
traffic for all nodes except for the source and destination
racks, where ܹܲܯǡǡ, ܹ ܹ ǡǡandܯܲ ǡǡ are the numberܯܲ
of wavelengths of lightpath (p,m), (p,io), and (m,io)
respectively passing through a physical link (a,b).

Wavelengths capacity constraints:

 ܴܯאǡ݉݉ǡܾܽܯܹܲ ܴܲא ܾܽܯܹܲ

אܽ ܴܲǡ אܾ ܰܽ (46)

 ܴܱܫא݅ǡ݅ǡܾܱܽܫܹܲ ܴܲא ܾܱܽܫܹܲ

אܽ ܴܲǡ אܾ ܰܽ (47)

 ܴܱܫא݅ǡܾ݉ǡܱ݅ܽܫܯܹ ܴ݉ܯא ܾܱܽܫܯܹ

אܽ ǡܴܯ אܾ ܰܽ (48)

 Constraints (46)-(48) ensure that the summation of the
number of wavelengths traversing a physical link in the optical
layer does not exceed the total number of wavelengths in that
link for the CPU-MEM, CPU-IO, and Memory-IO traffics
respectively. ܳܲܯ ൌ ͳܤ ή ܴܯאǡ݉݉ܯܲܶ א ܱܫܲܳ (49) ܴܲ ൌ ͳܤ ή ܴܱܫא݅ǡܱ݅ܫܲܶ א ൌܱ݉ܫܯܳ (50) ܴܲ ͳܤ ή ܴܱܫא݅ǡܱ݅݉ܫܯܶ

א ݉ (51) ܴܯ

 Constraints (49)-(51) determine the total number of
aggregation ports utilized by the CPU-MEM, CPU-IO, and
Memory-IO traffics respectively in each rack by dividing the
total traffic matrix by the wavelength rate ܤ (Gbps).

B. Resource Provisioning in CS with Communication Power
MILP Model

Here, we assume that both the CS and DS use the same data
center networking topology, such as fat tree or spine and leaf.
Therefore, the power consumption of this fabric is not
included in both CS and DS designs, but we include the
communication fabric needed to realize the DS functionality
as shown in Fig. 3. Note that such topologies might not be an
optimal choice for the DS data center, and a specially designed
communication fabric on top of the communication layer
shown in Fig. 3 may be needed to form an optimal higher
networking architecture layer for the DS data center
interconnect topology; this is an issue for future research.

In the CS MILP model we consider a pool of servers, rather
than a pool of resources. Each CS is equipped with the same
type of resources (CPU, memory, I/O) that are used in the DS.
Furthermore, we assume that each CS has a single CPU
associated with a single Memory and a single IO module.
Therefore, the utilization of a certain resource in the CS will
affect the utilization of the other two resources. For example
CPU#1 is associated with memory#1 and IO module#1 in
CS#1. If CPU#1 is fully utilized by VM#1 then memory#1
and IO module#1 cannot be used by another VM even if they

11

have enough capacity for the second VM. This is to be
compared to the DS design. Thus, the number of servers in CS
design is the same as the number of one type of resources,
such as the number of CPU resources, and here we have 24
servers.

To account for the server power, we consider a fully loaded
server power of 300 Watts [52]. The power consumption of
each resource (e.g. CPU, memory, IO card) in this server was
comparable to the values used in the DS. Given that all the
traffic is contained within the same server, and we assume that
VMs are not sliced among different servers and VMs do not
interact with each other, we are not using switches for inter-
server traffic with the CS design. Viewed differently, we
essentially do not include the data centre communication
fabric (eg. fat tree or spine and leaf) when comparing the CS
and DS as the same fabric is considered in both cases and
carries the same inter-server traffic, (although the DS can
potentially benefit from an alternate custom higher layers
architecture fabric as mentioned). Instead we account for the
intra-server communication in the CS as follows: the power
consumption of each resource was set exactly equal to the
values used in DS to facilitate comparison, and the CS idle
power consumption is considered to be 150W which is about
50% of its maximum power consumption [53][72], to account
for the intra-server communication power. Later in the paper
we revisit this idle power and consider the situation where
only a fraction of it contributes to the intra-server
communication power while the remaining non-
communication power is distributed among other parts of the
CS, e.g. non-IT components, hard disks, etc. Such non-
communication power consumption has to be added to the DS
design to accurately assess its power savings compared to the
CS design.

For the CS approach, each VM is allocated to the server that
has enough CPU, memory, and IO modules to accommodate
the VM; otherwise, a new server is powered on to host the
requesting VM.

In addition to the parameters and variables defined in
Section
IV-A, we define the following:

Sets: ܰܵ Set of all servers ܸܯ Set of VMs to be served
Variables: ߜ ܲ Total processor utilization of server ݆ ܯߜ Total memory utilization of server ݆ ܫߜ ܱ Total IO utilization of server ݆ ܺ Indicates if server ݆ is active, ܺ ൌ ͳ; otherwise, ܺ ൌ Ͳ ߠ ܲ Portion of the processing capacity of server ݆ allocated to

request ݅ ܯߠ
Portion of the memory capacity of server ݆ allocated to
request ݅ ܫߠ ܱ Portion of the IO capacity of server ݆ allocated to request ݅

ܻ ܻ ൌ ͳ if server ݆ hosts request ݅, otherwise, ܻ ൌ Ͳ ܱܰܵ Number of working servers

The resource provisioning in the CS-based data center MILP
model is:

Objective: minimize: ሺሺ ܺ ܲ݉݅݊ሻאேௌ ሺοܲ ሻሻ݆ܲߜ

 ሺሺ ܺ ேௌאሻ݊݅݉ܯ ሺοܯ ሻሻ݆ܯߜ

 ሺሺ ܺ ேௌאሻܱ݊݅݉ܫ ሺοIO ሻሻ݆ܱܫߜ

ܱܰܵ ή ͳͷͲ (52)
The objective (52) aims to minimize the total power by
consolidating VMs in the minimum number of working
servers.
Capacity Constraints: ݆ܲߜ ൌ ݆݅ܲߠ ܯܸא ݅ ݈ݐܷ ݆ א ܰܵ (53) ݆ܲ ή ݆݅ܲߠ ൌ ܸܲ݅ ή א ݅ ݆ܻ݅ ǡܯܸ א ݆ ݆݅ܲߠ (54) ܵܰ ܹ ή ܻ݆݅ א ݅ ǡܯܸ א ݆ ܰܵ

݆݅ܲߠ (55) ݁ ܻ݆݅ െ ͳ א ݅ ǡܯܸ א ݆ ܰܵ
݆ܯߜ (56) ൌ ݆݅ܯߠ ܯܸא ݅ ݈ݐܷ ݆ א ݆ܯ (57) ܵܰ ή ݆݅ܯߠ ൌ ݅ܯܸ ή א ݅ ݆ܻ݅ ǡܯܸ א ݆ ܰܵ
݆݅ܯߠ (58) ܹ ή ܻ݆݅ א ݅ ǡܯܸ א ݆ ܰܵ
݆݅ܯߠ (59) ݁ ܻ݆݅ െ ͳ א ݅ ǡܯܸ א ݆ ܰܵ
݆ܱܫߜ (60) ൌ ݆ܱ݅ܫߠ ܯܸא ݈݅ݐܷ ݆ א ܰܵ
݆ܱܫ (61) ή ݆ܱ݅ܫߠ ൌ ܱ݅ܫܸ ή א ݅ ݆ܻ݅ ǡܯܸ א ݆ ܰܵ
݆ܱ݅ܫߠ (62) ܹ ή ܻ݆݅ א ݅ ǡܯܸ א ݆ ܰܵ
݆ܱ݅ܫߠ (63) ݁ ܻ݆݅ െ ͳ א ݅ ǡܯܸ א ݆ ܰܵ
(64)

Constraint (53) calculates the total processing utilization of
each processor in each server and ensures that it is less than
the maximum allowed utilization. Constraint (54) calculates
the utilization of each processor per allocated VM, and
constraints (55) and (56) allocate each VM to a certain
processor in a certain server. Constraints (57)-(60) and (61)-
(64) repeat the same steps of constraints (53)-(56) but for the
memory and IO modules respectively.

Slicing Constraint:

 ܵܰא ݆݆ܻ݅ ൌ ͳ
א ݅ (65) ܯܸ

Constraint (65) ensures that each VM will be served by one
server. This constraint will force service quality equal to 100%
SLA.

Active Resources Constraint:
 ݆ܺ ܹ ή א ݆ ݆ܲߜ ܰܵ (66)

12

ܹ ή ݆ܺ א ݆ ݆ܲߜ ܰܵ (67) ܱܰܵ ൌ ܺאேௌ

(68)

Constraints (66) and (67) find the working servers and
constraint (68) uses their results to calculate the total number
of working servers.

C. Energy Efficient Resource Provisioning in
Disaggregated Servers with Communication Fabric
(EERP-DSCF) Heuristic

The EERP-DSCF heuristic provides real-time
implementation of the MILP model in Section IV-A. The flow
chart of the heuristic is shown in Fig. 4. In this study, we use
homogenous resources, and thus sorting resources according
to their PF is not necessary. Therefore, the heuristic picks the
first CPU from the first CPU rack in the cluster and uses it for
serving the first VM request. Then, the heuristic decides the
VM’s memory and IO racks allocation based on joint criteria
involving the resource availability and rack distance from the
chosen CPU rack. Thus, both packing and open shortest path
first (OSPF) algorithms are applied together.

Fig. 4. EERP-DSCF heuristic flow chart.

As shown in the flow chart, Fig. 4, the heuristic follows a
greedy approach to pack as many VMs as possible in the
minimum number of resources and such resources may be
physically far apart. Therefore, SLA violations might occur in
the form of increased delay. However, delay constraints can be
included by forming clusters of DS racks within a maximum
distance limit between the selected racks in each cluster which
should be set in consistency with the OSA metrics for server
disaggregation.

The EERP-DSCF picks the first VM and allocates the first
CPU in the first CPU rack in the cluster. The heuristic then
organizes the memory and IO racks in a list according to their
distances from the chosen CPU rack in ascending order.
Subsequently, the heuristic checks the resources availability in
the newly organized lists. If the first memory rack has enough
capacity to accommodate the VM under consideration, the
heuristic uses it; otherwise, the next rack is tested. In the same
fashion, the heuristic checks the first IO rack in the list and
allocates the chosen resources for the VM under
consideration; otherwise, the next nearest IO rack is tested,
and so on, until an available IO module is found. The heuristic
tries to fill partially used resources and racks as much as
possible before moving onto next racks. After allocating
resources to the first VM request, the heuristic loops for the
rest of the VM requests until all VMs allocations are done.
Finally, EERP-DSCF grooms the traffic from each rack
according to the traffic destination, routes them among racks,
and calculates the total consumed power.

D. Evaluation Scenarios for the MILP Model and Heuristic

To evaluate the performance of the proposed MILP model
and heuristic, we consider the example data center shown in
Fig. 5. It consists of 72 racks (24 racks of each resource type),
organized in an 89 matrix and 127 links, as shown in Fig. 5,
which represents the top view of the DS data center
considered.

Fig. 5. DS based data center structure under consideration.

For the MILP model, a smaller version of the data center
cluster, shown in Fig. 5, is used due to MILP computational
complexity. It comprises 9 racks (3 racks of each resource
type) organized in a 33 matrix and 12 links, as shown in Fig.
6. It follows the same structure and racks sequencing of the
data center cluster in Fig. 5. The first column consists of three

13

IO racks, the second consists of three CPU racks, and the last
column consists of three memory racks. We consider a
scenario in which each rack contains 8 resources of its own
type, each CPU rack contains 8 processors, each IO rack
contains 8 IO modules, and each memory rack contains 8
memory modules. Thus every three racks, (one of each type,
i.e. one processing, one memory and one IO racks) will
contribute to make 8 servers. Therefore, in 3×3 racks there are
24 servers in total (8 × 3). Thus with a load of 25 VMs,
assuming 1 VM per server, the maximum load of the DC is
100%.

For the heuristic, and due to its lower computational
complexity, we evaluated the full 89 data center shown in
Fig. 5. Each column is one type of resource racks, and each
rack of each type contains 42 resources of its type. Starting
from the far left, the first column contains the IO racks,
followed by the CPU racks, then the Memory racks, and this
sequence is repeated for the next 6 columns. Note that each
rack is only connected to the nearest neighboring racks using
optical fibers. As for the heuristic, the distance between
adjacent racks is set to 1m [54].

For both the MILP model and the heuristic, each rack has
its own intra-rack communication fabric and electrical and
optical switches to facilitate the communication among racks
and inter-rack communication, as shown in Fig. 1 and in Fig.
3. Table II shows the parameters used for both the MILP
model and heuristic. The power consumption of the resources
we used is consistent with our previous work in [33, 34], and,
for the network devices, we use the values in Table II.
 Regarding some of the power values given in Table II, it is
worth noting that for the electrical switch port power and the
packetizer power, we have linearly scaled up the values given
in [55] for the switch port and [50] for the channel adapter to
account for 100 Gbps port power. For the switch port power,
and according to [55], a 10 Gbps port consumes 4 W;
therefore, the switch port power consumption is calculated as
410W (equivalent to 100 Gbps port). For the 100 Gbps
packetizer, in [50], the 40 Gbps packetizer power consumption
is 7 W, and thus to scale up for 100 Gbps, the total power
consumption is calculated as 72.5=17.5 W, and, to be more
conservative, an extra 2.5 W was added, i.e. 20 Watts in total
in order to account for other possible functionalities, such as
buffering and arbitration.

TABLE II
 INPUT PARAMETERS FOR THE MILP MODEL AND SIMULATION HEURISTIC
Power consumption of electrical switch port for
source nodes ܴܲ ܵ

70.5 W

Power consumption of electrical switch port for
intermediate nodes ܴܲ43.5 ܫ W

Power consumption of electrical 100 Gbps switch
port (Pr ሻ

40 W [55]

Power consumption of an optical switch 85 W [56]
Bit rate of each wavelength 100 Gbps
CPU capacity 3.6 GHz [57]
CPU maximum power consumption 130 W [57]
RAM capacity 8 GB [57]
Memory maximum power draw 10.24 W [58]
IO module rate 10 Gbps [57]
IO module maximum power draw 21.4 W [59]
100 Gbps Optical transceiver power 3.5 W [49]
100 Gbps Multiplexer power (W) 4 W [51]
100 Gbps Packet engine (packetizer or packet engine)
power

20 W [50]

 We evaluate ܴܲܵ by considering the scenario explained in
Section IV-A, where a transceiver power is added to each end
of each link and a packetizer power is considered for each
source-destination pair. ܴܲܵ ൌ ͶͲ ܹሺelectrical switch portሻ ͵͵Ǥͷ ܹ ሺtransceivers powerሻ ʹͲ ܹ ሺpacketizer powerሻ

Here, we consider 3 transceivers: the first is attached to the
source resource, the second is for the destination resource, and
the third is for the source electrical switch port.

For each intermediate node, we consider a switch port
power plus a transceiver power, which yields: ܴܲܫ ൌ ͶͲ ܹሺelectrical switch portሻ ͵Ǥͷ ܹ ሺtransceiver powerሻ

Fig. 6. Substrate data center for the MILP model.

E. VM Modeling

For the VM resources requirements and traffic demands,
we use the requirements in Table III, which are assumed with
respect to the three different VM types: processing intensive
(PI), memory intensive (MI), and IO intensive (IOI). These
three VM types are different in terms of their resources
requirements, as shown in Table III. VMs are assumed to
arrive at the same time, but we have not considered blocking
because blocking can reduce power consumption, and we
consider a situation where both CS and DS can accommodate
all VM requests without blocking or migration to establish a
comparison that is based solely on the difference in
architecture and resource management between the two
approaches. However, we note that VM blocking and different
VM arrival patterns are interesting topics, and we leave their
investigation for future research. Comparing the IO resources
requirements to the actual traffic reveals that delay or maybe
blocking situations can occur on the egress ports. However,
we have not considered their effects in the analysis presented
in this work.

A VM requires three resources: processing, memory and
networking resources, and there is traffic between these
resources. As mentioned above, we assume that all the VM
requests arrive at once and they all have infinite service
durations. Thus, it is a one shot (non-sequential) evaluation,
such that a VM will use the same allocated resources at all
times and will not be migrated to different resources. We
assume all VMs are served as we set the SLA to 100% and as
such no VM blocking is considered. We did not consider
blocking VM requests since such blocking can lead to lower
power consumption in one of the designs. Therefore we
require both the CS and DS to serve all the requests.

14

 Using a computer with a 3.3 GHz CPU and 8 GB memory,
our heuristic produced the results in less than one minute,
considering 1000 IOI VMs. This is a remarkable improvement
over the MILP model, which requires about 2 days to produce
the results for only 20 IOI VMs using the same computer.
While our heuristic results show the power consumption of a
range of data center loads ranging from 100 to 1000 VMs, the
MILP model shows results for data center loads ranging from
5 to 20 VMs, limited by the computational complexity of the
MILP and the processing platform available.

TABLE III
INPUT PARAMETERS FOR THE VMS REQUIREMENTS

 VM Type
Demands

PI MI IOI

CPU (GHz) 2-3.6 0.1-0.3 0.1-0.3
Mem (GB) 0.1-0.3 6-8 1-4
IO (Gbps) 0.5-1 0.5-1 6-10
CPU-MEM Traffic (Gbps) 10-100 10-50 5-20
CPU-IO Traffic (Gbps) 1-3 1-3 1-3
MEM-IO Traffic (Gbps) 1-3 1-5 6-10

F. MILP Model and Heuristic Results

Fig.7 compares the average power consumption results of
the MILP model for the DS and CS designs and the DS
heuristic considering the three VM types PI, MI and IOI. The
results were obtained by running the MILP models and the
heuristic for the cases of 5, 10, 15, 20 and 25 VM requests,
then the average power consumption is calculated. The results
show clearly that the DS heuristic and the DS MILP are
comparable and the heuristic follows the MILP closely

Fig. 7. Average power consumption comparison of the DS MILP model, DS
heuristic, and CS MILP model with communication fabric.

Examining the results in Fig. 7 and comparing the DS
MILP to the CS MILP shows that the PI VMs are the highest
power consuming demands which leads to minimum average
power saving, of about 3% while MI and IOI have comparable
power consumptions and they have comparable average power
savings, of about 42%.

Fig. 7 shows that the heuristic and MILP are close and the
heuristic execution time is short. Therefore, we have obtained
new results where for each VM the CPU load was random and
uniform between 0.1 and 3.6 GHz, the other VM attributes
were also random and uniform and were: Mem (1-8) GB, IO
(0.5-10) Gbps, CPU-Mem traffic (10-100) Gbps, CPU-IO
traffic (1-3) Gbps, Mem-IO traffic (1-10) Gbps.

The power savings are averaged over 100 experiments (each
experiment obtained power saving using 100 runs of the CS
and DS heuristics for 5, 10, 15, 20, and 25 VMs) and the
power profiles are shown in Fig. 8. With the considered high
demand values, the DS power consumption is more than the
CS for very small numbers of VMs, but moving to large
numbers of VMs, the DS shows better performance compared
to CS due to good resource packing.

The placement of VMs is optimized by the CS and the DS
heuristics so as to minimize the power consumption through
packing and proximity placement as shown in Fig. 4.

Fig. 8. Average power consumption for different numbers of VMs

considering 100 runs for each case.
Fig. 9 shows the DS heuristic results for the power

consumption of the networking resources (NetP), the resource
power consumption (RESP), and the total power consumption
(Total). The results can be explained by considering the
cluster topology and size under consideration plus the number
of served VMs, as well as the inputs, in particular, the
resource specifications, and VM requirements.

Fig. 9.a shows the PI VM requests results. Note that the
resource power is higher than the networking power, and it has
higher impact on the total power consumption. Given the
parameters in Tables II and III for the resources, power
consumption, and VM demand values, the average CPU
demand per VM is 3 GHz for the PI VMs type, and thus a
huge number of CPUs will be used for VM allocation. A lot of
VMs will occupy a whole CPU on their own and not share the
CPU with other VMs. Given that the CPU has high power
consumption values, the resource power consumption is the
highest and exceeds the network power consumption.

In relation to the networking power, Fig. 10 shows the
active racks of each type when serving 1000 VM requests for
the three VM types, PI, MI, and IOI. Examining Fig. 10
reveals that considering 1000 PI VM requests results in a case
where all the racks in the cluster are activated, regardless of
their utilization, where an active rack means there is an
outgoing/incoming traffic. Each CPU rack has an active
memory and IO racks among its neighbors, enforced by the
heuristic, and thus all traffic, in this case, will be a single hop
traffic resulting in about 80 kW networking power
consumption, which is less than the power consumed by the
resources.

Fig. 9.b shows the evaluation for the MI VM requests and
compares the two power components: the network and
resource powers. As in PI, both the network power and
resource power consumption increase with increasing number

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

PI MI IOI

P
ow

e
r

co
ns

um
pt

io
n

kW

VM types

DS MILP DS Heuristic CS MILP

0

1

2

3

4

5

6

7

5 10 15 20 25

P
ow

e
r

co
ns

um
pt

io
n

kW
Number of VMs

CS DS

15

of VMs. The increase in resource power is far less, however,
than the increase in network power consumption, as memories
consume few watts, and only two CPU racks are enough to
accommodate the processing requirements of all the VMs
under consideration. Inspecting Fig. 10, and the MI results in
particular, all the memory racks are used, but only two CPU
racks and two IO racks are used. This is due to the approach
followed by our heuristic when performing the resource
allocation and packing. The heuristic first allocates the best
available CPU to reduce the number of working CPUs,
resulting in only two working CPU racks, whereas the
memory and IO allocations follow the CPU allocation by
choosing the closest memory and IO racks to the used CPU
rack that have enough capacity to accommodate the VM under
consideration.

Thus, the traffic due to these CPU racks destined to the
memory racks, which typically has moderate values, has to
travel through long pathways, passing a significant number of
multi-hop links and further increasing the network power
consumption. In the same manner, the traffic from the memory
racks to the IO racks traverses almost the whole cluster, in
some cases, to reach its destination. This leads to about 138
kW networking power consumption, following resource
packing, which reduces the number of active resources
(processing resources especially), resulting in the minimum
resources power consumption.

Fig. 9.c shows the power consumption of the DS heuristic
for IOI VMs. As the IOI VM type has the lowest CPU-MEM
traffic values, and due to both good resource packing for this
energy efficient module and traffic routing by the heuristic,
this scenario resulted in the minimum network power
consumption and minimum resources power consumption
which yielded minimum total power consumption. Fig. 10
reveals that all IO racks are working in addition to only two
power consuming CPU racks and seven memory racks. Again,
this can be explained by observing the way the heuristic
works. The heuristic’s first priority is to allocate the VMs in
the smallest number of CPUs. After that, the memory and IO
modules allocation follows the CPU allocation by choosing
the closest available resources to the used CPUs.

It can clearly be seen in Fig. 10 that the heuristic preferred
memory racks # 9 and #10 instead of #6, #7 and #8.
Examining Fig. 5 shows that CPU racks 1 and 2 are closer to
memory racks 9 and 10 compared to racks 6, 7 and 8.

To show the effect of the power consumption attributed to
communications on the overall power saving, Fig. 11
compares the average power consumption of the CS based
data center design to the power consumption of the DS based
data center design for a large number of VMs ranging from
100 to 1000 VMs and considering the PI, MI, and IOI VM
types. The CS approach is implemented as a heuristic, where
the total number of coupled resources required to form server
units to serve incoming VMs are determined, and then 150 W
is added to the power consumption of the resources of each
active server to account for the internal communication
overhead. Fig. 11 shows that the average power saving for the
processing intensive DS with communication fabric (PI
DSCF) is about 10% when compared with the processing
intensive CS with communication fabric (PI CSCF). This is
due to the use of the power-hungry processing resources in

both DS and CS designs to a high extent when compared to
the number of used memory and IO resources in the DS.

However, due to the DS ability to pack a higher number of
VMs in fewer resources (i.e. memory and IO in this case), DS
managed to save a considerable fraction of the power
compared to CS. Regarding the networking power
consumption, as discussed earlier in this section, the allocation
of VMs in the DS racks led to a communication pattern such
that all traffic passes single hop paths, leading to moderate
network power consumption in spite of having high traffic
values associated with the PI VM demands, and leading to
overall total power saving compared to CS.

(a) PI

(b) MI

(c) IOI

Fig. 9. The power consumption of the EERP-DSCF with a large number of
VMs.

Fig. 11 shows the average power saving for the memory
intensive DS with communication fabric (MI DSCF) design.
The saving is about 53% compared to the memory intensive

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

100 200 300 400 500 600 700 800 900 1000

P
o

w
e

r
C

o
n

su
m

p
tio

n
 (

W
)

Number of VMs

EERP-DSCF (Total) EERP-DSCF (NetP) EERP-DSCF (RESP)

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

1.8E+05

100 200 300 400 500 600 700 800 900 1000

P
o

w
e
r

C
o

n
su

m
p

tio
n

 (
W

)

Number of VMs

EERP-DSCF (Total) EERP-DSCF (NetP) EERP-DSCF (RESP)

0.E+00

2.E+04

4.E+04

6.E+04

8.E+04

1.E+05

1.E+05

100 200 300 400 500 600 700 800 900 1000

P
o

w
e
r

C
o

n
su

m
p

tio
n

 (
W

)

Number of VMs

EERP-DSCF (Total) EERP-DSCF (NetP) EERP-DSCF (RESP)

16

CS with communication fabric (MI CSCF). The higher saving
percentage for the MI results when compared with the
previous PI results is due to the efficient utilization of the
power intensive CPU resources in the DS compared to the CS.
In the CS a large number of servers has to be powered-on due
to the congestion on the memory modules.

In relation to the networking power consumption, serving
MI requests increases the network power consumption in DS
when compared with PI and IOI demands as shown in Fig. 9.
Having a large number of working memory racks and a lower
number of working CPU and IO racks increases the traffic
among these racks and many traffic flows take multi-hop
paths. However, the DS total power consumption (resources
plus networking) is still lower than the CS total power
consumption, as CS operates a large number of servers,
roughly the same as the number of powered-on memory
modules in the DS, which maintain the higher CS power
consumption when compared to DS.

Fig. 10. Active racks considering 1000 VM requests.

Fig. 11. Average power consumption of EERP-DSCF compared to CS with
communication fabric.

Similarly, the IOI VMs scenario resulted in the highest
power saving, with an average power saving of about 63%
compared to CS.

For the resource power, the IOI VMs consume less power
than the PI VMs but more than the MI VMs scenarios.
According to Fig. 10, the communication power in IOI VMs,
as explained earlier, is much lower than the MI VMs scenario,
thus, the IOI VM scenario total power is the smallest among
other VM types, resulting in the highest power saving.

Finally, we investigate the other extreme scenarios
represented by mixed VM demands, such as PI+MI VMs or
PI+MI+IOI VMs. Table IV captures the requirements of these
mixed VM types. Note that we selected the maximum demand
values in each set of VM combinations to establish the power
savings limits.

TABLE IV
INPUT MIXED VMS RESOURCES AND TRAFFIC REQUIREMENTS

 VM Type
Demands

PI+MI PI+IOI MI+IOI PI+MI+IOI

CPU (GHz) 2-3.6 2-3.6 0.1-0.3 2-3.6
Mem (GB) 6-8 1-4 6-8 6-8
IO (Gbps) 0.5-1 6-10 6-10 6-10
CPU-MEM Traffic
(Gbps)

10-100 10-100 10-50 10-100

CPU-IO Traffic (Gbps) 1-3 1-3 1-3 1-3
MEM-IO Traffic (Gbps) 1-5 6-10 6-10 6-10

The VMs requirements, resources, and traffic values have

been chosen to cover the extreme values for the considered
types to cover a variety of VMs categories. Fig. 12 shows the
total power consumption of the four different scenarios
mentioned in Table IV, for both DS and CS servers.

The MI+IOI and PI+MI scenarios have the highest power
savings, about 28% and 27% respectively. For the first
scenario (MI+IOI), due to the low CPU demands and
relatively low CPU-MEM traffic values compared to the other
VM types, this scenario resulted in the best power profile
followed by the PI+MI scenario.

Fig.12. The power consumption of DS and CS heuristics considering a variety

of 1000 VM requests.

The mixed PI+MI scenario has a higher CPU demand
compared to the MI+IOI VMs scenario, but lower IO demand
and MEM-IO traffic compared to the other scenarios (PI+IOI
and PI+IOI+MI). Thus, it has higher power savings than both,
but lower than MI+IOI due to its high CPU demand and CPU-
MEM traffic. The last two scenarios, PI+IOI and PI+MI+IOI,

0

20

40

60

80

100

120

140

160

PI DSCF PICSCF MI DSCF MI CSCF IOI DSCF IOI CSCF

P
o

w
e

r
C

o
n
s
u
m

p
ti
o

n
 (

kW
)

0

50

100

150

200

250

300

350

CS DS CS DS CS DS CS DS

PI+MI PI+IOI MI+IOI PI+MI+IOI

P
o

w
e

r
C

o
n

su
m

p
tio

n
 (

kW
)

VM Type

17

resulted in the minimum power savings: 17%, and 15%,
respectively. This is consistent with the resources demands
and traffic values required by these VM types. The worst
scenario PI+MI+IOI has all the highest values thus it has the
worst saving while the PI+IOI has also all the highest values
except for the least power consumers, the memory demands,
which resulted in low power saving but slightly more than the
PI+MI+IOI.

Regarding the traffic values, Fig. 13 is a case study which
shows the effect of having high CPU-MEM traffic on the total
power saving considering 1000 IOI VMs. This case study
investigates the highest power saving scenario, IOI VMs (note
that IOI VMs represent video streaming which currently
accounts for about 90% of the traffic in the Internet, ie outside
the data center [60]. The case study clearly shows that
increasing the high CPU-MEM traffic increases the DS power
consumption until it reaches the point where both designs have
the same power profiles at around 225 Gbps traffic rate.

With the increase in the traffic, the CS design gives a
better power profile than the DS design. However, the
evaluations conducted in this paper are based on current
technologies with very conservative assumptions. With future
improved communications technologies, the DS architecture is
expected to be a promising choice over several dimensions,
especially the energy-saving dimension.

Fig. 13. Heuristic results showing the effects of increasing the CPU-MEM

traffic on the total power consumption considering 1000 IOI VMs.

The results in this section so far computed the DS power as
the sum of the power consumption of CPU, IO and memory.
Therefore the results were based on a 150W idle power
consumption that is all attributed effectively to
communications in the CS. A fairer comparison is presented in
Fig. 14 (which can be compared to the 1000 VMs case in Fig.
8) where the proportion of idle power attributed to
communications in the CS is varied from zero up to the
maximum idle power of 150W. Note that any power attributed
to communications in the CS is not moved to the DS. The
remaining part of the idle power (not attributed to
communications) is moved to the DS and may account for
hard disks, fans etc. Furthermore, we report sensitivity
analysis where the non-IT power consumption (cooling, power
supply, etc.) in the DS design was changed by ± 20%. The
increase in non-IT power consumption indicates a less
efficient cooling and power supply system for the rack scale
DS design. The decrease can mean that sharing cooling and
using large centralized power supplies may result in non-IT

power savings in the DS design. Therefore, our results explore
a range of possible future evolution scenarios in areas (cooling
and power supply) that are beyond the scope of
communication, networking and lightwave design, the focus
of this paper.

(a) IOI

(b) MI

(c) PI

Fig. 14. Heuristic results showing the impact of considering different non-
communication power consumption values in DS, under 1000 IOI, MI and PI
VMs.

As can be seen in Fig.14, serving IOI VMs, can still
produce considerable power savings with an average of 36%
power saving . Serving MI VMs has an average power saving
of 13% while the least power saving scenario (serving PI
VMs) has savings only when the CS communication power is
remarkably high (125 W or more), or when the DS fabric
power consumption decreases with progress in
communications and switching power consumption reduction.

0

50

100

150

200

250

300

350

5 -20 5 -50 5 - 100 5 -150 5 - 200 5 - 250

P
o

w
e
r

C
o

n
su

m
p

tio
n

 k
W

CPU-M Traffic rate (Gbps)

DS CS

0

50

100

150

200

250

300

0 25 50 75 100 125 150

P
ow

e
r

co
ns

um
pt

io
n

kW

CS intra-server communication power consumption

CS DS DS with +20% DS with -20%

50

100

150

200

250

300

350

400

0 25 50 75 100 125 150

P
ow

e
r

co
ns

um
pt

io
n

kW

CS intra-server communication power consumption W

CS DS DS with +20% DS with -20%

125

175

225

275

325

375

425

0 25 50 75 100 125 150

P
ow

e
r

co
ns

um
pt

io
n

kW

CS intra-server communication power consumption W

CS DS DS with +20% DS with -20%

18

V. DISAGGREGATED SERVER IMPLEMENTATION

TECHNOLOGIES AND LIMITATIONS

In our new design, packets have special packet formats.
The CPUMC encapsulates the memory address and control
information, such as read, write, number of successive bytes,
and any other information, as an Ethernet packet, for
communication between the processor and memory modules
located in different racks. The IO packet engine encapsulates
the IO address and control information for the CPU IO
communication, as an Ethernet packet. For example, a packet
sent from a CPU contains an address part (header) and data
(payload). The address contains the IP of the destination rack
and the ID of the specific module memory or IO which the
CPU wants to access. These are provided by the data center
global operating system. The rack IP address is used by the
CPU rack MEXC or IOEXC switch to forward the packet to
the destination rack. On receiving the packet at the destination
rack, the top of rack switch, MMC or IOEXC, reads the
specific module ID and forwards the packet to its right
destination module. Thus, all the communication passes
through the electronic (Ethernet) ToR switches. For high
performance computing, such as the DS data center, low
latency switching is a key element to enable upper layer
latency sensitive applications; thus, switch latency is
becoming a very critical factor [27].

Here, we describe some proposals that can further reduce
the total latency in our design: (i) we suggest the use of a
reduced switching protocol overhead and simple packet format
due to the topology and data nature, which will jointly help in
reducing the total system latency; (ii) our switches could be
designed specifically for certain packets formats, like the
CPU-MEM, CPU-IO, and MEM-IO, instead of generic IP
switches; (iii) we propose the use of flexible protocol formats
to handle different applications that have different latency
restrictions. Thus, for latency tolerant applications, we allow
the use of implicit circuit switching by establishing dedicated
channels for a given time for this specific application; (iv) the
use of MPLS as a simple switching technique or implicit
circuit switching with time division multiplexing (TDM); (v)
implementing optical switching (circuit [61], packet [62], [63],
[64], label [63], and burst switching [65]) as a fast and reliable
switching technique, which will also eliminate the need for
some of the optical transceivers which perform optical to
electrical to optical conversion when electronic switches are
used. For example, optical burst switching can be useful for
memory communications which are typically bursty in nature
(e.g. file downloading). The elimination of the
packetizer/depacketizer is also attractive; (vi) finally, by
looking at the latency reduction trends in recent years in
Ethernet switches [66], [67], [68]; attributed to new advanced
switching architecture design and improved silicon
technology, the Ethernet switch latency is decreasing from
double-digit milliseconds to sub-microsecond [69]. With this
trend, it is highly expected that the Ethernet switch latency
will arrive at a point that fits the DS requirements.

For the memory modules, we propose the use of high
performance components to overcome latency and
communication delay bottlenecks. DDR4 [70] is the latest
version of RAM technology, offering a range of improvements

over its predecessor, DDR3 [71], such as greater range of
available clock speeds and timings and lower power
consumption.

Compared to OSA recommendation for a 50ns round trip
delay between the CPU and the memory [27], the current
switching technology needs to further improve to comply with
such requirements in the introduced DS design. Considering
some of the previously mentioned implementation ideas and
future technology development, this design can be a promising
implementation for the DS. We believe that the switching
times of optical and electrical switches will continue to
improve with time.

VI. CONCLUSIONS AND FUTURE WORK

This paper has investigated the advantages of
disaggregated server (DS) design over traditional monolithic
conventional server (CS) design. First, we presented our new
design for the photonic-based DS data center architecture,
supplemented with a complete description of the architecture
components and communication patterns. Second, we
analyzed the energy efficient resource provisioning and VM
allocation in DS server design with communication fabric. A
MILP optimization was developed for the purpose of
optimizing VM allocation for DS-based data centers,
considering the communication fabric power consumption.
The results show that considering pooled resources yields
considerable power savings when compared with the CS
approach, and up to 42% average power savings were
achieved based on the MILP optimized system. Third, for real-
time implementation, we developed an energy efficient
resource provisioning heuristic for DS (EERP-DSCF), based
on the MILP model insights, with comparable power
efficiency to the MILP model. The effect of CPU-MEM traffic
values has been investigated by increasing the CPU to
memory traffic and comparing the DS and CS power
consumption. In addition, the impact of the inclusion of non
communication power has been considered by adding an extra
150 W non communication power (per CS equivalent server)
to the DS design. Finally, some recommendations for design
and implementation focus on the requirements, the capabilities
of different switching and implantation technologies, and the
challenges that this architecture can face. Planned future work
includes consideration of virtualization in DS-based data
centers, geo- distributed DS-based data centers, VM
scheduling, real-time VM migration, and VM blocking with
appropriate MILP models and heuristics together with
consideration of other performance metrics (beyond power
consumption) such as scalability, resilience, latency and
security.

References

[1] TechTarget, "A disaggregated server proves breaking up
can be a good thing", SearchDataCenter, 2016. [Online].
Available:
http://searchdatacenter.techtarget.com/feature/A-
disaggregated-server-proves-breaking-up-can-be-a-good-
thing. [Accessed: 01- Dec- 2016]."

[2] J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker, "Green
cloud computing: Balancing energy in processing, storage,

http://searchdatacenter.techtarget.com/feature/A-disaggregated-server-proves-breaking-up-can-be-a-good-thing
http://searchdatacenter.techtarget.com/feature/A-disaggregated-server-proves-breaking-up-can-be-a-good-thing
http://searchdatacenter.techtarget.com/feature/A-disaggregated-server-proves-breaking-up-can-be-a-good-thing

19

and transport," Proceedings of the IEEE, vol. 99, pp. 149-
167, 2011.

[3] "L. Barroso and U. Hölzle The case for energy-proportional
computing computer," IEEE Computer, vol. 40, pp. 33-37,
2007.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, "A scalable,
commodity data center network architecture," in ACM
SIGCOMM Computer Communication Review, 2008, pp.
63-74.

[5] A. Hammadi, T. El-Gorashi, and J. Elmirghani, "Energy-
Efficient Software-Defined AWGR-Based PON Data
Center Network," 2016.

[6] B. Kantarci, L. Foschini, A. Corradi, and H. T. Mouftah,
"Inter-and-intra data center VM-placement for energy-
efficient large-scale cloud systems," in 2012 IEEE
Globecom Workshops, 2012, pp. 708-713.

[7] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, "The
cost of a cloud: research problems in data center networks,"
ACM SIGCOMM computer communication review, vol. 39,
pp. 68-73, 2008.

[8] X. Dong, T. El-Gorashi, and J. M. Elmirghani, "Green IP
over WDM networks with data centers," Journal of
Lightwave Technology, vol. 29, pp. 1861-1880, 2011.

[9] A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani,
"Distributed energy efficient clouds over core networks,"
Journal of Lightwave Technology, vol. 32, pp. 1261-1281,
2014.

[10] A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani,
"BitTorrent content distribution in optical networks,"
Journal of Lightwave Technology, vol. 32, pp. 3607-3623,
2014.

[11] X. Dong, T. E. El-Gorashi, and J. M. Elmirghani, "On the
energy efficiency of physical topology design for IP over
WDM networks," Journal of Lightwave Technology, vol.
30, pp. 1694-1705, 2012.

[12] X. Dong, T. El-Gorashi, and J. M. Elmirghani, "IP over
WDM networks employing renewable energy sources,"
Lightwave Technology, Journal of, vol. 29, pp. 3-14, 2011.

[13] L. Nonde, T. E. El-Gorashi, and J. M. Elmirghani, "Energy
efficient virtual network embedding for cloud networks,"
Journal of Lightwave Technology, vol. 33, pp. 1828-1849,
2015.

[14] A. Pagès, J. Perelló, F. Agraz, and S. Spadaro, "Optimal
VDC Service Provisioning in Optically Interconnected
Disaggregated Data Centers," IEEE Communications
Letters, vol. 20, pp. 1353-1356, 2016.

[15] I. "The Case for Rack Scale Architecture", 2016. [Online].
Available:
http://www.intel.com/content/www/us/en/architecture-and-
technology/rsa-introduction-paper.html. [Accessed: 01-
Dec- 2016].

[16] I. "Design Guide for Photonic Architecture", 2016
[Online]. Available:
http://opencompute.org/assets/Uploads/Open_Compute_Pr
oject_Open_Rack_Optical_Interconnect_Design_Guide_v0
.5.pdf. [Accessed: 01- Dec- 2016].

[17] Intel, "New Photonic Architecture Promises to
Dramatically Change Next Decade of Disaggregated Rack
Scale Server Designs". [Online]. Available:
https://newsroom.intel.com/news-releases/intel-facebook-
collaborate-on-future-data-center-rack-technologies.
[Accessed: 01- Dec- 2016]."

[18] P. Grun, "Introduction to infiniband for end users".
[Online]. Available:
http://www.mellanox.com/pdf/whitepapers/Intro_to_IB_for

_End_Users.pdf. [Accessed: 10-Jun-2017]," White paper,
InfiniBand Trade Association, 2010.

[19] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P.
Ranganathan, et al., "System-level implications of
disaggregated memory," in IEEE International Symposium
on High-Performance Comp Architecture, 2012, pp. 1-12.

[20] K. Lim, Y. Turner, J. Chang, J. R. Santos, and P.
Ranganathan, "Disaggregated Memory Benefits for Server
Consolidation"." HP Laboratories, 2011.

[21] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch, "Disaggregated memory for
expansion and sharing in blade servers," in ACM SIGARCH
Computer Architecture News, 2009, pp. 267-278.

[22] K. T.-M. Lim, "Disaggregated memory architectures for
blade servers". [Online]. Availabe:
http://web.eecs.umich.edu/~tnm/trev_test/dissertationsPDF/
kevinL.pdf. [Accessed: 10-Jun-2017]," Hewlett-Packard
Labs, 2010.

[23] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S.
Shenker, "Network support for resource disaggregation in
next-generation datacenters," in Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, 2013, p. 10.

[24] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth,
"Hecatonchire: enabling multi-host virtual machines by
resource aggregation and pooling," Digitala Vetenskaplika
Arkivet, 2014.

[25] C.-C. Tu, C.-t. Lee, and T.-c. Chiueh, "Marlin: a memory-
based rack area network," in Proceedings of the tenth
ACM/IEEE symposium on Architectures for networking
and communications systems, 2014, pp. 125-136.

[26] Cisco, "Cisco Composable Infrastructure Optimize Your
Infrastructure for Each Application in Seconds", Cisco,
2016 [Online]. Available:
https://www.cisco.com/c/dam/en/us/products/collateral/serv
ers-unified-computing/ucs-m-series-modular-servers/at-a-
glance-c45-735889.pdf. [Accessed: 01- Dec- 2016]."

[27] OSA, "Photonics for Disaggregated Data Centers
Workshop," 2015.

[28] Y. Yan, Y. Shu, G. M. Saridis, B. R. Rofoee, G. Zervas,
and D. Simeonidou, "FPGA-based optical programmable
switch and interface card for disaggregated OPS/OCS data
centre networks," in Optical Communication (ECOC),
2015 European Conference on, 2015, pp. 1-3.

[29] Y. Yan, G. M. Saridis, Y. Shu, B. R. Rofoee, S. Yan, M.
Arslan, et al., "All-Optical Programmable Disaggregated
Data Centre Network Realized by FPGA-Based Switch and
Interface Card," Journal of Lightwave Technology, vol. 34,
pp. 1925-1932, 2016.

[30] Intel and Tancent, "Tencent Explores Datacenter Resource
Pooling Using Intel® Rack Scale Architecture (Intel®
RSA)". [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/docu
ments/white-papers/rsa-tencent-paper.pdf. [Accessed: 01-
Dec- 2016]."

[31] B. Abali, R. J. Eickemeyer, H. Franke, C.-S. Li, and M. A.
Taubenblatt, "Disaggregated and optically interconnected
memory: when will it be cost effective?," arXiv preprint
arXiv:1503.01416, 2015.

[32] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D.
Theodoropoulos, I. Koutsopoulos, et al., "Rack-scale
disaggregated cloud data centers: The dReDBox project
vision," in 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016, pp. 690-695.

[33] H. M. M. Ali, A. Q. Lawey, T. E. El-Gorashi, and J. M.
Elmirghani, "Energy efficient disaggregated servers for
future data centers," in Networks and Optical

http://www.intel.com/content/www/us/en/architecture-and-technology/rsa-introduction-paper.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rsa-introduction-paper.html
http://opencompute.org/assets/Uploads/Open_Compute_Project_Open_Rack_Optical_Interconnect_Design_Guide_v0.5.pdf
http://opencompute.org/assets/Uploads/Open_Compute_Project_Open_Rack_Optical_Interconnect_Design_Guide_v0.5.pdf
http://opencompute.org/assets/Uploads/Open_Compute_Project_Open_Rack_Optical_Interconnect_Design_Guide_v0.5.pdf
https://newsroom.intel.com/news-releases/intel-facebook-collaborate-on-future-data-center-rack-technologies
https://newsroom.intel.com/news-releases/intel-facebook-collaborate-on-future-data-center-rack-technologies
http://www.mellanox.com/pdf/whitepapers/Intro_to_IB_for_End_Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_to_IB_for_End_Users.pdf
http://web.eecs.umich.edu/~tnm/trev_test/dissertationsPDF/kevinL.pdf
http://web.eecs.umich.edu/~tnm/trev_test/dissertationsPDF/kevinL.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-m-series-modular-servers/at-a-glance-c45-735889.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-m-series-modular-servers/at-a-glance-c45-735889.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-m-series-modular-servers/at-a-glance-c45-735889.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf

20

Communications, 2015. NOC 20th European Conference
on, 2015, pp. 1-6.

[34] H. M. Ali, A. Lawey, T. E. Elgorashi, and J. Elmirghani,
"Energy Efficient Resource Provisioning in Disaggregated
Data Centres," in Asia Communications and Photonics
Conference, 2015, p. AM1H. 1.

[35] H. Mohammad Ali, A. Al-Salim, A. Q. Lawey, T. El-
Gorashi, and J. M. Elmirghani, "Energy Efficient Resource
Provisioning with VM Migration Heuristic for
Disaggregated Server Design," 2016.

[36] B. Akesson, "An introduction to SDRAM and memory
controllers". [Online]. Available:
http://www.es.ele.tue.nl/~premadona/files/akesson01.pdf.
[Accessed: 01- Dec- 2016]."

[37] J. P. Hayes, Computer architecture and organization:
McGraw-Hill, Inc., 2002.

[38] H. M. Servers. Energy Efficient Integrated Infrastructure
Servers". [Online]. Available:
https://www.hpe.com/uk/en/servers/moonshot.html.
[Accessed: 01- Dec- 2016].

[39] IBM, "Why Blade Servers?. [Online]. Available:
http://www-
05.ibm.com/hu/termekismertetok/xseries/dn/why_blade_se
rvers.pdf [Accessed: 16- Oct- 2017]."

[40] Y. Zhang and N. Ansari, "HERO: Hierarchical energy
optimization for data center networks," IEEE Systems
Journal, vol. 9, pp. 406-415, 2015.

[41] P. Costa, "Bridging the gap between applications and
networks in data centers," ACM SIGOPS Operating
Systems Review, vol. 47, pp. 3-8, 2013.

[42] QuickLogic, "Dual-processor Architectures for
Smartphones and Tablets".[Online]. Available:
http://www.quicklogic.com/technologies/connectivity/ipc/.
[Accessed: 20- Feb- 2017]."

[43] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, "On
the use of fuzzy modeling in virtualized data center
management," in Fourth International Conference on
Autonomic Computing (ICAC'07), 2007, pp. 25-25.

[44] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and
X. Zhu, "No power struggles: Coordinated multi-level
power management for the data center," in ACM SIGARCH
Computer Architecture News, 2008, pp. 48-59.

[45] R. Buyya, A. Beloglazov, and J. Abawajy, "Energy-
efficient management of data center resources for cloud
computing: A vision, architectural elements, and open
challenges," arXiv preprint arXiv:1006.0308, 2010.

[46] H. Goudarzi and M. Pedram, "Energy-efficient virtual
machine replication and placement in a cloud computing
system," in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, 2012, pp. 750-757.

[47] P. Svärd, "Live VM Migration: Principles and
Performance". [Online]. Available: http://www.diva-
portal.org/smash/get/diva2:707793/FULLTEXT02.
[Accessed: 10-Jun-2017]," 2012.

[48] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D.
Pendarakis, "Efficient resource provisioning in compute
clouds via vm multiplexing," in Proceedings of the 7th
international conference on Autonomic computing, 2010,
pp. 11-20.

[49] ProLabs, "100G QSFP28 Optical Transceiver". [Online].
Available:
http://www.prolabs.com/products/datasheets/msa_standard/
QSFP28-100G-SR4-NC.pdf. [Accessed: 04- Jan- 2017]."

[50] Mellanox, "Power Saving Features in Mellanox Products".
[Online]. Available:

http://www.mellanox.com/pdf/whitepapers/WP_ECONET.
pdf. [Accessed: 04- Jan- 2017]."

[51] Enablence, "100GHz WAVELENGTH DIVISION
MULTIPLEXER/DEMULTIPLEXER". [Online].
Available:
http://www.enablence.com/media/mediamanager/pdf/18-
enablence-datasheet-ocsd-awg-standard-
100ghzmultidemulti.pdf. Accessed: 04- Jan- 2017]."

[52] Vertatique, "Average Power Use Per Server". [Online].
Available: http://www.vertatique.com/average-power-use-
server. [Accessed: 04- Jan- 2017]."

[53] X. Fan, W.-D. Weber, and L. A. Barroso, "Power
provisioning for a warehouse-sized computer," in ACM
SIGARCH Computer Architecture News, 2007, pp. 13-23.

[54] J. Niemann, "Best practices for designing data centers with
the infrastruxure inrow RC," Application note of American
Power Conversion, 2006.

[55] ARISTA, "ARISTA 7500 Data Center Switch". [Online].
Available:
https://www.arista.com/assets/data/pdf/Datasheets/7500_D
atasheet.pdf. [Accessed: 04- Jan- 2017]."

[56] GreenTouch, "GreenTouch Final Results from Green Meter
Research Study Reducing the Net Energy Consumption in
Communications Networks by up to 98% by 2020," A
GreenTouch White Paper, vol. Version 1, 15 August 2015.

[57] IBM, "Product Guide IBM System x3650 M3". [Online].
Available: https://lenovopress.com/tips0805.pdf.
[Accessed: 10-Jun-2017]," 2011.

[58] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson,
"Approximation algorithms for bin packing: a survey," in
Approximation algorithms for NP-hard problems, 1996, pp.
46-93.

[59] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K.
Periyathambi, and M. Horowitz, "Towards energy-
proportional datacenter memory with mobile DRAM," in
ACM SIGARCH Computer Architecture News, 2012, pp.
37-48.

[60] Cisco, "Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update, 2016–2021". [Online].
Available:
https://www.google.co.uk/?gfe_rd=cr&ei=gZdeWfuEKcG
N8QeJzIHYAg&gws_rd=ssl#q=cisco+vni+2017+pdf&spf
=1499371458951. [Accessed 07-Jul-2017]."

[61] Calient. CALIENT Optical Circuit Switch Brings Sub-60ns
Latency to Data Centers ". [Online]. Available:
http://www.calient.net/2012/09/calient-optical-circuit-
switch-brings-sub-60ns-latency-to-data-center-financial-
networks/. [Accessed: 01- Dec- 2016].

[62] B. A. Small, A. Shacham, and K. Bergman, "Ultra-low
latency optical packet switching node," IEEE photonics
technology letters, vol. 17, pp. 1564-1566, 2005.

[63] J. Luo, S. D. Lucente, J. Ramirez, H. J. Dorren, and N.
Calabretta, "Low latency and large port count optical
packet switch with highly distributed control," in Optical
Fiber Communication Conference, 2012, p. OW3J. 2.

[64] EpiPhotonics, "High-Speed PLZT Optical Switches".
[Online]. Available: http://epiphotonics.com/products.html.
[Accessed: 04- Jan- 2017]."

[65] B. Meagher, G. Chang, G. Ellinas, Y. Lin, W. Xin, T.
Chen, et al., "Design and implementation of ultra-low
latency optical label switching for packet-switched WDM
networks," Journal of lightwave technology, vol. 18, p.
1978, 2000.

[66] Cisco, "Cisco Nexus 3064-X, 3064-T, and 3064-32T
Switches".[Online]. Available:
http://www.cisco.com/c/en/us/products/collateral/switches/

http://www.es.ele.tue.nl/~premadona/files/akesson01.pdf
https://www.hpe.com/uk/en/servers/moonshot.html
http://www-05.ibm.com/hu/termekismertetok/xseries/dn/why_blade_servers.pdf
http://www-05.ibm.com/hu/termekismertetok/xseries/dn/why_blade_servers.pdf
http://www-05.ibm.com/hu/termekismertetok/xseries/dn/why_blade_servers.pdf
http://www.quicklogic.com/technologies/connectivity/ipc/
http://www.diva-portal.org/smash/get/diva2:707793/FULLTEXT02
http://www.diva-portal.org/smash/get/diva2:707793/FULLTEXT02
http://www.prolabs.com/products/datasheets/msa_standard/QSFP28-100G-SR4-NC.pdf
http://www.prolabs.com/products/datasheets/msa_standard/QSFP28-100G-SR4-NC.pdf
http://www.mellanox.com/pdf/whitepapers/WP_ECONET.pdf
http://www.mellanox.com/pdf/whitepapers/WP_ECONET.pdf
http://www.enablence.com/media/mediamanager/pdf/18-enablence-datasheet-ocsd-awg-standard-100ghzmultidemulti.pdf
http://www.enablence.com/media/mediamanager/pdf/18-enablence-datasheet-ocsd-awg-standard-100ghzmultidemulti.pdf
http://www.enablence.com/media/mediamanager/pdf/18-enablence-datasheet-ocsd-awg-standard-100ghzmultidemulti.pdf
http://www.vertatique.com/average-power-use-server
http://www.vertatique.com/average-power-use-server
https://www.arista.com/assets/data/pdf/Datasheets/7500_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7500_Datasheet.pdf
https://lenovopress.com/tips0805.pdf
https://www.google.co.uk/?gfe_rd=cr&ei=gZdeWfuEKcGN8QeJzIHYAg&gws_rd=ssl#q=cisco+vni+2017+pdf&spf=1499371458951
https://www.google.co.uk/?gfe_rd=cr&ei=gZdeWfuEKcGN8QeJzIHYAg&gws_rd=ssl#q=cisco+vni+2017+pdf&spf=1499371458951
https://www.google.co.uk/?gfe_rd=cr&ei=gZdeWfuEKcGN8QeJzIHYAg&gws_rd=ssl#q=cisco+vni+2017+pdf&spf=1499371458951
http://www.calient.net/2012/09/calient-optical-circuit-switch-brings-sub-60ns-latency-to-data-center-financial-networks/
http://www.calient.net/2012/09/calient-optical-circuit-switch-brings-sub-60ns-latency-to-data-center-financial-networks/
http://www.calient.net/2012/09/calient-optical-circuit-switch-brings-sub-60ns-latency-to-data-center-financial-networks/
http://epiphotonics.com/products.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/data_sheet_c78-651097.pdf

21

nexus-3000-series-switches/data_sheet_c78-651097.pdf.
[Accessed: 01- Dec- 2016]."

[67] Cisco, "Cisco SFS 7000P Infiniband Server Switch".
[Online]. Available:
http://www.cisco.com/c/en/us/products/collateral/switches/
sfs-7000p-infiniband-server-
switch/prod_bulletin0900aecd80337b11.pdf .[Accessed:
01- Dec- 2016]."

[68] M. Technologies, "M4001 16-port 40 and 56Gb/s
InfiniBand Blade Switches". [Online]. Available:
http://www.mellanox.com/related-
docs/oem/dell/Dell_M4001.pdf. [Accessed: 01- Dec-
2016]."

[69] Y. Yang, "Understanding Switch Latency". White Paper,
Cisco OSPF,(2009, September). [Online]. Available:
http://packetlife.net/captures/protocol/ospf/. [Accessed: 01-
Dec- 2016]."

[70] K.-W. Lee, J.-H. Cho, B.-J. Choi, G.-I. Lee, H.-D. Jung,
W.-Y. Lee, et al., "A 1.5-V 3.2 Gb/s/pin Graphic DDR4
SDRAM with dual-clock system, four-phase input strobing,
and low-jitter fully analog DLL," IEEE Journal of Solid-
State Circuits, vol. 42, pp. 2369-2377, 2007.

[71] C. Park, H. Chung, Y.-S. Lee, J. Kim, J. Lee, M.-S. Chae,
et al., "A 512-mb DDR3 SDRAM prototype with C IO
minimization and self-calibration techniques," IEEE
journal of solid-state circuits, vol. 41, pp. 831-838, 2006.

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/data_sheet_c78-651097.pdf
http://www.cisco.com/c/en/us/products/collateral/switches/sfs-7000p-infiniband-server-switch/prod_bulletin0900aecd80337b11.pdf
http://www.cisco.com/c/en/us/products/collateral/switches/sfs-7000p-infiniband-server-switch/prod_bulletin0900aecd80337b11.pdf
http://www.cisco.com/c/en/us/products/collateral/switches/sfs-7000p-infiniband-server-switch/prod_bulletin0900aecd80337b11.pdf
http://www.mellanox.com/related-docs/oem/dell/Dell_M4001.pdf
http://www.mellanox.com/related-docs/oem/dell/Dell_M4001.pdf
http://packetlife.net/captures/protocol/ospf/

