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Highlights 28 

 Biofilms are not routinely monitored in drinking water networks 29 

 The microbial ecology of a tropical water network was characterised by molecular methods 30 

 In this study, key engineered factors and microbiological parameters correlated 31 

 Bacterial communities in bulk water were different from those in biofilms 32 

 Biofilms must be monitored and controlled to preserve drinking water quality 33 

 34 

Keywords: bacteria, biofilm, bulk water, chlorine, drinking water quality, disinfection by-35 
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 37 

Abstract 38 

Operation and maintenance (O&M) of drinking water distribution networks (DWDNs) in 39 

tropical countries simultaneously face the control of acute and chronic risks due to the 40 

presence of microorganisms and disinfection by-products, respectively. In this study, 41 

results from a detailed field characterization of microbiological, chemical and 42 

infrastructural parameters of a tropical-climate DWDN are presented. Water 43 

physicochemical parameters and the characteristics of the network were assessed to 44 

evaluate the relationship between abiotic and microbiological factors and their 45 

association with the presence of total trihalomethanes (TTHMs). Illumina sequencing of 46 

the bacterial 16s rRNA gene revealed significant differences in the composition of biofilm 47 

and planktonic communities. The highly diverse biofilm communities showed the 48 

presence of methylotrophic bacteria, which suggest the presence of methyl radicals such 49 

as THMs within this habitat. Microbiological parameters correlated with water age, pH, 50 

temperature and free residual chlorine. The results from this study are necessary to 51 
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increase the awareness of O&M practices in DWDNs required to reduce biofilm formation 52 

and maintain appropriate microbiological and chemical water quality, in relation to biofilm 53 

detachment and DBP formation. 54 

 55 

1 Introduction 56 

Biofilms are a group of microorganisms living as a consortium and attached to surfaces 57 

due to the secretion of extracellular polymeric substances (EPS) (Srivastava and 58 

Bhargava 2015). Biofilms are a successful survival strategy thanks to the presence of 59 

EPS that protect cells against oxidant substances and improve availability of nutrients 60 

as a result of organic matter retention. In drinking water distribution networks (DWDNs), 61 

biofilms grow on any surface including pipes, valves, tanks, pumps and all the fittings of 62 

the system. Biofilms are a major concern for water utilities. They can lead to corrosion 63 

(Wang et al. 2011) and discoloured waters (Douterelo et al. 2014b), and pathogens may 64 

be released to bulk water or detach and recolonize clean surfaces (WHO 2008). They 65 

also act as precursors for the formation of disinfection by-products (DBPs), and 66 

consequently, contribute to disinfectant decay (Wang et al. 2013a).  67 

 68 

The control of microorganisms in DWDNs is predominantly conducted through chemical 69 

disinfection. Chlorine was introduced to urban DWDNs at the beginning of the 20th 70 

century and it has been used since then to control pathogenic bacteria in drinking water 71 

systems around the world (Sadiq and Rodriguez 2004). Chlorine remains popular for its 72 

ease of use, relatively low cost and relative appropriate effectiveness, and especially for 73 

its residual effects (Sadiq and Rodriguez 2004). However, the formation of DBPs such 74 

as trihalomethanes (THMs) by the chlorine oxidation of natural organic matter present in 75 

water sources (Rook 1974) changed the perspective that drinking water safety was only 76 

related to pathogens. 77 
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It is now widely accepted that DBPs are potentially carcinogenic, teratogenic and 78 

mutagenic substances (WHO 2008), and hence their control in water treatment works 79 

has improved considerably. THMs and haloacetic acids (HAAs) are regulated by most of 80 

the water authorities worldwide since they are the most persistent DBP species found in 81 

drinking water (Hrudey 2009, Bull et al. 2011). THMs and HAAs are now considered as 82 

largely unrelated to public health risks, but are currently considered primarily as 83 

surrogates or indicators for other DBPs (Hrudey 2009, Bull et al. 2011). Recently, 84 

emerging DBPs have increased with the changes of disinfection processes and some of 85 

them, for example haloacetonitriles, are substantially more toxic than THMs (Muellner et 86 

al. 2007). Consequently, the risk management associated with the control of DBP 87 

formation should be addressed to reduce the precursors of these substances, which may 88 

reduce other conceivable DBP formation and consequently should not create an 89 

alternative DBP risk (Hrudey 2009). 90 

 91 

Although there is increasing research into biofilms in DWDNs, their analysis has not yet 92 

been included in routine operative and regulatory plans in the water industry. The 93 

majority of biofilm studies in DWDNs have been conducted in temperate climate 94 

geographic regions, with pipe materials and ages typical from industrialised countries 95 

(Holinger et al. 2014, Kelly et al. 2014, Sun et al. 2014, Wang et al. 2014). Studies 96 

coupling microbial, engineered and physicochemical factors together are very limited. 97 

Wang et al. (2014) evaluated the influence of three factors (disinfectant, water age and 98 

pipe material) on the microbial structure in a simulated drinking water network. Ji et al. 99 

(2015) also studied a simulated system to evaluate the influence of three factors (water 100 

chemistry, pipe material and stagnation) in plumbing systems, located at the outlet of five 101 

water treatment plants. To date, there is only one field study reported in a tropical, 102 

developing country (Ren et al. 2015) and therefore there is a clear need for further 103 

studies in this area. 104 
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The current study characterised the physical properties, water chemistry and bacterial 105 

communities of a DWDN located in a tropical-climate city. The aim of the study was to 106 

explore the relationships between biotic and abiotic factors, and to further understand 107 

the potential involvement of bacteria in DBP formation. Such relationships are important 108 

to determine the dynamics occurring in a DWDN and to understand the complexity 109 

present in a real-world system. Furthermore, the results reported here are needed to 110 

inform operational strategies and to ultimately protect public health. 111 

 112 

2 Materials and Methods  113 

2.1 Drinking water distribution network 114 

The study site was a DWDN in the city of Cali (Colombia), located at 995 meters above 115 

sea level and with an annual average temperature of 24.5 °C (23.8-25.1 °C). The DWDN 116 

comprises four sub-networks originated from four surface water sources and five 117 

treatment facilities. These sub-networks operate by gravity, pumping, or by a 118 

combination of both. In total, the entire distribution network includes 2,951 Km of 119 

pipelines, 10 service reservoirs, 28 storage tanks, and 19 pumping stations in order to 120 

deliver water to 2,946,245 people.  121 

 122 

Sampling was carried out within the biggest sub-network that is fed with the Cauca River, 123 

the second most important Colombian river, which is treated by conventional processes 124 

including primary and secondary chlorine disinfection. The main treatment facility feeding 125 

this sub-network has two open-air clarified-water reservoirs to be used as alternative 126 

water source during events in which the turbidity of raw water is higher than 1,000 NTU. 127 

Therefore, when turbidity readings from raw water exceed such threshold, the intake is 128 

closed and the treatment work is fed from the two storage reservoirs until turbidity 129 

readings drop below 1,000 NTU or for up to 9 hours. If turbidity readings do not drop 130 
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below 1,000 NTU after this time, drinking water supply is interrupted and affecting almost 131 

80% of the served population. 132 

 133 

2.2 Sample collection 134 

Pipe sections were taken from nine sites reporting leakages over a 3-week period; one 135 

site corresponded to a branch pipe (point 7) and the remaining eight to end of pipe 136 

networks (Figure 1). It is important to highlight that sampling points 3 and 7 are two 137 

different points but are closely located, and therefore they look overlapped in Figure 1. 138 

Pipe sections were taken during leakage repairs to enable biofilm collection. In order to 139 

preserve the biofilm and minimise any contamination from soil attached to external pipe 140 

walls, each pipe section was rinsed after removal with sterile water, wrapped in polythene 141 

and transported at 4 ºC for subsequent biofilm and DNA isolation. Bulk water samples 142 

were collected at the same time from the nearest household. Households’ taps were 143 

flushed for 5 min, and then 6 L of drinking water were collected in sterile plastic bottles. 144 

Each sampling point was characterized by water age and pipe characteristics (i.e., pipe 145 

material, working age, and diameter). 146 

 147 

Water age was determined from a hydraulic model applied to the sub-network and 148 

provided by the local water company. This model was implemented in the software 149 

Infowater 11.5 and EPANET 2.00.12. Raw water age data provided by the water 150 

company were processed with the software ArcMap 10.2.2 to create Thiessen polygons 151 

and then calculate water age zones classified in four ranges: low (<8.5 hours), medium 152 

(8.5-13.0 hours), high (68.0-146.0 hours) and very high (>146.0 hours). 153 
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 154 

Figure 1. Location of sampling points 155 

 156 

2.3 Physicochemical analysis 157 

In-situ water parameters were measured as follows: (a) Temperature was measured by 158 

a bulb thermometer; (b) pH by portable meter kit (HQ40d HACH Cat. No. 159 

HQ40D53000000, Loveland, CO) coupled to a pH electrode; and (c) total and free 160 

chlorine by the DPD method using a HACH colorimeter II (Cat. No. 58700-00, Loveland, 161 

CO). Quantification of Total Organic Carbon (TOC) and total THMs (TTHMs) in bulk 162 

water was carried out by an accredited laboratory following standard methods (Eaton et 163 

al. 2005). Equipment for TOC and TTHMs analysis were total carbon analyser 164 

(Shimadzu TOC 5050A, article number 3750 K3-2, Columbia, MD) and gas 165 
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chromatograph (HP 5890, Wilmington, DE and Agilent Technologies 7890B, Santa 166 

Clara, CA.), respectively. 167 

 168 

TOC and dry-biomass were measured by scrapping a defined area on the pipe surface 169 

of 75 cm2 in triplicate. For TOC measurement in biofilms, scrapped biofilms were 170 

resuspended in 250 mL of deionized water. For dry biomass, scrapped samples were 171 

dried at 105 °C, for 24 hours and dry biomass per area (unit dry biomass) was calculated. 172 

Due to the presence of a high amount of tubercles in the cast iron (CI) pipe of point 2, it 173 

was not possible to calculate the unit dry biomass for this sample (Figure 2). On the 174 

contrary, the surface of asbestos cement pipelines was flat, then scrapping biofilms from 175 

them was a normal procedure. Detachment of asbestos fibres was observed during 176 

scrapping biofilms. 177 

 178 

Figure 2. Tubercles in cast iron pipe – Sampling Point 2 179 

 180 

2.4 Molecular methods 181 

After rinsing the internal walls of the pipelines in the laboratory, biofilm samples were 182 

collected by scrapping in triplicate using a sterile frame with area equal to 25 cm2 and a 183 

sterile spatula. DNA isolation was carried out using the Power Biofilm DNA Kit (MoBio, 184 

USA) according to the manufacturer’s instructions. In total 6 L of water were filtered for 185 
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every sampling point (2 L for each triplicate) through nitrocellulose filters (0.22 m pore-186 

size); filters were further processed for DNA extraction using the Power Water DNA Kit 187 

(MoBio Laboratories, Carlsbad, CA) according to the manufacturer’s instructions. 188 

 189 

Sequencing of DNA extracted from biofilm and water samples was performed by Illumina 190 

MiSeq Technology using the Illumina PE MySeq reagent Kit v3 according to the 191 

manufacturer's guidelines (Illumina, USA) and performed by the Molecular Research 192 

DNA Lab (Shallowater, TX, USA). 2-5 ng/L of DNA per sample (n=53) was used for 193 

amplification (no replicates per sample were generated) and the V4 variable region of 194 

the 16S rRNA gene was amplified using primers 515F/806R (Caporaso et al. 2011). 195 

Sequence data were processed using Mr DNA analysis pipeline (www.mrdnalab.com, 196 

MR DNA, Shallowater, TX). In summary, sequences were merged, depleted of barcodes 197 

and primers, sequences < 150 bp and with ambiguous base calls were removed from 198 

further analysis. Sequences were denoised and chimeras removed. Operational 199 

Taxonomic Units (OTUs) were defined by clustering at 3% divergence (97% similarity) 200 

and were taxonomically classified using BLASTn against a curated database derived 201 

from Greengenes, RDPII and NCBI (DeSantis et al. 2006) (http://www.ncbi.nlm.nih.gov/, 202 

http://rdp.cme.msu.edu). 203 

 204 

The total number of reads generated per sample ranged between 7780-304912 and 205 

between 13759-238406, for biofilm and bulk water samples, respectively. The number 206 

of reads that passed quality scores ranged between 7240-256972 for biofilm and 207 

between 10257-101379 for bulk water samples. The data set (number of reads per 208 

sample) was not normalised or rarefacted to assess alpha-diversity, in order to avoid 209 

losing information from potential important sequences (McMurdie and Holmes 2014). 210 

http://www.mrdnalab.com/
http://www.ncbi.nlm.nih.gov/
http://rdp.cme.msu.edu/
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2.5 Data analysis 211 

The alpha-diversity of the samples at 97% sequence similarity cut off was analysed by 212 

Margalef and Shannon community richness and diversity indices, respectively, which 213 

were calculated with Primer6 software (PRIMER-E, Plymouth, UK). The medians and 214 

means of such indices were statistically compared by t-test and Mann Whitney U test 215 

using the software IBM SPSS Statistics 21. Statistical tests were carried out to assess 216 

associations in both bulk water (species relative abundance (RA) and physicochemical 217 

characteristics and water age) and biofilms (species RA and pipe characteristics, water 218 

age, and unit dry biomass). The association of the RA of bacteria at species level and 219 

the characteristics of the sampling points were determined by multi-dimensional scale 220 

analysis (MDS), by means of Bray-Curtis similarity metrics, and analysis of similarities 221 

(ANOSIM) using Primer6 (Clarke and Warwick 2001). Spearman correlations were 222 

applied to determine the relationships between biofilm parameters and water 223 

characteristics; Shapiro-Wilk tests were run in IBM SPSS Statistics 21 to determine 224 

normal distribution of variables. All statistical results were contrasted with significance 225 

level equal to 0.05. 226 

 227 

3 Results 228 

3.1 Characterisation of the network, water quality and biotic parameters 229 

A summary of the network characteristics along with the corresponding water quality and 230 

biotic parameters is presented in Table 1. The predominant pipe material was asbestos 231 

cement (AC), with the exception of point 2, which corresponded to a CI pipeline. The 232 

water age for biofilm and water samples are comparable with the exception of point 4, 233 

where statistically significant differences were found. Since water samples were 234 

collected from taps in households located as close as possible from leakage sites where 235 

pipes were replaced to allow the collection of biofilm samples, water-related variables 236 
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were not associated with biofilm-related characteristics since the sampled pipeline was 237 

not directly supplying the sampled household in every case. 238 

 239 
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Table 1. Network characteristics, water quality and biotic parameters and descriptive statistics 240 

Sampling 

point No. 

Network characteristics Water age (hours) Water quality 
Biofilm 

characteristics 

Pipe 

material 

Pipe age 

(Years)  

Pipe 

diameter 

(Inches) 

Water sampling point 
Biofilm sampling 

point Temperature 

(°C) 

pH 

(Units) 

Free 

res. 

chlorine 

(mg/L) 

Total 

res. 

chlorine 

(mg/L) 

TTHMs 

(g/L) 

TOC 

(mg/L) 

Unit dry 

biomass 

(mg/cm2) * Value Classification Value Classification 

1 AC 56.45 4 13.95 High 13.99 High 26 7.32 1.20 1.35 30.3 0.819 1.41 

2 CI 57.08 4 9.71 Medium 9.71 Medium 25 7.16 1.66 1.76 28.9 10.104 - 

3 AC 33.88 3 12.37 Medium 12.37 Medium 25 7.35 1.28 1.43 23.5 1.210 1.45 

4 AC 35.24 4 146.01 Very high 8.12 Low - 7.04 0.12 1.61 36.7 1.453 0.29 

5 AC 24.55 4 14.41 High 15.59 High 25 6.76 1.30 1.45 28.3 1.527 0.38 

6 AC 42.81 8 10.06 Medium 10.06 Medium 26 7.01 1.12 1.33 35.5 1.739 3.23 

7 AC 33.77 12 11.71 Medium 11.47 Medium 28 7.02 1.15 1.21 30.8 2.139 0.23 

8 AC 52.85 4 13.23 High 13.23 High 26 6.86 0.86 1.02 38.6 1.849 2.09 

9 AC 50.96 4 8.00 Low 8.26 Low 27 6.62 1.31 1.57 33.3 2.157 3.34 

Median 26 7.02 1.20 1.43 30.80 1.739 1.41 ** 

Mean 26 7.02 1.11 1.41 31.76 2.555 5.20 ** 

Standard deviation 1 0.23 0.40 0.21 4.47 2.699 16.72 ** 

Coefficient of variation (CV) 3.85% 3.26% 36.25% 14.76% 14.09% 105.64% 321.53% ** 

* Average of replicates | ** Descriptive statistics of all data (including replicates) | AC: asbestos cement | CI: cast iron 241 
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Water quality characteristics including temperature, pH, free residual chlorine and TTHMs were 242 

within expected ranges, except for the lowest concentration of chlorine (0.12 mg/L) that was 243 

measured at point 4, which corresponded to the highest water age (146 h). Such concentration of 244 

free residual chlorine is considered very low according to the recommended values set for drinking 245 

water by local regulators in Colombia (0.3-2.0 mg Cl2/L) (Ministerio de la Protección Social 2007). 246 

TOC measured in biofilm samples presented a lower variation compared to the variation in biofilm 247 

mass. All concentrations of TOC in bulk water were reported as lower than the detection limit (<0.8 248 

mg/L). Regarding TTHMs, concentrations in all water samples were lower than 40 g/L, which falls 249 

below the maximum concentration of TTHMs allowed in drinking water according to Colombian and 250 

UK regulations (100 and 200 g TTHM/L, respectively) (Ministerio de la Protección Social 2007). 251 

 252 

Several water physicochemical characteristics were correlated to identify the dynamics present in 253 

the studied network; results are presented in Table 2. Significant negative correlations were found 254 

between total residual chlorine and temperature (p=0.019), free residual chlorine and water age 255 

(p=0.004) and free residual chlorine and TTHMs (p=0.017). Weak negative correlations were 256 

identified between temperature and free residual chlorine (p=0.052, slightly higher than the level of 257 

significance) and between pH and TTHMs (p=0.042). A positive correlation was observed between 258 

temperature and TTHMs (p=0.003).  259 

 260 

In relation to biotic factors, unit dry biomass presented the highest variation among all the variables 261 

analysed. Although calculation of the unit dry biomass in the CI pipe sample (sampling point 2) was 262 

not possible, the highest content of global dry biomass and TOC in the biofilm (233.7 - 3,664.8 mg) 263 

(10.10 mg/L; Table 1) were found in this point. Concerning biofilms, correlations presented in Table 264 

3 indicated that there is a strong positive relationship between unit dry biomass and pipe age 265 

(p=0.008). Additionally, water age was negatively correlated with TOC in biofilms but no association 266 

was identified between water age and unit dry biomass, possibly related to the influence of pipe 267 

age/material over the later variable. 268 

 269 
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Table 2. Spearman correlation coefficients for bulk water parameters 270 

Variables ↓→ 

Richness 

index 

(Margalef) 

Diversity 

index 

(Shannon) 

Water 

age 
pH Temperature 

Total 

residual 

chlorine 

Free 

residual 

chlorine 

TTHMs 

Richness index (Margalef) -               

Diversity index (Shannon) C.N.T -             

Water age  0.277 0.315 -           

pH 0.365 *** 0.414 * C.N.T -         

Temperature  -0.355 *** -0.238  C.N.T C.N.T -       

Total residual chlorine 0.074 0.149 -0.067 0.117 -0.476 * -     

Free residual chlorine -0.251 -0.273 -0.533 ** -0.033 -0.401 *** C.N.T -   

TTHMs -0.259 0.049 0.060 -0.594 * 0.802 ** C.N.T -0.671 * - 

Correlation is significant at the 0.05* / 0.01** level (2-tailed) 271 

*** Correlation coefficient slightly higher than 0.05 → 0.052  p-value  0.089 272 

C.N.T: correlation not tested 273 

 274 

Table 3. Spearman correlation coefficients for biofilm parameters 275 

Variables ↓→ 

Richness 

index 

(Margalef) 

Diversity 

index 

(Shannon) 

Water 

age  

Pipe 

age 

Unit dry 

biomass 
TOC 

Richness index (Margalef) -           

Diversity index (Shannon) C.N.T -         

Water age  0.364 *** 0.375 *** -       

Pipe age -0.404 * -0.512 ** C.N.T -     

Unit dry biomass -0.582 ** -0.733 ** -0.196 0.559 ** -   

TOC - biofilm -0.294 -0.357 -0.552 *** 0.334 0.259 - 

Correlation is significant at the 0.05* / 0.01** level (2-tailed) 276 

*** Correlation coefficient slightly higher than 0.05 → 0.059  p-value  0.068 277 

C.N.T: correlation not tested 278 

 279 
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3.2 Characterization of the bacterial community structure of biofilms and bulk water 280 

The RA to phylum and genera level for water and biofilm samples can be observed in Figure 3 and 281 

Figure 4, respectively; groups with RA lower than 10% were grouped in the category “Others”. Water 282 

samples were dominated by Proteobacteria (43-98%), followed by Cyanobacteria (0.05-41%), and 283 

Firmicutes (0.84–34%). Different genera were dominant in each water sample, but highly abundant 284 

genera in all samples were Bacillus, Brucella, Cyanothece, Methylobacterium, and Phyllobacterium 285 

(17.47-95.91%). Within the biofilm samples, the predominant phyla were Proteobacteria (26-72%), 286 

followed by Firmicutes (3–30%) and Actinobacteria (8-19%), and the most abundant genera in all 287 

samples were Acinetobacter, Alcaligenes, Alcanivorax, Bacillus, Deinococcus, Holophaga, and 288 

Thermoflavimicrobium (4.34–43.92%). 289 

 290 

Figure 3. Relative abundance of bacterial to phylum level (a) and genus level (b) in water samples 291 
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 292 

Figure 4. Relative abundance of bacterial groups to phylum (a) and genus level (b) in biofilm samples 293 

 294 

The ANOSIM test was applied to assess the relationships between species RA and engineered 295 

factors (Table S1). With regard to water samples, relationships between species RA and factors 296 

water age, free chlorine, pH, and free chlorine and water age combined were statistically significant. 297 

For biofilm samples, the ANOSIM test results were statistically significant for the factors pipe age 298 

and water age, and unit dry biomass and pipe age combined. Factor “Pipe material” was not included 299 

in the statistic tests due to only one sample was collected from CI pipeline, then comparison between 300 

CI and asbestos cement would not be statistically strong. Habitat was also a factor influencing the 301 

RA of species. MDS analysis also revealed that habitat and pipe material were the factors which 302 

showed clear groups of bacteria RA by categories (Figure 5a and Figure 5b, respectively). This 303 

means that RA of bacteria is clearly differentiated between habitats biofilm and bulk water. Similarly, 304 
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RA of bacteria is clearly grouped for pipe materials CI and asbestos cement. Importantly, 305 

methanotrophic organisms were observed in biofilm samples such as Methylobacterium (RA=1.16%) 306 

and Methylosinus (RA=3.34%). In bulk water, Spearman correlations with TTHMs were statistically 307 

significant for the genus Methylobacter (=0.437; p-value=0.023) and Methylobacterium (=-0.417; 308 

p-value=0.030). 309 

 310 

 311 

Figure 5. Non-metric MDS analysis of bacterial relative abundance. Factors Habitat (a) and pipe 312 

material -biofilm samples- (b) 313 

 314 

3.3 Microbial richness and diversity  315 

Richness and diversity were calculated (Table S2) according to factors such as habitat, pipe age, 316 

and water age. Spearman correlations were applied to test the relationships between indices and 317 

engineered factors, for both water (Table 2) and biofilm (Table 3) samples. Results from t-test 318 

indicated that the means of richness and diversity indices of biofilm samples are higher than those 319 

of water samples. Negative correlations were found between biofilm indices and pipe age and unit 320 

dry biomass. Comparisons of medians indicated that the median of richness and diversity indices of 321 

biofilm samples with high water age was higher than those with medium water age. In water samples, 322 

median of richness index with very high water age was higher than those with low water age. 323 

Richness index in bulk water negatively correlated with variable temperature, and both indices 324 
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positively correlated with pH. Positive correlations between water age and richness and diversity 325 

indices were only found in biofilm samples. 326 

 327 

4 Discussion 328 

4.1 Water quality, biotic parameters and their relationships with engineered factors 329 

DBP formation is influenced by parameters such as pH, temperature, TOC, chlorine dosage, and 330 

water age. The interactions observed between these parameters and TTHMs confirm the dynamics 331 

occurring in tropical DWDNs in relation to THM formation: increasing water age promotes decay of 332 

free residual chlorine since the disinfectant is volatile and reacts with organic and inorganic matter, 333 

likewise the concentrations of THMs were increasing. In temperate climates, Nescerecka et al. 334 

(2014) and Wang et al. (2014) also identified depletion of disinfectant with higher water age in a real-335 

scale and simulated DWDNs, respectively. THM formation is directly influenced by pH and 336 

temperature (Liang and Singer 2003), and such a relationship was evidenced by the current results, 337 

which show a strong correlation between TTHMs and temperature. However, a negative relationship 338 

between TTHMs and pH was found, which may be related to the narrow range of pH data evaluated 339 

(Table 2); higher concentrations of THMs have been identified with higher pH in the range of 5-8 in 340 

laboratory experiments (Liang and Singer 2003, Wang et al. 2012). The influence of pH on DBP 341 

production remains unclear. Positive and negative correlations between pH and THMs have been 342 

reported in other studies, such as in a Canadian DWDN by Rodriguez and Sérodes (2001). 343 

Therefore, further research is needed to determine the actual influence of pH on the production of 344 

DBPs particularly under tropical climate conditions. 345 

 346 

4.2 Characterization of the bacterial community structure of biofilms and bulk water 347 

Actinobacteria, Firmicutes, and Proteobacteria were the common phylotypes in the two habitats, with 348 

the later community being the dominant group in the entire set of samples. Recent studies from other 349 

geographic regions have reported that both water and biofilm samples were dominated by 350 

Proteobacteria (Douterelo et al. 2013, Holinger et al. 2014, Kelly et al. 2014, Sun et al. 2014, Wang 351 

et al. 2014, Mahapatra et al. 2015, Ren et al. 2015). This study also confirmed the predominance of 352 
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this phylum in the drinking water bacterial community. Several studies have reported the presence 353 

of microorganisms, which are ubiquitous in drinking water biofilms. In agreement with this 354 

observation, Henne et al. (2012) found that biofilm communities sampled at nearby points in a DWDN 355 

were similar, thus hypothesising that physically related biofilm communities will show similar 356 

community structures when developed over the years. In contrast, the spatial distribution of biofilms 357 

analysed in the current study revealed that dominant bacterial communities in the tropical DWDN 358 

(25-57 years old) were different in each sampling point. This may be related to the unstable hydraulic 359 

conditions of this water network, which may partially remove biofilm components, then altering the 360 

structure of bacterial communities. Similarly, in a laboratory-based full scale DWDN, high flow 361 

variations indicated the promotion of young biofilms with more cells and less EPS, by the potential 362 

cyclic removal of the first layers of the biofilms (Fish et al. 2017).  363 

 364 

Other relevant microorganisms identified in this study due to their public health implications are 365 

Cyanobacteria. Cyanobacteria are a diverse group of photosynthetic microorganisms widespread in 366 

aquatic and terrestrial ecosystems. The main genus associated with Cyanobacteria in the current 367 

study was Cyanothece, which are not cytotoxin producers (Jakubowska and Szeląg-Wasielewska 368 

2015). The source for the high presence of Cyanobacteria in the analysed samples is likely to be 369 

one of the reservoirs of clarified water located at one of the treatment facilities. Revetta et al. (2011), 370 

by analyzing 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and comparing 371 

to clone libraries previously generated using RNA extracts from the same samples, found that these 372 

bacteria may be active in chlorinated drinking water. Since drinking water pipes are dark 373 

environments, how Cyanobacteria survive in these is not clear yet. 374 

 375 

Furthermore, several potentially pathogenic and opportunistic microorganisms were also observed 376 

in biofilm and bulk water samples. For example, Acinetobacter was detected in biofilm (Mahapatra 377 

et al. 2015) and has been previously found in wastewater treatment reactors and contaminated 378 

clinical devices (Carr et al. 2003, Lin et al. 2003). Brucella was detected in water samples; this genus 379 

comprises 11 species, 10 of them are associated with human infections (Scholz et al. 2010, Xavier 380 
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et al. 2010). Staphylococcus is an opportunistic pathogen detected in low percentages in bulk water 381 

and biofilm samples here. This genus constitutes a major component of the human microflora 382 

(Heilmann et al. 1996), and has been classified as a moderate biofilm former (Simões et al. 2007) 383 

able to colonize hospital devices. The source of this opportunistic pathogen could be the surface raw 384 

water, since the river basin was highly contaminated due to anthropogenic activities (Pérez-Vidal et 385 

al. 2016). Mahapatra et al. (2015), by a laboratory study carried out in a subtropical region in India, 386 

also identified Staphylococcus aureus in bulk water and 24-hour biofilms formed from incubation of 387 

drinking water collected in kitchen taps. 388 

 389 

The presence of some bacteria identified in this study could be related to soil sources. Particularly, 390 

the genus Holophaga has been previously isolated from black anoxic freshwater mud from a ditch 391 

in Germany (Liesack et al. 1994). Similarly, Thermoflavimicrobium and Phyllobacterium were highly 392 

abundant in water samples at several sampling points and these organisms have been previously 393 

reported in soil-related habitats (Rojas et al. 2001, Yoon et al. 2005). 394 

 395 

Concerning the process of DBP production in DWDNs, several methylotrophic bacteria were 396 

detected in most of the bulk water samples. Methylobacterium is methylotrophic organism, which are 397 

ubiquitous in different environments including soil, freshwater, drinking water and lake sediments 398 

(Leisinger et al. 1994). This genus is able to degrade DBPs such as HAAs (particularly dichloroacetic 399 

acid) (Zhang et al. 2009), and they are biofilm formers with high resistance to sodium hypochlorite 400 

disinfection in single-species biofilm (Simões et al. 2010). Importantly, Methylobacterium has not 401 

been found yet in non-chlorinated DWDNs (Martiny et al. 2005, Liu et al. 2014). Therefore, the 402 

presence of these microorganisms in DWDNs should be considered as a potential indicator of DBP 403 

presence, despite of Methylobacterium presents facultative metabolism and it is able to use a wide 404 

range of organic compounds as sources of carbon and oxygen (Gallego et al. 2005). 405 

 406 

It has been observed previously the high structural and compositional variability within biofilms 407 

growth under similar hydraulic conditions in chlorinated DWDS in the UK (Fish et al. 2015, Douterelo 408 
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et al. 2016); this study confirms the high natural heterogeneity of biofilms developed within the same 409 

pipe material under tropical conditions. The way biofilm heterogeneity influences ecological 410 

processes taking place in different DWDNs must be addressed, and should be considered when the 411 

microbial structure of different pipe materials is assessed. 412 

 413 

4.3 Influence of network characteristics on bacteriological parameters  414 

Higher richness and diversity were found in biofilms when compared to bulk water samples, which 415 

can be related to the favourable conditions offered by this micro-environment for bacteria survival 416 

such as protection against disinfectant, bulk flow and higher availability of nutrients. Douterelo et al. 417 

(2013) also found higher diversity and richness in 28 day old biofilms in a chlorinated DWDN, 418 

indicating that only some bacteria in the bulk water have the ability to attach to pipe walls. For 419 

instance, Bacillus was the only common genus detected in the two habitats in this study. Bacillus 420 

can form spores that protect them from disinfection and when the environmental conditions are 421 

favourable they start developing as active cells (Checinska et al. 2015). Conversely, Henne et al. 422 

(2012), based on 16S r RNA fingerprints of extracted DNA and RNA, found that bacterial richness 423 

(Margalef index) was higher in bulk water than biofilm samples from a 20-year old and chlorinated 424 

DWDN. The authors hypothesized that only those bacteria that can actively contribute to the 425 

succession of the biofilm were successful in colonising biofilms, while bacteria that cannot fill 426 

perfectly the narrow niches in biofilms vanished over time. Identifying those bacteria more prone to 427 

form biofilms can be used to inform control strategies to target specific microorganisms and avoid 428 

further biofilm development. 429 

 430 

The relationship found between pipe age and unit dry biomass may be related to the detachment of 431 

some asbestos fibres, which was observed during biofilm scrapping from the sampled pipes and is 432 

representative of the potential wear of the pipe material in time due to biological activity. The 433 

influence of removal of such fibres was described by Wang et al. (2011), who tested the biological 434 

activity in 53- 54-year old sections of asbestos pipes. By establishing microbial activity of iron-435 

reducing bacteria (IRB), sulphate reducing bacteria (SRB) and biofilm-former bacteria in the patina 436 



22 

 

 

layer (porous layer, mainly composed of microbial biomass along with interwoven asbestos fibres) 437 

of those pipes sections, they established that such microbial activity leads to deterioration of 438 

asbestos pipes and potential leakages (Wang et al. 2011). In this study, IRB including Geobacter 439 

were observed in biofilm samples, corresponding to 24-56-year old pipe sections and SRB such as 440 

Desulforegula, Syntrophobacter and Clostridium were also detected. Although these microbial 441 

groups were present with low RA, their presence may indicate the presence of an anoxic layer 442 

attached to asbestos pipes, which promotes the acidification of the media due to the production of 443 

organic acids from anaerobic metabolism, leading to local pH decrease. This facilitates the 444 

biodegradation of the pipe wall by the weathering and dissolution of the acid-receptive minerals in 445 

hydrated cement matrix, thus, creating pitting and voids (Wang et al. 2011). Clostridium was also 446 

identified in drinking water biofilms incubated, for 180 days, in rotating annular reactors, with 447 

continuous flowing water at average temperature of 25±1.5 °C (Chao et al. 2015). 448 

 449 

The influence of pipe material on the bacteriological composition of biofilm samples is reflected on 450 

the presence of SRB such as Desulfovibrio, which was present exclusively in CI pipes. Desulfovibrio 451 

finds a favourable environment in this type of pipes, most likely promoting its corrosion and 452 

potentially leading to failure. Similar high abundance of this genus was detected by Ren et al. (2015) 453 

in 11-year old CI pipes however, Sun et al. (2014) reported low abundance of Desulfovibrio (0.01-454 

0.19%) in 20-year old CI pipes. The tubercles found in the sampled piece of pipe (Figure 2) may 455 

create a favourable environment for the growth of these bacteria. Additionally, such tubercles can 456 

reduce the hydraulic capacity of the pipes due to the formation of scales and the accumulation of 457 

iron and manganese particles (Douterelo et al. 2014a). Several studies have confirmed the impact 458 

of pipe material over the structure of microbial communities in biofilm samples collected from 459 

simulated DWDNs (Wang et al. 2014), bench-scale pipe section reactors (Mi et al. 2015), real-scale 460 

DWDNs (Ren et al. 2015), and laboratory reactors (Chao et al. 2015). Although there is not an 461 

absolute consensus about the best material to minimize biofilm growth, in general, plastics appear 462 

to be advisable over metals and cements (Fish et al. 2016). 463 

 464 
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With regard to water age, the effect of this factor on bacterial biofilms may be associated with the 465 

relationship between this parameter and other water physicochemical characteristics as previously 466 

discussed. In addition, low concentrations of chlorine, stagnation and low velocities conditions 467 

associated with high water age lead to increase cells counts in bulk water (Nescerecka et al. 2014) 468 

and favour biofilm formation (Fish et al. 2016). Water age is considered as a factor influencing the 469 

biological stability of drinking water (Prest et al. 2016) and the microbial composition of building 470 

plumbing materials (Ji et al. 2015). This was corroborated by Wang et al. (2014), who established in 471 

simulated-DWDN biofilm samples that water age, disinfectant, and pipe material interact with each 472 

other to create distinct physicochemical conditions and ecological niches, in which various microbes 473 

can be selected and enriched. Spearman’s correlations showed no associations between indices 474 

and concentrations of free chlorine in this study. 475 

 476 

The influence of other key water physicochemical factors, including pH and temperature, on the 477 

microbial ecology of DWDN were also assessed here. Results indicated statistically significant 478 

differences among bacterial species for pH, which was also correlated positively with both richness 479 

and diversity. Due to the relationship between pH and alkalinity, and the governance of this factor 480 

over the relative proportions of hypochlorous and hypochlorite, which present different disinfection 481 

efficacies, pH is impacting the variability in the water bacterial community as was found by Sun et 482 

al. (2014). Temperature and richness were negatively correlated; similar results were found by 483 

Henne et al. (2013) by comparing microbial communities of cold and hot water (T=41 °C 484 

approximately); cold water presented higher community diversity and high stability over time. The 485 

present study considered T=3 °C, which corresponds to typical temperature values for tropical cities 486 

with hot weather. 487 

 488 

5 Implications for O&M activities in DWDN 489 

This study approached the role of biofilms and bulk water bacterial communities in two key 490 

processes: i) the relationship between them and DBPs and ii) their pathogenic significance. 491 

Degradation and formation of DBPs has been previously associated with biofilms and the presence 492 
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of certain microorganisms such as methylotrophic bacteria (Fang et al. 2010a, Fang et al. 2010b, 493 

Wang et al. 2012, Pu et al. 2013, Wang et al. 2013a, Wang et al. 2013b, Xie et al. 2013). However, 494 

this study indicates that the formation of DBPs in the DWDNs is a complex process since precursory 495 

and degradation biological reactions can simultaneously occur. Hence, TTHMs and HAAs modelling 496 

efforts should consider the biological component on DBP chemistry, especially in the models where 497 

the correlation coefficients are low, and then the predictability of these substance concentrations 498 

may be improved. Recently, Abokifa et al. (2016) included reaction chlorine-biomass (biofilm and 499 

planktonic cells) in a model to predict THMs in drinking water pipes under turbulent flow. Similarly, a 500 

CFD model was developed by the authors of this study to simulate the chloroform and 501 

dichloroacetonitrile formation potentials from biofilm chlorination, under laminar, transitional, and 502 

turbulent flow. Manuscript is being prepared for further publication. 503 

 504 

Prevention and removal of biofilms is a key concern for water utilities due mainly to their potential as 505 

reservoirs of pathogens. Flushing water pipes has been proved as a suitable technique to remove 506 

material attached to internal pipe surfaces but it is inefficient to completely detach biofilms (Abe et 507 

al. 2012, Douterelo et al. 2013, Fish et al. 2016). Advanced water treatment processes such as 508 

membrane filtration has been proved successful in highest reduction of number of microorganisms 509 

in biofilms collected at the inlet of a DWDN (Shaw et al. 2014). However, a recent study argues that 510 

is impossible to prevent biofilm accumulation but high flow variation could be used to promote young 511 

biofilms, which are more vulnerable to disinfection (Fish et al. 2017). In the case of this studied 512 

network, avoiding uncontrolled biofilm detachment and contamination of bulk water is particularly 513 

difficult, as it exhibits specific O&M challenges associated with emptying of the network due to the 514 

interruption of operation of the water treatment facilities, pumping operation, closing/opening valves 515 

during leakages repairs and pipelines and accessories replacement. This may lead to favour the 516 

formation of young biofilms, however it is important to consider that biofilms, planktonic cells, and 517 

detached biofilm clusters are also DBP precursors, and then biofilm control must go beyond 518 

disinfection. 519 

 520 
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Furthermore, CI pipes represent 10% of the total length of the pipelines and asbestos 30%; and 521 

2,400 leakages were repaired in 2014. These O&M activities cause uncontrolled and partial removal 522 

of sediments and biological material and allow the entrance of external particles, which all together 523 

could be promoting microbial growth in the network. Future plans for pipeline replacements should 524 

avoid the use of metal and cement pipes and instead promote the use of pipe materials with more 525 

stable bio-chemical and physical conditions. It is also advisable to minimize the events that alter the 526 

normal operation of the DWDN to reduce biofilm detachment; controlled cleaning procedures of 527 

pipes such as flushing should be carried out to reduce the amount of nutrients available for 528 

microorganisms in bulk water and biofilms and avoid alterations of the organoleptic conditions of 529 

drinking water for the consumers. More importantly, the efforts carried out in protecting water sources 530 

and improving water treatment could be useless if suitable O&M practices are not applied in the 531 

DWDNs in order to preserve the safety of drinking water delivered to the customers. 532 

 533 

6 Conclusions 534 

To the authors’ knowledge, this is the first study that characterised the bacterial community structure 535 

in both water and biofilm habitats in a tropical-climate DWDN. It also explored the relationships 536 

between biotic and engineered factors, with a specific focus on DBPs. The application of sequencing 537 

analysis represents a step forward in the study of microbiological aspects of DWDNs in tropical-538 

climate countries. Most of the bacterial communities identified in this work have also been found in 539 

temperate-weather water systems. This may indicate that some drinking water bacteria are 540 

ubiquitous and that treatment and engineered environments shape the bacterial communities in a 541 

specific way. This study found that, similarly to temperate-climate DWDNs, bacterial communities in 542 

sampled biofilms are different from those in bulk water, with the former more diverse and richer. Pipe 543 

age, water age, free chlorine, pH and temperature were associated with microbiological parameters 544 

indicating that these are key to control microbial growth. Deeper analysis should be done in terms of 545 

the influence of temperature variation in tropical-climate DWDNs. Pipe material also influenced the 546 

microbial ecology of DWDNs; Desulfovibrio was identified exclusively in the CI pipe. Methylotrophic 547 

bacteria were found in biofilms and bulk water; these microorganisms are known to be able to 548 
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degrade DBPs as haloacetic acids. Design and O&M of DWDNs should consider all the possible 549 

procedures to minimise biofilm growth to manage both biological and chemical stability of drinking 550 

water: to reduce nutrient concentrations in the water treatment, flushing dead end zones and after 551 

repair and replacement activities, reduce water age, and use bio-stable pipe materials. 552 

 553 
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