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Abstract

Approximate analytical methods have been used extensively for finding approximate solutions to nonlinear ordinary differential

equations. In this paper we compare the recently developed direct normal form transformation with two other very well known

and long standing methods, harmonic balance and the method of multiple scales. We will show that the direct normal form method

combines some of the key advantages of harmonic balance and multiple scales whilst reducing some of the limitations.
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1. Introduction

Approximate analytical methods have been used extensively for finding approximate solutions to nonlinear ordi-

nary differential equations. For example, the method of harmonic balance offers a very straightforward approach,

that can be applied to a wide variety of systems. Unlike perturbation methods, it has no limitation on the size of the

nonlinear terms, or the size of the amplitude of response. However, it has some significant limitations, most notably

the terms in the solution that are “unbalanced”.

Perturbation methods are typically applied under the constraint that the nonlinear terms are small in comparison

to the linear terms, a situation often referred to as weak nonlinearity. The method of multiple scales is widely used

to provide approximate solutions for systems with weakly nonlinear functions [10]. Approximate solutions can also

be obtained using normal form transformations, see for example [5]. In recent work Neild & Wagg [12] showed that

systems of weakly coupled second-order nonlinear differential equations have a direct normal form transformation.

Comprehensive discussions of normal form theory can be found, for example, in [1,6–9]. The direct method proposed

in [12] is applied directly to the governing second-order equations of motion without transforming into a system of

first-order equations. One of the main benefits of this type of direct normal form transformation, and the motivation for
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this paper, is that it can give better approximations to backbone curves [2–4]. In the literature, the standard example

by which these methods are demonstrated is the undamped, unforced Duffing equation, which we introduce next.

2. Example : the undamped, unforced Duffing oscillator

The undamped, unforced Duffing oscillator can be written as

ẍ + ω2
nx + αx3

= 0, (1)

where x is displacement, ωn is the linear natural frequency, α is a nonlinear coefficient and overdot represents dif-

ferentiation with respect to time. We assume that the initial conditions for this system are time t0 = 0, displacement

x(0) = A and velocity ẋ(0) = 0.

2.1. Direct normal form

The idea behind this normal form approach is to apply a coordinate transform to the equation of motion to give a

resonant equation of motion, in terms of a new coordinate u. The resonant equation can be solved exactly using

u = up + um =
A

2
ei(ωr t−φ0)

+

A

2
e−i(ωr t−φ0), (2)

where A is displacement amplitude, ωr is the response frequency, φ0 is phase lag, and subscripts p and m denote plus

and minus exponential terms respectively. Approximations come in the transform which is not exact. To proceed we

rewrite (1) as

ẍ + ω2
n x + εn(xp, xm) = 0, (3)

where ε has been introduced to indicate that the nonlinear term is assumed small. The nonlinear term x3 is replaced

by (xp + xm)3 to give

n(xp, xm) = α(x3
p + 3x2

pxm + 3xpx2
m + x3

m) = [α 3α 3α α]x∗, (4)

where the vector x∗ is defined by the form of the nonlinear term, and in this example is given as x∗ = [x3
p, x

2
pxm, xp x2

m, x
3
m]T .

Next a near-identity nonlinear transform from x to u is applied, giving

x = u + εbu∗ where b = [b1 b2 b3 b4], and u∗ = [u3
p, u

2
pum, upu2

m, u
3
m]T , (5)

where the structure of u∗ is defined to be exactly the same as x∗, and the base solutions are given in (2). The near-

identity transformation will lead to a new governing equation for the Duffing system in the form

ü + ω2
nu + εnu(up, um) = 0, (6)

where the transformed nonlinear terms, nu(up, um), is reduced to only the essential nonlinear terms: the normal form.

Substituting (5) into (3) leads to

ü + εbü∗ + ω2
n(u + εbu∗) + εn(up + um + O(ε1)) = 0. (7)

where we have substituted u = up + um in the nonlinear term n with base solutions from (2). Note that ε2 terms and

higher are neglected (which is why the transformation is not exact). A detuning of the form ω2
n = ω

2
r − ε(ω

2
r − ω

2
n) is

now introduced, as described in [13]. Then eliminating ü using (6) in combination with the detuning gives an equation

for the ε1 terms as

ε1 : −bü∗ − ω2
r bu∗ = n − nu. (8)

Both the nonlinear terms on the right-hand side are now functions of up and um, and so can be written as functions of

the vector u∗. Therefore we define n = [n]u∗ and nu = [nu]u∗ where [n] = [α 3α 3α α] and [nu] = [nu1 nu2 nu3 nu4],

following the structure of (4), with xi → ui. The derivative of u∗ can be obtained by first noting that

u∗ =
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, and so ü∗ = −dd ◦ u∗ where dd = ω2
r
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, (9)
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and where ◦ is the Hadamard product (element-wise matrix multiplication). Substituting this into (8) gives

b
[

(dd − ω2
r 1) ◦ u∗

]

= [n]u∗ − [nu]u∗, (10)

where 1 is a vector the same size as dd with every element being one. For multi-degree-of-freedom systems the same

approach can be taken which results in a slightly more complex formula as presented in, for example, [12]. From (10)

we now obtain

ω2
r [8b1 0 0 8b4]u∗ =

(

[α 3α 3α α]T
− [nu1 nu2 nu3 nu4]

)

u∗. (11)

The left hand side gives two zero terms which means that two of the nui coefficients on the right-hand side have to be

non-zero for the equation to be satisfied. This gives

b =

[ α

8ω2
r

0 0
α

8ω2
r

]

, [nu] =
[

0 3α 3α 0
]

. (12)

It is important to note that there is some freedom of choice between the b and [nu] coefficients in (11). However one

of the advantages of this method is that the non-resonant and only the non-resonant terms in u∗ are removed from the

transformed equation of motion using the straightforward approach demonstrated with this example.

The near-identity transform, to order ε1 may now be written as

x = u + εbu∗ =
A

2
(ei(ωr t−φ0)

+ e−i(ωr t−φ0)) + ε

[

α

8ω2
r

0 0
α

8ω2
r

]

u∗ = A cos(ωrt − φ0) + ε
αA3

32ω2
r

cos(3(ωrt − φ0)).

(13)

Note that the harmonics are orthogonal in this solution, which is in contrast to the classical normal form which is

based on state-space equations [11].

Then from (6), along with (12), the transformed equation of motion may be written as

ü + ω2
nu + ε3α(u2

pum + upu2
m) = 0. (14)

To obtain the frequency amplitude relationship for the backbone curve, we substitute the base solutions for up and um

into (14) and then exactly balance either the ei(ωr t−φ0) or e−i(ωr t−φ0) terms (there are no other terms as the non-resonant

terms have been removed) to give

ωr =

√

ω2
n + ε

3α

4
A2. (15)

2.2. Harmonic balance

The method of harmonic balance assumes a trial solution for x. The simplest assumption is a single term harmonic

solution, such as x ≈ A cos(ωrt), where ωr represents the nonlinear response frequency (which is amplitude depen-

dent), and A is the amplitude of response which is equal to the initial displacement. This is because at time t0 = 0 we

have x = A cos(0) = A and ẋ(0) = −ωrA sin(0) = 0. Substituting the trial solution into (1) gives

(ω2
n − ω

2
r )A cos(ωrt) +

α

4
A3[3 cos(ωrt − φ0) + cos(3(ωrt − φ0))] ≈ 0. (16)

Now the idea is to “balance” the terms in the equation. So comparing coefficients of the cos(ωrt − φ0) terms gives the

amplitude frequency relationship

ω2
r ≈ ω

2
n +

3α

4
A2

❀ ωr ≈

√

ω2
n +

3α

4
A2. (17)

This is a first approximation to the backbone curve relating nonlinear response frequency ωr to the amplitude of

oscillation A. In this first approximation to the solution, (16), there is a cos(3(ωrt − φ0)) term that is not balanced

with anything else, so in order to balance this term we need to add an additional term to the trial solution, x =

A(cos(ωrt − φ0) + B cos(3(ωrt − φ0))). This will lead to a solution with 3ωr frequency terms balanced but new higher

frequency terms occur which are now unbalanced. The logical conclusion is to include all possible harmonic terms.

An alternative approach is to use perturbation methods which allow the accuracy of the solution to be controlled

by monitoring the relative size of the terms. This is based on the assumption that the nonlinear terms are small, and

a parameter ε is used to identify these small terms. We now apply this approach to the Duffing example using the

method of multiple time scales.
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2.3. Method of multiple time scales

In this method we assume a solution of the form

x(t) = X0(τ, T ) + εX1(τ, T ) + O(ε2). (18)

where it is assumed that the ε2 and higher terms are insignificant. Each of the Xi terms is assumed to be a function

of two time-scales: fast-time over which oscillations occur τ = ωt; and slow-time over which the amplitudes evolve

T = εt. These times τ and T are treated as independent variables, such that derivatives with respect to t can be

expressed, to order ε1, as

dx

dt
=

∂x

∂τ

dτ

dt
+

∂x

∂T

dT

dt
= ω
∂x

∂τ
+ ε
∂x

∂T
,

d2x

dt2
= ω2 ∂

2x

∂τ2
+ 2ωε

∂2x

∂T∂τ
+ O(ε2).

Here there is a choice, the fast time frequency, ω, can be set to the linear natural frequency ωn or to the response

frequency ωr giving results that are slightly different. We first consider using τ = ωt = ωnt and then τ = ωt = ωrt.

2.3.1. Fast time: ω = ωn

If we take ω = ωn, the frequency of the response ωr is captured through the combination of the two timescales.

Substituting the expressions for the time derivatives into (1), and including ε, gives
(

ω2
n

∂2x

∂τ2
+ 2ωnε

∂2x

∂T∂τ

)

+ ω2
nx + εαx3

= 0,

where terms of order ε2 and above have been neglected. Now substituting (18) into this and balancing in terms of the

order of ε gives

ε0 :
∂2X0

∂τ2
+ X0 = 0, ε1 :

∂2X1

∂τ2
+ X1 = −

1

ω2
n

(

2ωn

∂2X0

∂T∂τ
+ αX3

0

)

. (19)

Both these equations are linear in terms of X0 and X1 respectively, with the X0 terms in the second expression

acting as an excitation of the X1 system. The general solution to Eq. (19) is taken to be

X0 = A(T ) cos(τ + φ(T )), (20)

where A(T ) and φ(T ) are slowly time varying amplitude and phase respectively. This solution can be substituted into

the second equation of (19) to give

∂2X1

∂τ2
+ X1 =

2

ωn

(

∂A(T )

∂T
sin(τ + φ(T )) + A(T )

∂φ(T )

∂T
cos(τ + φ(T ))

)

−α
A(T )3

4ω2
n

[

3 cos(τ + φ(T )
]

+ cos(3[τ + φ(T )]).

(21)

The cos(τ + φ) and sin(τ + φ) terms on the right-hand side will create secular terms in X1. To avoid this, we require

that

∂A(T )

∂T
= 0, and

2

ωn

A(T )
∂φ(T )

∂T
− α

3A(T )3

4ω2
n

= 0 giving A(T ) = constant = A and, φ(T ) =
3α

8

A2

ωn

T + φ0,

where φ0 is an integration constant representing a phase offset at time zero. Hence, using (20), we can write

X0 = A cos (ωrt + φ0) , with: ωr = ωn + ε
3α

8

A2

ωn

+ O(ε2), (22)

where we have recalled that τ = ωnt and T = εt such that τ + 3α
8

A2

ωn
T = ωrt. In addition (21) simplifies to

∂2X1

∂τ2
+ X1 = −

αA3

4ω2
n

cos

(

3

(

τ +
3α

8

A2

ωn

T + φ0

))

, which gives X1 =
αA3

32ω2
n

cos (3(ωrt + φ0)) . (23)

As a result the order ε1 solution, x = X0 + εX1, is given by

x = A cos(ωrt + φ0) +
αA3

32ω2
n

cos(3(ωrt + φ0)) + O(ε2) with: ωr = ωn + ε
3α

8ωn

A2
+ O(ε2). (24)
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2.3.2. Fast time: ω = ωr

Alternatively, rather than setting the fast time to be ωt = ωnt, we could set it to ωt = ωrt, where ωr is the, as yet

unknown, response frequency. Substituting the expressions for the time derivatives into (1) and adding ε now gives,

to order ε1,
(

ω2
r

∂2x

∂τ2
+ 2ωrε

∂2x

∂T∂τ

)

+ ω2
n x + εαx3

= 0. (25)

Now, before balancing for εi, a small detuning parameter is introduced to relate ωr and ωn. There are (at least) two

ways of doing this, depending on whether the aim is to eliminate ωn or ωr from (25). Here we will derive a solution

using ωn = ωr(1 + εγ) and then eliminate ωn. In this expression γ is the detuning parameter and we assume that the

response frequency is close to the natural frequency, hence it is of order ε. The alternative is to write ωr = ωn(1 + εµ)

(where µ is a detuning parameter) and eliminate ωn. This approach is identical to using ω = ωn i.e. (24).

Substituting ωn = ωr(1 + εγ) into (25) and balancing gives

ε0 :
∂2X0

∂τ2
+ X0 = 0, ε1 :

∂2X1

∂τ2
+ X1 = −

1

ω2
r

(

2γω2
r X0 + 2ωr

∂2X0

∂T∂τ
+ αX3

0

)

, (26)

As before, (20) the solution to the first equation in (26) may be written as X0 = A(T ) cos(τ+ φ(T )), although note that

now τ = ωrt whereas before τ = ωnt. Substituting this solution into the right-hand side of (26) and removing secular

terms gives

∂A(T )

∂T
= 0 and 2γω2

r A(T ) + 2ωrA(T )
∂φ(T )

∂T
+

3αA(T )3

4
= 0 (27)

These can be solved to give A(T ) = constant = A, φ(T ) = φ0 and γ = − 3αA2

8ω2
r

, such that

X0 = A cos(ωrt + φ0) with: ωr = ωn + ε
3αA2

8ωr

+ O(ε2) (28)

where we have recalled that ωn = ωr(1 + εγ). With (28), (26) simplifies to

∂2X1

∂τ2
+ X1 = −

αA3

4ω2
r

cos (3(τ + φ0)) and so X1 may be written as X1 =
αA3

32ω2
r

cos (3(τ + φ0)) . (29)

The ε1 solution for the response, x = X0 + εX1 is therefore

x = A cos(ωrt + φ0) +
αA3

32ω2
r

cos (3(τ + φ0)) + O(ε2) with: ωr = ωn + ε
3αA2

8ωr

+ O(ε2). (30)

Comparing direct normal form to this version of the multiple scales method, it can be seen that the expression for

x, (13) and (30), is the same. However the response frequency, (15), differs slightly – expanding (15) using a Taylor

series expansion confirms that they agree to order ε1 but this solution contains additional higher order ε terms giving

the additional accuracy. This is also obtained from the harmonic balance expression for the backbone curve, (17). As

a numerical example, backbone curves for the Duffing oscillator are shown in Figure 1. In this figure, the backbone

curves, which give the amplitude-frequency behaviour, are shown for the undamped, unforced Duffing system. It is

clear that at higher response amplitudes, the multiple scales method is less accurate than the other methods. This

difference in apparent accuracy can be explained by comparing the ωr expressions in (15), (17), (24) and (30). Note

that the direct normal form and harmonic balance have exactly the same expressions when ε = 1. Multiple scales has

an expression that is consistent with the others if the square root function is approximated for small amplitudes.

3. Conclusions

In this paper we have made a comparison between the direct normal form method, harmonic balance and the

method of multiple scales. Using the example of an undamped, unforced Duffing oscillator, it has been shown that for

approximating backbone curves, all methods give good accuracy when the response amplitude is low. However, the
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Fig. 1: Backbone curves for the undamped Duffing oscillator (defined in Section 2). Parameter values: ωn = 1, ε = 1 and α = 0.5. The dashed line

is the curve determined by numerical continuation (so is taken to be the most accurate). The solid line is from the direct normal form transformation,

and the crosses represent the harmonic balance method. The multiple scales solutions are represented by short dashes and dash-dotted lines for the

ω = ωr and ω = ωn cases respectively.

direct normal form and harmonic balance both give good accuracy as the response amplitude increases. Furthermore,

the direct normal form technique gives a response frequency, ωr, estimate that is the same as harmonic balance;

however the harmonic balance solution only describes the fundamental component. Additionally, the direct normal

form and harmonic balance methods appear more robust to detuning of the response frequency from the linear natural

frequency. It has been shown in previous literature that the prediction of the fundamental component by the direct

normal form technique is robust to the detuning that is chosen, [13]. In contrast, the multiple scales technique is

influenced by the choice of the fast time scale.
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