
Reheating in Gauss-Bonnet-coupled inflation

Carsten van de Bruck and Chris Longden
Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield,

Hounsfield Road, Sheffield S3 7RH, United Kingdom

Konstantinos Dimopoulos
Consortium for Fundamental Physics, Physics Department, Lancaster University,

Lancaster LA1 4YB, United Kingdom
(Received 30 May 2016; published 6 July 2016)

We investigate the feasibility of models of inflation with a large Gauss-Bonnet coupling at late times,
which have been shown to modify and prevent the end of inflation. Despite the potential of Gauss-Bonnet
models in predicting favorable power spectra, capable of greatly lowering the tensor-to-scalar ratio
compared to now-disfavored models of standard chaotic inflation, it is important to also understand in
what context it is possible for postinflationary (p)reheating to proceed and hence recover an acceptable
late-time cosmology. We argue that in the previously studied inverse power law coupling case, reheating
cannot happen due to a lack of oscillatory solutions for the inflaton, and that neither instant preheating
nor gravitational particle production would avoid this problem due to the persistence of the inflaton’s
energy density, even if it were to partially decay. Hence we proceed to define a minimal generalization of
the model which can permit perturbative reheating and study the consequences of this, including heavily
modified dynamics during reheating and predictions of the power spectra.
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I. INTRODUCTION

The inflationary paradigm, in which the accelerating
expansion of the early universe is invoked to explain the
flatness and homogeneity of the observable universe, as
well as account for the nearly scale-invariant spectrum of
primordial density fluctuations now measured by Planck
[1], has been the dominant theory of early-universe
cosmology for several decades. Despite its successes,
however, the simplest models of chaotic inflation are
now experimentally disfavored due to predicting an overly
large tensor-to-scalar ratio [2]. As such, extended models of
inflation involving modified theories of gravity such as
Higgs inflation [3] and Starobinsky inflation [4] which can
produce much smaller, and hence experimentally compat-
ible, tensor amplitudes, are now attracting considerable
interest. As the available experimental data becomes more
and more precise, inflationary cosmology will continue to
act as a stage on which such new physics in the early
universe can be increasingly well studied.
Another such extended theory of inflation which

has been studied is a scalar field coupled to the Gauss-
Bonnet combination of quadratic curvature scalars
(R2 − 4RμνRμν þ RρμσνRρμσν) [5–10]. Appearing in string
theory, higher-dimensional brane world models [11–18],
as a component of Horndenski theories [19,20] and their
so-called “Fab Four” subset [21–23], the presence of the
Gauss-Bonnet term is not uncommon in theoretical phys-
ics. Furthermore, the presence of higher-power curvature
scalars in UV-complete theories of gravity is generally
expected from a bottom-up effective field theory

perspective [24]. The Gauss-Bonnet term has also been
studied in the context of bouncing cosmologies [25].
Given the presence of cosmological models including a
Gauss-Bonnet term in the literature, whether used to realize
inflation or otherwise, as well as its status as a simple and
perhaps physically motivated correction to Einstein gravity,
we argue that it is worthwhile to further our understanding
of the cosmological implications of Gauss-Bonnet related
phenomena, and what observational signals may allow
us to confirm or exclude its presence in whatever theory
of high-energy physics correctly describes the early
universe.
In this work we are going to particularly focus on the

case where the coupling function between the inflaton and
the Gauss-Bonnet term is an inverse power law, following
on from previous work such as [5], which is interesting as a
simple prototype of coupling functions which grow large
as the inflaton field becomes small towards the end of
inflation. While such previous slow-roll analyses showed
that such models can produce interesting, experimentally
compatible, primordial power spectra at the time of horizon
crossing, they did not account for the effects of the large
Gauss-Bonnet coupling at the end of inflation, which only
become apparent when one looks beyond the slow-roll
approximation. Indeed, as found in previous work [26,27],
such a coupling prevents inflation from ending and hence
has implications for the transition between the inflationary
universe and the radiation-dominated epoch that must
follow in order to allow nucleosynthesis and the standard
big-bang late-time cosmology to proceed in a realistic
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fashion. We hence investigate in this work whether post-
inflationary reheating can proceed in inverse power law
coupled Gauss-Bonnet inflation.
The layout of this paper proceeds as follows: In Sec. II

we define the model, study its late-time behavior and
show that the simplest mechanisms of (p)reheating do not
proceed due to modifications of the late-time inflationary
dynamics, in particular a lack of oscillations around the
minimum of the inflation’s potential. Next, in Sec. III, we
investigate the feasibility of nonstandard reheating proce-
dures which do not depend on oscillations, such as instant
preheating, but find that even if radiation is produced by
such a mechanism it cannot come to dominate the universe
due to the persistence of the Gauss-Bonnet-coupled infla-
ton. In Sec. IV we present a minimalistic generalization
of our model in which standard perturbative reheating can
proceed under certain conditions, but with modified
dynamics, and investigate the implications of this in terms
of links to experimental data in Sec. V. We conclude
in Sec. VI.

II. GAUSS-BONNET-COUPLED INFLATION

We begin with the action describing a general relativity,
plus a scalar field coupled to the Gauss-Bonnet term,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
ωð∂ϕÞ2 − VðϕÞ

−
1

2
GðϕÞEþ Lm

�
; ð1Þ

where E ¼ R2 − 4RμνRμν þ RρμσνRρμσν. The model is
hence specified by two arbitrary functions, the potential
VðϕÞ and the Gauss-Bonnet coupling GðϕÞ. In general,
previous studies of this model have included the constant
ω ¼ �1 to diversify the range of possible dynamics, but
here we will set ω ¼ 1, limiting ourselves to scalar fields
with canonical kinetic terms, in the absence of any
particular physical motivation to study the ω ¼ −1 case.
We also nominally include a matter Lagrangian as we are
interested in reheating.
Variation of the action leads to the field equations,

3H2 ¼ 1

2
_ϕ2 þ VðϕÞ þ 12H3 _Gþ ργ; ð2Þ

2 _H ¼ − _ϕ2 þ 4H2ðG̈ −H _GÞ þ 8H _H _G−
4

3
ργ; ð3Þ

where we have assumed the matter sector of the model is a
perfect relativistic fluid with pγ ¼ ργ=3. We also have the
scalar equation of motion,

ϕ̈þ ð3H þ ΓÞ _ϕþ V;ϕ þ 12H2G;ϕð _H þH2Þ ¼ 0; ð4Þ

in which we have introduced the total decay rate into matter
due to nongravitational quantum corrections,1 Γ, in the
usual way to model reheating [28]. We obtain the value
of Γ using the standard tree-level result,

Γ ¼ g4σ2

8πmϕ
þ h2mϕ

8π
; ð5Þ

for decays of the inflaton with mass mϕ, to bosons with
coupling constant g2σ and to fermions with coupling
constant h. We then assume typical coupling constants
of, say, Oð10−3Þ to specify the value of Γ we will later use.
Accounting for decays, covariant conservation of stress

energy (∇μT
μν
ϕ ¼ −∇μT

μν
m ) implies that the radiation fluid’s

energy density then evolves according to

_ργ þ 4Hργ ¼ Γ _ϕ2: ð6Þ

Note that this equation is often seen instead in the form
_ργ þ 4Hργ − Γρϕ ¼ 0, which implies _ρϕ þ 3Hðρϕ þ
pϕÞ þ Γρϕ ¼ 0 but this is inconsistent with Eq. (4) as
can be seen by using the definition of ρϕ and pϕ from the
Friedman equations. While the interaction term Γρϕ is

usable in standard chaotic inflation where ρϕ ¼ _ϕ2=2þ V

and the inflaton oscillating about its minimum satisfies V ≈
_ϕ2=2 such that ρϕ ≈ _ϕ2, these approximations do not
generally hold when a Gauss-Bonnet coupling is present.
We proceed to recursively define the usual slow-roll

parameters ϵn,

ϵ0 ¼ −
_H
H2

; ϵn ¼
_ϵn−1
Hϵn−1

; ð7Þ

as well as the Gauss-Bonnet flow functions (described in
e.g. [5,27]), δn,

δ0 ¼ 4 _GH; δn ¼
_δn−1
Hδn−1

: ð8Þ

At early times, as is usually the case with inflation, these
parameters are small and obey ϵn, δn ≪ 1, and it is in this
regime that observable modes in the primordial power
spectrum leave the horizon. An analysis based on these
slow-roll parameters can hence be used to determine
quantities of interest such as the tensor-to-scalar ratio, r,
given some specific forms for the potential and coupling
function. Following on from previous work, we are
interested in the class of models where the potential is a

1We argue that because the effects being considered are limited
to nongravitational interactions, and we hence work essentially in
flat spacetime when considering reheating, that the inclusion of
the Gauss-Bonnet term does not modify the arguments leading to
this standard description of perturbative reheating.
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positive power law and the coupling function is a negative
power law, that is,

VðϕÞ ¼ V0ϕ
n; GðϕÞ ¼ G0ϕ

−m; ð9Þ

and in particular, we will mostly discuss the case n ¼ m for
simplicity, though many of the points discussed will hold
for other choices, at least qualitatively. It is helpful to define
the combination,

α ¼ 4V0G0

3
; ð10Þ

as an alternative parametrization of the strength of Gauss-
Bonnet coupling, as it is this combination which appears in
many of the results. In particular a leading order slow-roll
analysis shows that r ∝ ð1 − αÞ [5]. That is, increasing α
reduces the tensor-to-scalar ratio, and the inclusion of a
Gauss-Bonnet coupling can hence bring models with
overly large tensor amplitudes back into agreement with
experiment with a large enough α. Using α is also
convenient from the perspective that we can impose
α ≤ 1 as, above this limit, the Gauss-Bonnet term pushes
the inflaton up its potential, leading to solutions in which ϕ
grows, which we are not interested in.

A. Modifications to late-time behavior

While the above slow-roll analysis reveals the intriguing
ability to build inflationary models with spectral properties
in agreement with experiment using a Gauss-Bonnet
coupling, the first focus of this work is to show that it is
not sufficient to simply read off these slow-roll predictions
and declare the model a feasible explanation of what we
know about inflationary dynamics. As discussed previously
in [27], the inverse power law form of G affects the end of
inflation. As the field approaches its minimum at ϕ ¼ 0,
usually it will pass through the minimum and begin to
oscillate, however in this model the inflaton is inhibited
from undergoing this usual late-time behavior because as
ϕ → 0, G → ∞.
In this regime, ϵ0 is observed numerically to approach a

constant value and less than 1, such that inflation does not
end. The constant value ϵ0 approaches depends nontrivially
on the value of α, but it is always between 0 (for α ¼ 1) and
1 (for very small α, ϵ will almost reach 1). Similarly, we
find that if ϵ0 is constant, δ0 must also be a constant
between 0 and 1, which can be shown using the field
equations to be given by

δ0ðt → ∞Þ ¼ 2ϵ0
1þ ϵ0

: ð11Þ

FIG. 1. ϕ (left panel) and ϵ0 (right panel) for three different values of α, in the model with n ¼ m ¼ 2, with V0 ¼ m2
ϕ ¼

ð5.34 × 10−6Þ2 and time shown in units of mϕ=2π. In the first case, represented by the solid green line, α ¼ 0 and we have standard
inflation, in which the field slow rolls down to its minimum, oscillates around it, and inflation ends (ϵ0 > 1), allowing reheating to
proceed and the standard late-time cosmology to be recovered. However, for the second case, represented by a dashed blue line, α ¼ 0.5
and as discussed in the main text, ϵ0 approaches a constant value, and ϕ asymptotically approaches 0. ϕ is not allowed to decay
significantly, and the continuously accelerating expansion of spacetime dilutes any matter that is produced to negligible levels. Inflation
continues forever and we cannot make contact with standard late-time cosmology and recover the successes of the hot big bang model.
Lastly, we also show the case of α ¼ 1. This is the dotted red line on the plots above, in which ϕ is constant and ϵ0 remains 0 forever; a
perfect de-Sitter expansion.
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We can also use the fact that ϵ0 is approximately a constant
at late times to determine how H evolves in time in this
regime, by solving

_H ¼ −ϵ0H2 ⇒ HðtÞ ¼ ðcþ ϵ0tÞ−1; ð12Þ

where c is a constant of integration. Knowing how H
evolves, we can infer the time dependence of ϕ by using
Eq. (2), which, in terms of slow-roll parameters can be
written

VðϕÞ ¼
�
3 − ϵ0 −

1

2
δ0ð5þ δ0 − ϵ0Þ

�
H2 ¼ βH2: ð13Þ

That is, V and H2 are in direct proportion, and the
combination of slow-roll parameters that serves as the
constant of proportionality, β, between them is taken to be
constant, as discussed above. Given that V ¼ V0ϕ

n ¼ βH2

and using the behavior ofH determined in Eq. (12), we can
show that in the late-time regimewhen slow-roll parameters
are constant,

ϕðtÞ ¼
�
βn
V0

�1
nðcþ ϵ0tÞ−2

n: ð14Þ

Hence at late times, ϕ asymptotically approaches 0, rather
than oscillating about its potential minimum. This can also
be solved in terms of the e-folding number N as a time
coordinate to find that ϕ ∝ e−2ϵ0N=n. We conclude that the
inverse power law Gauss-Bonnet coupling overdamps
the motion of the field ϕ by becoming large as ϕ → 0.
The inflaton experiences a greater impedance from its

Gauss-Bonnet coupling the closer it approaches its poten-
tial minimum, hence exponentially slowing its approach to
that point. Note that this result contradicts the leading order
slow-roll analysis (see [5]), which gives ϵ0 ∝ ϕ−2 and
would hence allow inflation to end as at small enough
ϕ, we could have ϵ0 > 1, and reheating would be expected
to proceed normally after this. What we see now, looking
beyond the slow-roll approximation, however, is that
inflation will not end, the field will not oscillate and
standard perturbative reheating will not occur. Figure 1
demonstrates this using numerical solutions of the equa-
tions of motion including the decay term. We further note
that, of course, in the absence of late-time oscillations in the
inflaton, it is not only perturbative reheating, but also the
resulting onset of parametric resonance required for non-
perturbative preheating that fails.
A particular case of this behavior of interest is that when

ϵ0 ¼ 0, according to Eq. (14), ϕ is a constant. Looking for
constant solutions of Eq. (4) by setting _ϕ ¼ ϕ̈ ¼ _H ¼ 0
and using the field equations, we find the condition for a
solution to exist for the case where n ¼ m is that α ¼ 1,
which is also demonstrated in Fig. 1.
As we saw in Fig. 1, following the initial period of

ϵ0 ≈ 0, there is a steplike transition to the late-time constant
value of ϵ0. For particularly small values of α, we find this
transition is no longer monotonic, and involves a sharp
feature in which ϵ0 may even briefly fall outside the range
[0, 1]. Examples of this are shown in Fig. 2. While we find
these features alone are incapable of facilitating reheating,
we find it interesting that such a coupling to the Gauss-
Bonnet term can create a localized feature in time, in which
the expansion rate of space is violently changing—we

FIG. 2. Two trajectories for ϵ0 with especially small values of α (0.05 on the left, and 0.001 on the right). Again, n ¼ m ¼ 2,
V0 ¼ m2

ϕ ¼ ð5.0 × 10−6Þ2 and time is shown in units of mϕ=2π. Here we note that the transition from ϵ0 ≈ 0 to its late-time constant
value is no longer monotonous and can vary quite extremely for a very short amount of time of Oðmϕ=2πÞ. The black dashed lines on
these plots represent ϵ0 ¼ 0 and 1 respectively.
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observe in particular that these transitions are accompanied
by a sharp feature in H. This may be useful in increasing
the efficiency of processes such as gravitational particle
production.
While it is feasible that we could solve the problems

presented here by introducing additional fields which
account for reheating without affecting the late-time
behavior of the Gauss-Bonnet-coupled scalar ϕ, we will
not focus on this possibility in this paper. While extended
theories of physics may predict large numbers of scalar
fields which could be exploited for this purpose, we wish to
first investigate approaches which do not require us to
appeal to this. Nevertheless, it is potentially of some
interest because if reheating could be made to proceed
via a second field without changing the late-time behavior
of ϕ, we could have a realization of so-called quintessential
inflation [29,30] in which the Gauss-Bonnet-coupled field
serves as dark energy in the present epoch.

III. INSTANT PREHEATING AND
GRAVITATIONAL PARTICLE

PRODUCTION

A mechanism that has been used to produce particles in
nonoscillating theories is instant preheating [31,32].
Typically this occurs when after inflation, instead of
oscillating around a local minimum, the field ϕ continues
to grow in magnitude. This would happen, for example,
when the potential is flat or steeply decreasing after
inflation. Then, through a coupling to matter fields of
the form, L ¼ − 1

2
g2ϕ2χ2 the effective mass of χ particles,

gjϕj, would grow along with the magnitude of the inflaton.
With this, even if only a small number of χ particles are
produced by inflaton decays due to the lack of an
oscillatory period, under the right conditions, the decay
products can still come to dominate the universe due to
their increasing mass. Unfortunately in our case, this
mechanism is also inhibited because at late times we do
not have ϕ growing, but rather an asymptotically approach-
ing 0. However, this could be made feasible again if we
allow a shift in the coupling between ϕ and χ. That is,
L ¼ − 1

2
g2ðϕ − νÞ2χ2, which could be motivated for exam-

ple in the context of supersymmetric theories with super-
potentials of the form W ¼ gχ2ðϕ − νÞ [31,33,34] or in the
so-called A-term inflation scenario via an enhanced sym-
metry point of the potential [35–38]. With a coupling of
this form, instant preheating would begin at the point ϕ ¼ ν
and as in our model, ϕ then asymptotically approaches 0,
the produced χ particles could increase in effective mass by
an amount gν.
We follow the standard approach to instant preheating as in

[31]. Particle production occurs when the nonadiabaticity
condition j _mχ j > m2

χ , or gj _ϕj > g2ðϕ − νÞ2. This implies that
preheating takes place in a small region between the two

points ϕ ¼ ν� ϕ� where ϕ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j _ϕjϕ¼ν=g

q
. In turn we infer

that the time scale over which particles are produced is
δt ¼ ϕ�=j _ϕjϕ¼ν, which is small (hence why this mechanism
is known as instant preheating) and by the uncertainty
principle the particles created would have approximate

momenta of k ∼ 1=Δt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gj _ϕjϕ¼ν

q
. Hence as the field

passes through the point ν, following [28,31], we expect
the occupation number of the Fourier modes of χ to sharply
increase such that

nk ¼ exp

�
−
πðk2 þm2

χÞ
gj _ϕjϕ¼ν

�
; ð15Þ

which implies a total number density of χ particles,

nχ ¼
1

2π2

Z
∞

0

k2nkdk ¼ ðgj _ϕjϕ¼νÞ3=2
8π3

exp
�
−

πm2
χ

gj _ϕjϕ¼ν

�
:

ð16Þ
Assuming χ’s bare mass is small, particularly compared to

the momentum scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gj _ϕjϕ¼ν

q
, the number density of

particles is not exponentially suppressed, and the energy
density of decay products following their production (so that
ϕ < ν and mχ ¼ jϕ − νj ¼ ν − ϕ) is given by

ρχ ¼ mχnχ ¼ gðν − ϕÞnχ ¼
g5=2j _ϕj3=2ϕ¼νðν − ϕÞ

8π3
: ð17Þ

Then, at late times, as ϕ → 0 according to Eq. (14), this
approaches the upper limit,

ρχ →
g5=2j _ϕj3=2ϕ¼νν

8π3
: ð18Þ

Returning to our investigations of the late-time behavior of
the Gauss-Bonnet coupled inflaton, we find even for some-
what optimistic parameters g ¼ 10−2, ν ¼ 1, α ¼ 0.5, that
j _ϕjϕ¼ν ≈ 5 × 10−7, such that ρχ grows to a maximum of
≈1.5 × 10−17, while at late times ρϕ ¼ Oð10−14Þ. Usually,
this would then proceed such that ρχ , being composed of
massive particles (mχ ∼ gν ¼ 10−2MPl), would scale in time
as a−3, and the inflaton would either oscillate (e.g. in a ϕ4

potential, so ρϕ ∝ a−4) or enter a period of kinetic energy
domination (a−6) where the rate at which ρϕ decreases with
the scale factor is steeper than that of the massive decay
products, and eventually the universewould be dominated by
those decay products.We cannot, however, realize this in our
model. As the effect of theGauss-Bonnet coupling is to drive
ϵ0 into an approximately constant regime between 0 and 1 at
late times, the rate of energy loss of the inflation is a−2ϵ0 , and
hence will not be susceptible to being outlasted by the decay
products as in the usual situation with instant preheating.
Given large enough values of g and ν, one could set the initial
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energy density of χ particles produced (before the expansion
of the universe becomes important) to be larger than ρϕ so
that the universe would be briefly dominated by χ, but this
would require a coupling constant somewhat larger than the
Planck mass, which in itself is undesirable. We expect a
similar limitation to impede the progress of gravitational
particle production, even in cases such as the trajectories in
Fig. 2 where the sharp changes in the expansion rate of the
universe may give rise to more efficient than usual gravita-
tional creation of particles.

IV. PERTURBATIVE REHEATING WITH
GENERALIZED COUPLINGS

One way of proceeding with this problem we found was
to allow slightly more general couplings than those in
Eq. (9). In particular, as there is no special reason to impose
that the bare vacuum expectation value of the inflaton
potential coincides with the divergent point in the Gauss-
Bonnet coupling, we consider functions of the form

VðϕÞ ¼ V0ðϕþ ςÞn; GðϕÞ ¼ G0ϕ
−n: ð19Þ

With the inclusion of a nonzero minimum in the potential at
ϕ ¼ ς, we can potentially avoid the problem of the late-
time damping of the inflaton as now it is free to cross and
oscillate about the point ς due to a weaker Gauss-Bonnet
coupling at this point, for ς sufficiently far from 0. For
convenience, we shall perform the field redefinition
ϕ → ϕ − ς, and obtain

VðϕÞ ¼ V0ϕ
n; GðϕÞ ¼ G0ðϕ − ςÞ−n; ð20Þ

so that the new parameter ς is considered a parameter of the
interaction between the Gauss-Bonnet term and the inflaton.
This new model can also be seen as a prototype for other
choices of the coupling which become largest (but not
necessarily infinite so as in the pure inverse-power-law case)
as the inflaton reaches its minimum, should some other
theory or argument motivate such a choice of coupling.
Depending on the magnitude of ς there are multiple

regimes of distinct phenomenology. First, for positive ς, the
Gauss-Bonnet coupling diverges at positive values of ϕ.
Assuming that we consider model of inflation where the
field ϕ begins at large positive values, this leads to a similar
problem to the ς ¼ 0 case in that the inflaton is impeded
from rolling down its potential before even approaching the
minimum; instead of asymptotically approaching zero, the
field will approach a different constant value that we shall
call Λ, whose value we find (by solving the equation of
motion for a constant field) to be

Λ ¼ ς

1 − α
1

nþ1

; ðα ≠ 0; ς > 0Þ: ð21Þ

Indeed, even if we choose parameters such that the constant
value ϕ should approach is larger than the initial condition

for ϕ, we have observed numerically that the field will
increase to approach this value. Since, however, Λ ≠ ς, and
the Gauss-Bonnet coupling is still finite at this point, it is
possible that oscillations about this point could occur.
Numerically we study this possibility for a range of α
values and find that for very small α, it is possible for very
small, very short-lived and highly damped nonsinusoidal
oscillations to occur about the point Λ. A series of plots of
this are shown in Fig. 3.
Despite oscillatory late-time behavior being possible in

this regime, we find perturbative reheating cannot proceed
nevertheless. The oscillations are too brief and low ampli-
tude to kick-start a significant enough amount of particle
production to lead to radiation domination. Furthermore, as
the field behaves like a cosmological constant, the expan-
sion of the universe settles into a de-Sitter phase with only
small deviations from exponential growth due to the minute
oscillations, and any small amount of radiation that
manages to be produced is quickly diluted away.
To proceed further we must consider negative values of

ς. This is a more hopeful approach in the first place, as the
divergence in the Gauss-Bonnet coupling now occurs at
negative field values and the field may roll down to its
minimum where the expansion of the universe may be able
to cease accelerating and give way to a radiation-dominated
epoch. For large (negative) enough choices of jςj ≫ jϕj, in
fact, the Gauss-Bonnet coupling is essentially constant and
the equations of motion are well approximated by those of
standard inflation. While this certainly avoids the problem
of inflation not ending, it is comparable to not having a
Gauss-Bonnet coupling at all and hence will not help us
understand the problem. As in conventional reheating the
inflaton undergoes oscillations of amplitude Oð10−1Þ, we
expect ς to need to be of around this magnitude to
significantly affect the late-time dynamics of the inflaton
and give us some idea of what a nontrivial Gauss-Bonnet
coupling may do during reheating. Based on this approach
we present examples of the oscillations of the coupled
inflaton in Fig. 4.
We see that while at first, the oscillations are highly

nonstandard, eventually the field’s oscillations decrease in
amplitude until they are sufficiently close to zero that the
shifted Gauss-Bonnet coupling becomes weak (jϕj ≪ jςj).
Following this, fairly standard oscillations proceed and
reheating can successfully occur. However, the dynamics of
reheating will be modified compared to the standard case,
even once the oscillations have become approximately
sinusoidal, and the Gauss-Bonnet coupling is hence not
strongly affecting the inflaton’s evolution. To see this, note
that while the effect of the Gauss-Bonnet coupling on the
Klein-Gordon equation (4) isOðH4Þ, its contribution to the
Friedman equation (2) is only OðH3Þ. As reheating occurs
around time scales when H ≈ Γ, which is small, the Gauss-
Bonnet coupling will become irrelevant to the scalar field
dynamics earlier than it ceases to have a significant effect
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on the expansion of the universe. We will investigate in
detail the implications of these effects in the next section.
However, as the initial oscillations are made to be smaller in
amplitude and lower in frequency than usual by the
coupling to the Gauss-Bonnet term, we qualitatively expect
reheating to take longer to complete as radiation is

produced more slowly,2 and that the temperature at the
end of reheating will be correspondingly cooler.

FIG. 3. Six late-time evolutions of ϕ for the case ς ¼ 0.05 and α between 10−1 and 10−6. As α decreases (from top left to bottom right,
along the rows) the strength of the Gauss-Bonnet coupling is decreasing and hence the damping effect becomes less extreme, allowing
more oscillations to occur for a longer time. Oscillations in each case occur about the point Λ as defined by Eq. (21). The oscillations are
nonsinusoidal, with the deformation in the waveform due to the varying strength of the Gauss-Bonnet coupling. In particular, as ϕ
approaches the point ς where the coupling is infinite, it experiences a larger force returning it to the equilibrium at Λ than it experiences
for ϕ > Λ where the Gauss-Bonnet coupling is small. Time is shown in units of mϕ=2π, and n ¼ m ¼ 2.

FIG. 4. Two late-time evolutions of ϕ with ς ¼ −0.05 and α ¼ 10−1 (left) or 10−4 (right). Nonsinusoidal oscillations with smaller
amplitudes and lower frequencies than usual occur about ϕ ¼ 0. As the oscillations become smaller due to the expansion of the universe,
the oscillations approach a more conventional waveform as the Gauss-Bonnet coupling grows weaker. Larger values of α unsurprisingly
lead to smaller amplitudes and behavior generally further away from the standard case. Time is again shown in units of mϕ=2π,
and n ¼ m ¼ 2.

2This is because the right-hand side of Eq. (6) depends not only
on the decay rate Γ but also on the amplitude and frequency of the
oscillations.
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Finally it is noted that the bound (0 ≤ α ≤ 1) we found to
be necessary to get interesting inflationary behavior in the
standard case is no longer exact once the ς parameter is
accounted for. We find that a decent approximation for the
new upper limit of viable α values at which the system will
behave as a cosmological constant is

αmax ≈
�
1 −

ς

ϕ0

�
nþ1

; ð22Þ

where ϕ0 is the initial condition for ϕ at the beginning of
inflation. As this is typically large, and we are interested in
small ς primarily, however, this is usually a very small
effect and we will continue to approximate α ¼ 1 as the
upper bound.

V. RESULTS AND CONSTRAINTS

To extract useful information on the effects of nonstand-
ard reheating due to a Gauss-Bonnet coupling, we need to
link the dynamics of reheating to some useful quantity. We
choose to hence look at how reheating affects the primor-
dial power spectra of inflation. This is encoded in the
well-known relation (found in e.g. [1])

N� ≈ 67 − ln

�
k�

a0H0

�
þ 1

4
ln

�
V2�
ρend

�

þ 1 − 3wint

12ð1þ wintÞ
ln

�
ρth
ρend

�
−

1

12
lnðgthÞ; ð23Þ

where N� is the number of e-folds before the end of
inflation at which the observable wave number today, k� is
leaving the horizon, V� is the potential energy at this time,
a0 and H0 are the scale factor and Hubble parameter today,
ρend is the energy density at the end of inflation, ρth is that
when the universe is thermalized (e.g. the end of reheating,
which we will define more precisely below), and gth ≈ 103

is the number of relativistic degrees of freedom at this time.
Finally, wint is the average equation of state of the
universe’s matter content during reheating, defined as

wint ¼
1

Nth − Nend

Z
Nth

Nend

wðNÞdN; ð24Þ

where w ¼ p=ρ is the equation of state.
Using Eq. (23) we can quantify how much the observ-

able window during inflation changes in position due to the
effects of the reheating period; that is, how many e-folds
before the end of inflation the observable scales today
exited the horizon, and hence precisely when we should
extract our spectral predictions from our model of inflation.
Then, in principle, with precise enough data, one could
distinguish two models of inflation with the same primor-
dial power spectra as inflation ends, but different reheating
dynamics, by considering the shift in the observable

window. We will call this quantity ΔN, defined by the
term in Eq. (23) pertaining to the effects of reheating,
that is,

ΔN ¼ 1 − 3wint

12ð1þ wintÞ
ln

�
ρth
ρend

�
: ð25Þ

To compute this we hence need to know the averaged
equation of state defined in Eq. (24), but as the equation of
state can rapidly oscillate between fairly large values in our
model, evaluating this numerically is somewhat challeng-
ing (as has also been pointed out in e.g. [39]). Instead, we
find and use the analytical result, which is derived in the
Appendix,

wint ¼
2

3

lnðHend=HthÞ
lnðath=aendÞ

− 1: ð26Þ

This expression, advantageously, only requires one to
find the values of a and H at the end of inflation and at the
end of reheating, rather than using information from the
entire period of reheating.
We define the end of reheating in our numerical

simulations to be at the point when Ωγ ¼ 1 − x, where x
is small [40]. As the result for wint and hence ΔN we obtain
will depend on our choice of x, we check that as time
increases and x approaches 0, that δN approaches a fairly
constant value such that our results are satisfactorily stable
despite the free choice in defining when reheating has
finished. This is shown in the left panel of Fig. 5 for a
typical choice of parameters. The value of x decreases with
time as radiation becomes more dominant. We see that
while wint varies somewhat even at times moderately later
than the end of inflation, ΔN is well described by small
oscillations around a constant value once the postinfla-
tionary oscillations settle down. From this we conclude
that, while we cannot entirely remove the dependence of
our numerical results on x, the precise value of x chosen, if
it is somewhat small, should not affect our conclusions
drastically due to the reasonable stability of ΔN, which is
the quantity which directly affects the physics through
Eq. (23). The results presented here use x ¼ 1=3, at which
point the energy density of radiation is double that of the
inflaton. We also ran simulations for smaller values of x at
which radiation is more strongly dominant, however we
found numerically that there is very little dependence of the
results on this choice, with x ¼ 0.1 or 0.05 giving largely
indistinguishable results to the ones presented here, con-
firming our expectations that this should be the case from
the near-constant nature of ΔN shown in Fig. 5.
The reheating temperature, Tr, may also be computed via

the relation

ρth ¼
π2

30
g�T4

r ; ð27Þ
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which again depends on the energy density at the end of
reheating, ρth, as well as on the number of relativistic
degrees of freedom gth. The value of Tr for a range of α
and ς values in the intervals [0, 1] and ½−0.2; 0� for
Γ ¼ 4 × 108 is shown in the right panel of Fig. 5, as a

convenient measure of how much the presence of the
inverse Gauss-Bonnet coupling impedes and hence cools
the reheating process. As we expected from our qualita-
tive discussion in the previous section, we see that the
presence of a Gauss-Bonnet coupling reduces Tr by

FIG. 5. A typical evolution of the effective equation of state (left, blue), its e-fold average (green) and the resulting shift in the
observable window ΔN (red) during reheating, as well as the reheating temperature as a function of Gauss-Bonnet coupling parameters
α and ς (right). The equation of state oscillates wildly, even outside of the range ½−1; 1� due to the nonstandard coupling, but the
physically relevant quantity derived from this, ΔN, is fairly stable even at earlier times, justifying our method for defining the end of
reheating. At late times the equation of state oscillates around and approaches 1=3 as expected for successful reheating that gives way to
a radiation-dominated epoch. We have used n ¼ m ¼ 2 and α ¼ 0.1, ς ¼ −0.05 in this example. In the right plot, temperature is scaled
as a fraction of the α ¼ 0 (Gauss-Bonnet-free) case [Tr ≈Oð1013 GeVÞ] such that a reading of 0.5 corresponds to half the standard
reheating temperature and so on. For small α and/or large negative ς the reheating temperature is barely changed, but for stronger Gauss-
Bonnet effects the reheating temperature can decrease in principle down to zero, where reheating does not occur, such as for positive ς.

FIG. 6. ΔN and the reheating-corrected scalar spectral index as a function of α and ς. The left ΔN plot indicates the relative effect of
reheating on the location of the observable window for different Gauss-Bonnet couplings. Contours have been drawn on the right ns plot
indicating the areas disfavored by current data. In particular, the region of parameter space to the left of the line at around α ¼ 0.3 is
excluded as it predicts r0.002 > 0.1 and the regions on the right of the plot bound by the other contours have spectral indices excluded at
1σ by Planck. The remaining allowed region of parameter space is consistent with As ≈ 2.18 × 10−9, and with scalar and tensor runnings
of Oð10−3Þ or less, in agreement with present CMB experiments.
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impeding the transfer of energy from inflaton oscillations
to radiation.
Finally, we calculate the primordial power spectra for the

theory (as done in e.g. [5,27]) and evaluate them numeri-
cally at the appropriate Planck pivot scales using Eq. (23)
for the same range of parameters as above. Figure 6 shows
the scalar spectral index obtained by this procedure, along
with the value of ΔN in each case as a measure of the effect
of the variable reheating dynamics.

VI. CONCLUSIONS

We have presented a study on the feasibility of models of
inflation with an inverse power law coupling to the Gauss-
Bonnet combination, taking into account the late-time
absence of oscillations, which had previously gone unno-
ticed, by going beyond the slow-roll approximation.
Having confirmed that neither standard (p)reheating nor
more involved mechanisms such as instant preheating are
able to successfully end inflation and reheat the universe,
we allowed a slight generalization in the model in which a
small shift in the inverse power law coupling function, ς,
weakens the effect of the Gauss-Bonnet term, permitting
reheating to proceed. In more general terms, this means that
couplings to the Gauss-Bonnet term which become large
towards the end of inflation have the potential to impede the
onset of postinflationary cosmological evolution.
We found in this model that especially for smaller values

of ς, the dynamics of the reheating phase are significantly
different from those of fiducial models of inflation, with
irregular oscillations and nonstandard average equation of
state. To investigate this reliably, we checked the validity of
our method of parametrizing the end of reheating, and
found an exact result for the average equation of state
during inflation to avoid the problem of numerically
integrating many different rapidly oscillating functions.
Following this, we computed the variation in the position of
the observable window during inflation due to the modified
reheating dynamics and computed the primordial power
spectra for a range of parameters to obtain constraints on
the model to demonstrate how these effects on reheating
could be tested. Note that in this modified model, not only
the case of perturbative reheating studied in detail here, but
(instant) preheating and other nonperturbative methods of
reheating which function in standard inflation, are also
expected to be able to proceed for suitable values of ς.
We did not consider these mechanisms in detail here as
satisfactory and interesting results were obtained from
simple perturbative reheating, fulfilling our goal of under-
standing whether these models of inflation are feasible at
all. As with perturbative reheating, however, we expect that
the Gauss-Bonnet coupling will similarly be able to impede
and modify such other mechanisms if the time at which
particle production occurs coincides with a time when the
Gauss-Bonnet coupling is large, which may have interest-
ing implications.

Our key finding is that in models of inflation with an
inverse power law coupling to the Gauss-Bonnet term, or
more generally models where the coupling becomes very
large at late times, reheating does not proceed in the usual
fashion, or at all, depending on the strength and nature of
the coupling. While this effect is important at the end
of inflation, and hence has little to no effect on predictions
of the power spectra (at best, shifting the observable
window and hence the spectral properties by a few percent)
in these models, we note that Gauss-Bonnet couplings in
inflation may still provide an interesting mechanism for a
low tensor-to-scalar ratio and otherwise reasonable pre-
dictions, and it is important to be aware of the implications
such a coupling has on the feasibility of the model from the
perspective of achieving realistic postinflationary cosmol-
ogies. These results, while computed explicitly for a shifted
inverse power law coupling, are expected to be generic in
any theory where the Gauss-Bonnet coupling becomes very
large at late times and opposes the evolution of the inflaton.
Even if the coupling does not formally become infinite at
some point, as is the case here for simplicity, we expect this
to be a good prototypical example for such situations.
Interesting avenues to explore in future work on this

topic include the details of Gauss-Bonnet coupled dynam-
ics of preheating and what implications this may have for
problems such as baryogenesis, and models where an
additional scalar field is present in inflation but not coupled
to the Gauss-Bonnet term, a scenario which may allow
reheating to proceed through decays of the second field.
Here, the inability of the Gauss-Bonnet coupled field to
significantly decay, presented in this work as a problem,
would be turned into a potential strength of the model as it
could allow the inflaton to also serve as dark energy,
providing a realization of so-called quintessential inflation.
Assuming we could realize such a situation satisfactorily,
the Gauss-Bonnet coupling strength parameter α would
need to take on sufficiently large values (early analysis
indicates α≳ 0.72) to make the late-time value of ϵ0 in the
dark energy epoch sufficiently small that the equation of
state of the dark energy is acceptably close to −1 to meet
experimental constraints. The details of this however
depend heavily on the nature of the second field and
how and when it may make inflation end, making a full
analysis of such a scenario beyond the scope of the present
work. It is possible that only a small region of parameter
space will be able to simultaneously satisfy constraints
coming from both inflation and dark energy.
Another question to be addressed is whether our results

affect the conclusions drawn in [41]. In that paper, the
authors showed that a coupling of the Higgs field to the
Ricci scalar R causes parametric resonance due to an
effective oscillatory mass provided by the coupling. In
the case studied in this paper, the evolution of the effective
equation of state, and hence R, is nonstandard and it would
be worthwhile to investigate whether the Gauss-Bonnet
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coupling exaggerates or mitigates the production of Higgs
bosons at the end of inflation.
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APPENDIX: DERIVATION OF THE
ANALYTICAL RESULT FOR wint

In this Appendix we seek to derive Eq. (26), an analytical
result for the e-fold averaged equation of state during
reheating. While we have not found a similar technique
used elsewhere in the literature, we feel it is a prudent
approach to the calculation as it avoids the problems of
numerically integrating a rapidly oscillating function, and
few assumptions are needed.
To begin, we assume the Friedman equations can be

written in the form

3H2 ¼ ρeff ; ðA1Þ

2 _H ¼ −ðρeff þ peffÞ: ðA2Þ

The effective equation of state is then weff ¼ peff=ρeff .
We then note that by dividing Eq. (A2) by Eq. (A1), we
obtain

ϵ0 ¼ −
_H
H2

¼ 3

2
ð1þ weffÞ ⇒ weff ¼

2

3
ϵ0 − 1: ðA3Þ

We then seek to use this result to evaluate the integral
(24), and find that

wint ¼
1

Nth − Nend

Z
Nth

Nend

�
2

3
ϵ0 − 1

�
dN: ðA4Þ

Using N as a time coordinate (with dN ¼ Hdt), we have
ϵ0 ¼ −H0=H, so

wint ¼ −
2

3

1

Nth − Nend

Z
Nth

Nend

H0

H
dN −

1

Nth − Nend

Z
Nth

Nend

dN:

ðA5Þ

Having now transformed the integrand into something of
the form f0=f we can use standard results to evaluate this as

wint ¼
2

3

lnðHend=HthÞ
lnðath=aendÞ

− 1; ðA6Þ

where we have used N ¼ lnðaÞ and − lnðxÞ ¼ lnðx−1Þ to
simplify. Hence we have obtained the result (26). As a
consistency check, we confirm this is consistent with the
usual result for single-fluid dominated cosmologies with
constant equations of state, for which a ∝ t2=3ð1þwÞ and
H ¼ 2=3ð1þ wÞt and in the special case of w ¼ −1 for
which H ¼ const also correctly produces the correct result.
Numerically, we further observe that for realistic early-time
cosmologies with even rapidly varying equations of state,
there is good agreement between this analytical result and
the direct numerical integration of Eq. (24).
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