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Abstract

The improved characterisation of risk factors for rheumatoid arthritis (RA) suggests they could be combined to identify
individuals at increased disease risks in whom preventive strategies may be evaluated. We aimed to develop an RA
prediction model capable of generating clinically relevant predictive data and to determine if it better predicted younger
onset RA (YORA). Our novel modelling approach combined odds ratios for 15 four-digit/10 two-digit HLA-DRB1 alleles, 31
single nucleotide polymorphisms (SNPs) and ever-smoking status in males to determine risk using computer simulation and
confidence interval based risk categorisation. Only males were evaluated in our models incorporating smoking as ever-
smoking is a significant risk factor for RA in men but not women. We developed multiple models to evaluate each risk
factor’s impact on prediction. Each model’s ability to discriminate anti-citrullinated protein antibody (ACPA)-positive RA
from controls was evaluated in two cohorts: Wellcome Trust Case Control Consortium (WTCCC: 1,516 cases; 1,647 controls);
UK RA Genetics Group Consortium (UKRAGG: 2,623 cases; 1,500 controls). HLA and smoking provided strongest prediction
with good discrimination evidenced by an HLA-smoking model area under the curve (AUC) value of 0.813 in both WTCCC
and UKRAGG. SNPs provided minimal prediction (AUC 0.660 WTCCC/0.617 UKRAGG). Whilst high individual risks were
identified, with some cases having estimated lifetime risks of 86%, only a minority overall had substantially increased odds
for RA. High risks from the HLA model were associated with YORA (P,0.0001); ever-smoking associated with older onset
disease. This latter finding suggests smoking’s impact on RA risk manifests later in life. Our modelling demonstrates that
combining risk factors provides clinically informative RA prediction; additionally HLA and smoking status can be used to
predict the risk of younger and older onset RA, respectively.

Citation: Scott IC, Seegobin SD, Steer S, Tan R, Forabosco P, et al. (2013) Predicting the Risk of Rheumatoid Arthritis and Its Age of Onset through Modelling
Genetic Risk Variants with Smoking. PLoS Genet 9(9): e1003808. doi:10.1371/journal.pgen.1003808

Editor: Greg Gibson, Georgia Institute of Technology, United States of America

Received March 27, 2013; Accepted August 5, 2013; Published September 19, 2013

Copyright: � 2013 Scott et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This manuscript was undertaken as part of an Arthritis Research UK funded Clinical Research Fellowship (ICS; Grant Reference Number 19739). Funding
for the WTCCC project was provided by the Wellcome Trust (http://www.wellcome.ac.uk) under award 076113, 085475 and 090355. This work made use of data
and samples generated by the 1958 Birth Cohort (NCDS) (BRIF4130). Access to these resources was enabled via the 58READIE Project funded by Wellcome Trust
and Medical Research Council (grant numbers WT095219MA and G1001799). A full list of the financial, institutional and personal contributions to the
development of the 1958 Birth Cohort Biomedical resource is available at http://www2.le.ac.uk/projects/birthcohort. ICS and APC are supported by Arthritis
Research UK (http://www.arthritisresearchuk.org) funding as are AH, SE, JW and AB (Grant Reference Number 17552). We also acknowledge support from the
National Institutes of Health Research (http://www.nihr.ac.uk/Pages/default.aspx) Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust in
partnership with King’s College London, from whom SDS receives funding. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ian.scott@kcl.ac.uk

Introduction

Rheumatoid arthritis (RA) is a common chronic inflammatory

disorder. It results in substantial morbidity and disability alongside

high medical and societal costs [1], [2]. There is therefore growing

interest in preventing its development. Such prevention requires

an ability to reliably predict who will develop RA. Advances in

characterising genetic and environmental risk factors for RA

together with developments in modelling methodology make

predicting its development a realistic possibility.

RA is a clinical syndrome spanning multiple subsets [3]. The

commonest subdivision is by the presence or absence of

rheumatoid factor (RF)/anti-citrullinated protein antibodies

(ACPA), termed seropositive and seronegative RA respectively.
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Risk factor evaluation has mainly focussed on seropositive RA with

nearly half its genetic architecture known. HLA-DRB1 alleles, in

particular those encoding the shared epitope, dominate genetic

risk accounting for approximately 36% of heritability [4]; 45 non-

HLA variants explain approximately 15% of heritability [4].

Smoking is the main environmental risk factor [5]; it predisposes

to seropositive RA and has a synergistic relationship with the

shared epitope [6], [7]. Although single factors do not provide

sufficient risk stratification, combining multiple factors within a

prediction model may identify clinically relevant high- and low-

risk groups. The large risks conferred by HLA make such

modelling an attractive prospect in RA despite limited success in

other complex disorders [8–10].

RA develops over many years prior to clinical presentation [11].

Initially, individuals with genetic susceptibility variants are

exposed to environmental risks; some may develop autoantibodies

(RF/ACPA) [12]. A proportion will subsequently develop

arthralgia, which may progress to an unclassified arthritis followed

by a fully expressed RA phenotype. Pilot studies in unclassified

arthritis indicate that secondary prevention may be possible with

corticosteroids [13], [14], methotrexate [15] and biologics [16]

attenuating the progression to RA. Although preventive treat-

ments may be more effective before immune dysregulation and

symptoms develop, primary prevention is not currently possible as

no reliable method exists to identify asymptomatic high-risk

individuals.

Prevention is likely to have a larger impact in younger onset RA

(YORA) due to the increased health costs associated with a longer

disease duration [17]. Genetic susceptibility factors may influence

RA’s age of onset with HLA-DRB1*04 alleles [18–21] and multiple

single nucleotide polymorphisms (SNPs) such as those tagging

VEGFA [22], RANKL [19], [23], MMP1-3 [22] and PTPN22 [24],

[25] loci associating with YORA.

One group has published two reports outlining predictive

models for RA. Their models, built using 8 HLA alleles, 14–31

SNPs and clinical factors, generated an aggregate weighted genetic

risk score (wGRS) formed from the product of individual-locus

odds ratios (ORs) [26], [27]. They were reasonably accurate at

determining disease status in approximately 1,200 cases and 1,200

controls, with a maximal area under the curve (AUC) of 0.752.

They also demonstrated a better ability to predict erosive RA (a

more severe phenotype). However, only a minority of the studied

populations had significantly elevated risks for RA.

We report an alternative modelling approach to predicting RA.

Our novel modelling method uses computer simulation to

categorise risk profiles; our models also incorporate a larger

number of HLA risk variants. The risk factors included in our

modelling comprise 15 four-digit/10 two-digit HLA-DRB1 alleles,

31 SNPs and male ever-smoking status (as ever-smoking is a

significant risk for RA in males only). We applied our models to

two large cohorts of European ancestry: the Wellcome Trust Case

Control Consortium (WTCCC) and the UK RA Genetics Group

(UKRAGG) Consortium. Our primary aim was to determine if

our approach would generate clinically relevant predictive values.

Our secondary aim was to determine if our modelling better

identified YORA. We demonstrate that clinically informative RA

risk prediction is possible and that the risk of younger and older

onset RA can be predicted using information on HLA and

smoking status, respectively.

Materials and Methods

Ethics Statement
All participants in WTCCC and UKRAGG were recruited

after providing informed consent. UKRAGG was approved by the

North West Multi-Centre Research Ethics Committee (MREC

99/8/84). Authors gained written permission and approval from

WTCCC to undertake this work in the publically available

WTCCC1 collections.

Study Populations
The WTCCC dataset contains SNP data on 1,999 RA cases

and 3,004 controls [28]. Controls were obtained from the 1958

British Birth Cohort and UK Blood Services. Genotyping was

performed on the Affymetrix GeneChip 500k Mapping Array Set.

Quality control (QC) procedures were undertaken excluding

individuals with ,97% SNP call rates, high heterozygosity, non-

European ancestry or relatedness, discordance between genotype

and phenotype data and duplicate samples. In the post-QC dataset

information was available on 490,031 SNP markers; the total

genotyping rate was 1.00. Two- or four-digit resolution HLA-

DRB1 tissue typing data were available on 1,837 cases and 1,647

controls.

The UKRAGG dataset contains SNP data on 5,024 RA cases

and 4,281 controls from 6 UK centres [29]. Genotyping was

performed using the Sequenom platform. Four hundred and

four SNPs were genotyped over 8 staggered plexes; for each plex

separate QC was undertaken excluding individuals and SNPs

with ,90% data present. In the post-QC dataset total

genotyping rates were 0.73 owing to systematic differences in

samples run on each plex. Two- or four-digit resolution HLA-

DRB1 tissue typing data were available on 3,420 cases and 1,500

controls.

Both datasets contained cases fulfilling the 1987 ACR classifi-

cation criteria for RA [30]. HLA-DRB1 tissue typing was

undertaken (at two-digit or four-digit resolution) at individual

centres, using commercially available semiautomated polymerase

chain reaction-sequence-specific oligonucleotide probe (PCR-

SSOP) typing techniques (or research assays based on PCR-SSOP

linear array technology) [29]. Two-digit typing includes the allele

group (Field 1) only; four-digit typing includes both the allele

group and the allele subtype encoding a specific HLA protein

(Field 2) (http://hla.alleles.org/nomenclature/naming.html).

Author Summary

Rheumatoid arthritis (RA) is a common, incurable disease
with major individual and health service costs. Preventing
its development is therefore an important goal. Being able
to predict who will develop RA would allow researchers to
look at ways to prevent it. Many factors have been found
that increase someone’s risk of RA. These are divided into
genetic and environmental (such as smoking) factors. The
risk of RA associated with each factor has previously been
reported. Here, we demonstrate a method that combines
these risk factors in a process called ‘‘prediction modelling’’
to estimate someone’s lifetime risk of RA. We show that
firstly, our prediction models can identify people with very
high-risks of RA and secondly, they can be used to identify
people at risk of developing RA at a younger age.
Although these findings are an important first step
towards preventing RA, as only a minority of people
tested had substantially increased disease risks our models
could not be used to screen the general population.
Instead they need testing in people already at risk of RA
such as relatives of affected patients. In this context they
could identify enough numbers of high-risk people to
allow preventive methods to be evaluated.

Predicting Rheumatoid Arthritis
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We undertook prediction modelling in seropositive cases and

controls with HLA-DRB1 tissue typing data available with or

without additional SNP and smoking data (as most replicated risk

loci are for seropositive RA and genetic risk is dominated by HLA)

[4], [31]. The final cohorts comprised 1,516 cases and 1,647

controls from WTCCC and 2,623 cases and 1,500 controls from

UKRAGG (Table 1).

Prediction Modelling Overview
Our modelling was performed within the R package, REGENT

(Risk Estimation for Genetic and Environmental Traits), devel-

oped within our unit. This program incorporates published gene-

environment risk factor and disease statistics to categorise risk

using a confidence interval (CI)-based approach within a simulated

population. The methodology underlying REGENT has previ-

ously been described in detail [32], [33].

Genetic and environmental risk factors for input into REGENT

are selected from the literature. Genetic risk factors require allelic

ORs, allele frequencies, and sample sizes from relevant studies, in

order to estimate precision. Environmental risk factors require

ORs, standard errors and the proportion of the population

exposed to the risk factor. Data on these risk factors are entered

into REGENT as summary statistic input files, which are

processed in two stages: the first develops the prediction model

and the second runs the prediction model in real life data.

In the first stage REGENT simulates a population-distribution

of disease risk. Risk profiles are simulated based on the frequency

of each risk factor in the general population. Summary ORs for

each risk profile are generated through combining the ORs for

each genetic and environmental risk factor in a multiplicative

model that assumes risk factor independence. CIs are generated

using information on the variability of genetic risk factors (derived

from the sample size of the risk variant discovery cohort) and

environmental risk factors (standard error of the effect size). Each

simulated risk profile’s OR is initially calculated relative to a

profile with no risk factors present; these are subsequently adjusted

to ensure correct disease prevalence in the population, assigning a

risk profile with a mean OR as having a baseline risk of 1.0. CIs

are used to classify risk profiles into four risk categories (reduced,

average, elevated and high-risk). Starting with the risk profile of

baseline risk (OR = 1.0), any risk profile whose CI overlaps with

this baseline CI is classified as being of average-risk (as this profile

is not statistically different from baseline). Any risk profile whose

CI resides fully below the baseline CI is classified as reduced-risk.

Profiles with CIs above the baseline CI are classified as elevated-

risk. Furthermore, a high-risk group is determined by profiles

whose CIs reside completely above the CI of the first risk profile

classified as elevated-risk. An example of how this process is

undertaken in a simplified model using 3 SNPs is provided in

Figure S1.

In the second stage REGENT applies this simulated population

profile to individual level data. Genotypes and environmental risk

factor exposure data on each individual in the dataset of interest

(WTCCC and UKRAGG) are entered into REGENT, which

generates two measures of disease risk. Firstly, each individual’s

summary OR (95% CI) for RA is calculated (relative to the

baseline individual with an OR of 1.0); as with the simulated

population, risk factors are combined in a multiplicative model.

This summary OR informs the individual of their risk of

developing RA. Secondly, each individual is assigned a risk

category for RA. This is undertaken through comparing the CI of

each individual’s summary OR to those of the simulated risk

distribution in the same manner as described in stage 1. This risk

category informs an individual whether they are at an increased or

reduced risk of disease, relative to the average person in the

general population.

Prediction Model Components Identified from Meta-
Analyses

Genetic Risk Factors. We identified genetic susceptibility

variants for potential inclusion in our prediction modelling from

two large, recently published meta-analyses [34], [35]. We sought

to include only susceptibility alleles attaining genome-wide

significance (PGWAS,561028); this ensured that the alleles

modelled were replicated RA genetic risk factors. These comprised

15 four-digit and 10 two-digit HLA-DRB1 alleles and 35 non-HLA

SNPs.

Environmental Risk Factor. We included the environmen-

tal risk factor smoking in our modelling. Other factors proposed to

influence RA risk such as alcohol were not included: firstly the

evidence underlying these is uncertain, with associations often

present in case-control and not cohort studies [36] and secondly

Table 1. Clinical characteristics of WTCCC/UKRAGG cases and controls included in modelling.

WTCCC UKRAGG

RA (n = 1,516) Controls (n = 1,647) RA (n = 2,623) Controls (n = 1,500)

Gender Female 1,151 (76.0) 739 (50.0) 1,868 (71.2) 890 (59.9)

RA Characteristics RF+ 1,452 (96.1) - 2,385 (93.1) -

ACPA+ 1,061 (86.5) - 1,508 (84.8) -

Mean Age Of Onset (95% CI) 45.3 (44.6–46.1) - 48.0 (47.5–48.6) -

Erosive Disease 1,009 (71.1) - 830 (69.7) -

Nodules - - 859 (38.3) -

Smoking Status Male Ever-Smokers 231 (80.5)a 422 (57.1)a 417 (78.8)a 149 (46.3)a

Female Ever-Smokers 552 (58.3)b 425 (57.7)b 758 (55.9)b 238 (39.3)b

Data are number (%) unless otherwise stated. The following data are missing from WTCCC: gender in 2 cases and 169 controls; RF status in 5 cases; ACPA status in 290
cases; age of onset missing/inaccurate in 63 cases; erosive status in 96 cases; smoking status in 76 male cases, 204 female cases and 3 female controls. The following
data are missing from UKRAGG: gender in 14 controls; RF status in 60 cases; ACPA status in 844 cases; age of onset missing/inaccurate in 93 cases; erosive status in 1,432
cases; nodular status in 378 cases; smoking status in 226 male cases, 513 female cases, 274 male controls and 284 female controls.
a = % of males that are ever smokers;
b = % of females that are ever smokers.
doi:10.1371/journal.pgen.1003808.t001

Predicting Rheumatoid Arthritis
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detailed data on non-smoking risk factors were not captured in

WTCCC and UKRAGG.

We used published ORs from the most recent meta-analysis

evaluating smoking as an RA risk factor [5]. In this meta-analysis

ever-smoking was a significant risk for seropositive RA in males

only (OR 3.02; 95% CI 2.35–3.88) with a substantially smaller and

non-significant (CIs contain 1) impact seen in females (OR 1.34;

95% CI 0.99–1.80). We therefore hypothesized that smoking

would not improve prediction in women (confirmed in preliminary

analyses; Table S1). As a result only males were evaluated in our

modelling incorporating ever-smoking.

Although smoking interacts with the shared epitope we did not

factor this into our modelling. This is because studies reporting

summary ORs for this interaction [6], [29], [37], [38] have

marked heterogeneity between them; therefore using meta-analysis

techniques to obtain pooled ORs for shared epitope-smoking

status combinations would be inaccurate and thus inappropriate.

Examples of this heterogeneity include: (1) studies reporting risks

stratified by different smoking levels, which would require an

inverse variance fixed-effects model to obtain common ORs for all

smokers within studies in addition to a random-effects model to

estimate pooled ORs across studies; (2) two studies classifying the

shared epitope at two-digit resolution, thus incorporating non-

shared epitope alleles [6], [37]; (3) two studies not including all

known shared epitope alleles [29], [38].

Prediction Model Component Availability in WTCCC and
UKRAGG

Two-digit or four-digit HLA-DRB1 tissue typing data were

available in all evaluated individuals. In WTCCC 1,342 seropos-

itive cases, 966 ACPA-positive cases and 1,126 controls had four-

digit resolution data available on both alleles; 29 seropositive cases,

14 ACPA-positive cases and 159 controls had two-digit resolution

data available on both alleles; 145 seropositive cases, 81 ACPA-

positive cases and 362 controls had mixed-digit resolution data

(one HLA-DRB1 allele known at four-digit and the other at two-

digit resolution) available. In UKRAGG 1,534 seropositive cases,

1,108 ACPA-positive cases and 735 controls had four-digit

resolution data available on both alleles; 312 seropositive cases,

66 ACPA-positive cases and 205 controls had two-digit resolution

data available on both alleles; 777 seropositive cases, 334 ACPA-

positive cases and 560 controls had mixed-digit resolution data

available.

We excluded 4 SNPs attaining PGWAS in the meta-analysis for

the following reasons: 1 (rs11676922) was in high linkage

disequilibrium (r2.0.9; HapMap release 22 CEU population

panel) [39] with another (rs10865035) – in this case the latter SNP

was included due to a previous association with RA – and 3 SNPs/

proxy SNPs were unavailable (rs10488631, rs6859219 and

rs934734 in UKRAGG; rs6822844, rs874040 and rs951005 in

WTCCC). Eleven and two proxy SNPs were used in WTCCC

and UKRAGG respectively (Table S2) [39].

Data on ever-smoking status were available in 287 male cases

and 739 male controls in WTCCC and 529 male cases and 322

male controls in UKRAGG.

Final Prediction Models
To examine the contribution of each gene-environment

component to prediction we constructed several models. These

comprised a SNP model (with 31 SNPs), an HLA model (10 two-

digit and 15 four-digit HLA-DRB1 alleles), an HLA-SNP model

(combining HLA and SNP model components), an HLA-smoking

model (combining HLA-DRB1 alleles with ever-smoking status)

and an HLA-SNP-smoking model (combining HLA-DRB1 alleles,

28 SNPs and ever-smoking status). Only the 28 SNPs present in

both WTCCC and UKRAGG were incorporated in the last

model. The latter two models, which included smoking, were

evaluated in males only.

The decision to combine two-digit and four-digit HLA-DRB1

alleles in the HLA model was undertaken to avoid removing the

substantial number of individuals with mixed resolution typing.

Preliminary analyses confirmed the validity of this approach with

no significant differences seen in the discriminative abilities of

HLA models incorporating (1) two-digit alleles only; (2) four-digit

alleles only and (3) a mixed resolution of alleles (Table S3). Within

our mixed resolution modelling the risks for each HLA allele were

included only once per individual at the highest resolution at

which they were known.

Only individuals with available data on relevant risk factors

were included in models incorporating those risk factors.

Therefore only males with available smoking data were included

in the HLA-smoking and HLA-SNP-smoking models. Similarly

only individuals with data available on the modelled SNPs could

be included in the HLA-SNP and HLA-SNP-smoking models.

Owing to missing data the number of individuals evaluated in each

prediction model fell as more risk factors were included (Figure 1).

Statistical Analyses
Evaluating Dataset Validity. To compare the representa-

tiveness of our datasets to published RA populations we

summarised clinical features of cases and controls (Table 1) and

calculated effect allele frequencies and allelic ORs (95% CIs)

(Tables 2 and 3). For the HLA-DRB1 allele case-control association

analysis (Table 2) the two-digit resolution allele results included

both individuals with two-digit resolution typing and collapsed

four-digit resolution typing. This approach was undertaken due to

the small number of individuals with two-digit typing data in

WTCCC/UKRAGG. The meta-analysis from which we obtained

our risk alleles had almost identical allele frequencies when

comparing two-digit alleles and four-digit alleles collapsed to two-

digit resolution [35]; comparing our datasets to the meta-analysis

findings in this manner was therefore appropriate.

Comparing Model Classification Abilities. To evaluate

the ability of each model to correctly classify disease status we

constructed receiver operating characteristic (ROC) curves and

measured the AUC; this is established methodology in determin-

ing genetic classification test efficacy [40], [41]. Higher AUCs

indicate better classification. An AUC.0.5 signifies some

discriminative ability; a perfect classifier has an AUC of 1. AUCs

were calculated and compared using DeLong’s method [42]

performed within the R package, pROC [43].

Comparing Model Generated Risk Distributions. The

risk distributions for cases and controls under each model were

compared by plotting the logarithmic OR for seropositive RA for

each individual ordered by risk.

Calculating Lifetime Risk of RA. Due to the low preva-

lence of RA [44], ORs approximate relative risks [45]. Therefore

to calculate lifetime risks of seropositive RA we multiplied

published lifetime risks by the summary OR for RA generated

by our prediction models. As UK lifetime risks of RA are unknown

we used estimates from a large US cohort study (2.4% for women;

1.1% for men) [46].

Evaluating YORA Prediction. The role of HLA, SNPs

and ever-smoking status in determining age of RA onset was

evaluated using individual-level OR outputs from the REGENT

models in a Cox univariate analysis with gender, smoking status

and smoking status-gender interaction used as covariates. Factors

indicated as likely predictors of age of onset were then examined

Predicting Rheumatoid Arthritis
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simultaneously in a multivariate analysis incorporating backward

elimination of non-significant factors (P.0.05). We found no

evidence of a ‘‘gender-smoking interaction’’ effect on the age of

RA onset in either dataset (WTCCC P = 0.0823 and UKRAGG

P = 0.8369; Table 4). This excluded a significant influence of

gender on the relationship between smoking and the age at which

RA developed. We therefore included both sexes when evaluating

smoking’s effect on the age of onset. Proportional hazards

assumptions were verified using visual inspection of log-log plots

[47]. To further demonstrate associations between significant

factors and age of onset we constructed Kaplan-Meier estimates of

the cumulative risk for cases, stratified by REGENT risk

categorisation from the relevant models, alongside the presence/

absence of other risk factors. We used a Cox multivariate

approach to establish which four-digit HLA-DRB1 alleles influ-

enced age of onset (fitting all alleles simultaneously using stepwise

selection, removing non-significant alleles from the final model).

All time to event analyses were performed using SAS version 9.3

(SAS Institute, Cary, NC).

Separate Analyses for ACPA-Positive RA
We undertook modelling separately for seropositive (RF and/or

ACPA present) RA and ACPA-positive RA since HLA-DRB1

allelic ORs were obtained from a meta-analysis evaluating

ACPA-positive RA [35], and the shared epitope alleles, non-

HLA SNPs and smoking predominantly associate with ACPA-

positive disease [4], [48–50]. We therefore hypothesised our

modelling would perform better for ACPA-positive RA. As this

was confirmed in the risk categorisation results we restricted

further analyses (AUC and lifetime risk calculations, examining

modelling associations with age of RA onset) to ACPA-positive

RA.

Results

Dataset Validity
Genetic Risk Factors. In both WTCCC and UKRAGG the

effect allele frequencies and ORs for seropositive RA were

generally similar to published data (Tables 2 and 3). Exceptions

occurred at the four-digit HLA-DRB1 alleles *04:08 and *15:01

(absent from controls in WTCCC and UKRAGG respectively), at

*01:01, *11:01, *11:04, *13:01 and *15:01 in WTCCC and *08:01

in UKRAGG (significantly lower allele frequencies in controls

than expected). The absence of *04:08 in controls was probably a

chance finding since it has a frequency of 0.005. The remaining

discrepancies resulted from lower four-digit tissue typing rates for

these alleles in controls, which were more often typed at two-digits,

compared with cases. Although this could introduce bias,

Figure 1. Number of individuals evaluated in each prediction model.
doi:10.1371/journal.pgen.1003808.g001
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especially in the context of case-control association analyses, we do

not consider it significantly affected our prediction modelling

because these alleles were incorporated in our models at both two-

digit and four-digit resolution (in most cases in the reference meta-

analysis the two-digit alleles had similar allele frequencies and ORs

compared with the four-digit alleles) and our risks were obtained

from an external source [35].

SNP discrepancies occurred at rs3761847 in WTCCC and

rs26232 and rs540386 in UKRAGG, which had ORs in the

opposite direction to published results although the dataset and

meta-analysis 95% CI’s overlapped for two SNPs. Additionally the

minor allele frequencies (MAFs) in controls were similar to those

expected. These discrepancies probably represent normal varia-

tion as opposed to systematic genotyping differences.

Most HLA-DRB1 alleles had significant associations with RA,

with only 4 (16%) alleles in WTCCC and 3 (12%) alleles in

UKRAGG having 95% CIs containing 1.0. A substantial propor-

tion of SNPs – 13 (42%) in WTCCC and 15 (48%) in UKRAGG –

had 95% CIs containing 1.0 reflecting their modest effect sizes,

which required large discovery cohort sizes for detection.

Environmental Risk Factors. The ORs for seropositive RA

in ever-smokers were 3.10 (95% CI 2.22–4.37) in WTCCC and

4.32 (95% CI 3.16–5.92) in UKRAGG for males and 1.02 (95%

CI 0.84–1.25) in WTCCC and 1.96 (95% CI 1.61–2.40) in

UKRAGG for females. The meta-analysis gender discrepancy

surrounding the effect of ever-smoking on RA risk [5] was

therefore mirrored in our datasets supporting the inclusion of only

males in our smoking models.

Risk Prediction
Risk Categorisation. As hypothesized, our modelling more

accurately categorised ACPA-positive RA as high-risk compared

with seropositive RA (Figure 2 and Table S4). The HLA model

provided most prediction in both datasets, classifying approxi-

mately one third of ACPA-positive RA as high-risk and two thirds

of controls reduced-risk. Although the SNP model provided some

prediction it classified most individuals as average-risk, reflecting

the overlapping CIs generated by including many risk factors of a

small effect size.

In WTCCC, the full genetic (HLA-SNP) model performed

slightly better than HLA alone. Additional smoking data conferred

subtle improvements in categorisation; this is particularly seen with

the HLA-SNP-smoking model, which classified over half of

ACPA-positive RA elevated/high-risk and 59% of controls

reduced-risk.

In UKRAGG the addition of SNPs to HLA alleles increased the

average-risk group size with no clear predictive benefits. The

incorporation of smoking substantially improved prediction: the

Table 2. Classical HLA-DRB1 allele frequencies and their association with seropositive RA in WTCCC and UKRAGG.

Published Meta-Analysis [35] WTCCC UKRAGG

HLA-DRB1 Allele OR (95% CI) MAF Co MAF Ca OR (95% CI) MAF Co MAF Ca OR (95% CI) MAF Co MAF Ca

*01 1.30 (1.21–1.40) 0.113 0.145 1.53 (1.31–1.78) 0.104 0.151 1.27 (1.11–1.45) 0.121 0.149

*01:01 1.38 (1.28–1.50) 0.097 0.133 5.88 (4.62–7.55) 0.026 0.136 1.25 (1.06–1.47) 0.081 0.099

*03 0.59 (0.54–0.64) 0.128 0.082 0.67 (0.58–0.78) 0.148 0.105 0.76 (0.67–0.86) 0.159 0.125

*03:01 0.59 (0.54–0.64) 0.128 0.082 0.65 (0.55–0.76) 0.145 0.099 0.44 (0.37–0.51) 0.130 0.061

*04 3.71 (3.49–3.93) 0.174 0.450 2.90 (2.59–3.24) 0.213 0.439 3.19 (2.86–3.56) 0.184 0.419

*04:01 4.14 (3.86–4.44) 0.104 0.309 2.93 (2.57–3.35) 0.124 0.293 3.00 (2.63–3.42) 0.111 0.272

*04:04 3.17 (2.83–3.54) 0.036 0.091 1.86 (1.52–2.28) 0.052 0.092 2.56 (2.08–3.18) 0.039 0.093

*04:05 2.31 (1.77–3.01) 0.007 0.012 2.01 (1.12–3.73) 0.006 0.012 2.61 (1.34–5.58) 0.004 0.010

*04:08 5.48 (4.11–7.30) 0.005 0.017 -a 0.000 0.021 2.78 (1.70–4.76) 0.007 0.018

*07 0.49 (0.45–0.54) 0.133 0.064 0.48 (0.41–0.56) 0.154 0.080 0.54 (0.46–0.62) 0.142 0.081

*07:01 0.49 (0.45–0.54) 0.133 0.064 0.41 (0.35–0.49) 0.154 0.070 0.37 (0.32–0.44) 0.140 0.057

*08 0.41 (0.34–0.50) 0.029 0.013 0.39 (0.24–0.62) 0.022 0.009 0.30 (0.20–0.44) 0.029 0.009

*08:01 0.34 (0.26–0.44) 0.019 0.009 0.27 (0.13–0.53) 0.014 0.004 0.69 (0.33–1.46) 0.005 0.003

*10 2.53 (2.04–3.14) 0.008 0.020 1.97 (1.11–3.59) 0.006 0.012 1.75 (1.04–3.07) 0.007 0.012

*10:01 2.53 (2.04–3.14) 0.008 0.020 1.97 (1.11–3.59) 0.006 0.012 1.48 (0.85–2.67) 0.006 0.009

*11 0.48 (0.43–0.54) 0.094 0.039 0.50 (0.39–0.64) 0.064 0.033 0.42 (0.34–0.53) 0.065 0.028

*11:01 0.44 (0.38–0.52) 0.061 0.028 0.80 (0.55–1.14) 0.023 0.018 0.33 (0.23–0.47) 0.030 0.010

*11:04 0.15 (0.10–0.23) 0.024 0.008 0.79 (0.41–1.49) 0.008 0.006 0.38 (0.15–0.91) 0.005 0.002

*13 0.33 (0.30–0.37) 0.114 0.044 0.41 (0.33–0.50) 0.098 0.042 0.46 (0.38–0.55) 0.084 0.040

*13:01 0.28 (0.24–0.33) 0.061 0.021 0.77 (0.54–1.08) 0.026 0.020 0.42 (0.29–0.59) 0.027 0.011

*13:02 0.29 (0.23–0.38) 0.027 0.012 0.59 (0.38–0.90) 0.020 0.012 0.27 (0.18–0.42) 0.023 0.006

*14 0.50 (0.40–0.62) 0.025 0.012 0.51 (0.34–0.76) 0.024 0.013 0.45 (0.31–0.65) 0.023 0.010

*14:01 0.46 (0.36–0.59) 0.022 0.011 0.43 (0.28–0.66) 0.024 0.011 0.67 (0.34–1.33) 0.006 0.004

*15 0.59 (0.54–0.64) 0.142 0.092 0.63 (0.53–0.75) 0.128 0.084 0.60 (0.53–0.70) 0.146 0.093

*15:01 0.57 (0.53–0.62) 0.136 0.089 1.09 (0.87–1.37) 0.051 0.055 -a 0.000 0.025

All alleles attained genome-wide significance in the published meta-analysis; MAF = minor allele frequency; Co = controls; Ca = Cases;
a = OR incalculable due to no allele copies in the control group.
doi:10.1371/journal.pgen.1003808.t002

Predicting Rheumatoid Arthritis

PLOS Genetics | www.plosgenetics.org 6 September 2013 | Volume 9 | Issue 9 | e1003808



HLA-SNP-smoking model classified 38% ACPA-positive RA vs.

3% controls as high-risk and 70% controls vs. 18% ACPA-positive

RA as reduced-risk.

The general trend of improved prediction through modelling

increasing numbers of risk factors is highlighted by the ratios of

the percentage of ACPA-positive cases to controls classified

high-risk by each model. In WTCCC these comprise 3.4 for the

SNP model, 3.8 for the HLA model, 5.8 for the HLA-SNP

model, 4.8 for the HLA-smoking model and 6.0 for the HLA-

SNP-smoking model. Similarly, the ratios of the percentage of

controls to ACPA-positive cases classified reduced-risk in

WTCCC comprise 2.3 for the SNP model, 2.4 for the HLA

model, 3.4 for the HLA-SNP model, 4.0 for the HLA-smoking

model and 4.7 for the HLA-SNP-smoking model. Similar

findings were present in UKRAGG.

AUC Assessments. In WTCCC AUCs for the SNP, HLA,

HLA-SNP, HLA-smoking and HLA-SNP-smoking models in

discriminating between ACPA-positive RA and controls com-

prised 0.660 (95% CI 0.638–0.681), 0.764 (95% CI 0.746–0.782),

0.796 (95% CI 0.779–0.813), 0.813 (95% CI 0.784–0.841) and

0.837 (95% CI 0.810–0.865), respectively (Figure 3). Significant

differences in AUCs were observed between all three genetic

models: SNP and HLA models P,0.0001; HLA and HLA-SNP

models P = 0.0118. Smoking data significantly improved discrim-

Table 3. Non-HLA RA susceptibility SNP allele frequencies and their association with seropositive RA in WTCCC and UKRAGG.

Published Meta-Analysis [34] WTCCC UKRAGG

Loci SNP MAFa OR MAF Ca/Co OR (95% CI) MAF Ca/Co OR (95% CI)

PTPN22 rs2476601 0.10 1.94 (1.81–2.08) 0.18/0.10 2.02 (1.73–2.36) 0.16/0.10 1.60 (1.38–1.85)

TNFAIP3 rs6920220 0.22 1.22 (1.16–1.29) 0.27/0.23 1.26 (1.12–1.41) 0.25/0.21 1.29 (1.15–1.44)

ANKRD55, IL6ST rs6859219 0.21 0.78 (0.72–0.85) 0.17/0.20 0.80 (0.70–0.91) - -

CD40 rs4810485 0.25 0.85 (0.80–0.90) 0.22/0.24 0.87 (0.77–0.99) 0.22/0.25 0.83 (0.74–0.93)

CTLA4 rs3087243 0.44 0.87 (0.83–0.91) 0.43/0.44 0.95 (0.86–1.06) 0.43/0.47 0.86 (0.78–0.94)

TNFAIP3 rs5029937 0.04 1.40 (1.24–1.58) 0.06/0.04 1.58 (1.24–2.02) 0.05/0.04 1.39 (1.06–1.82)

IL2RA rs706778 0.40 1.14 (1.09–1.20) 0.46/0.42 1.17 (1.05–1.29) 0.43/0.40 1.13 (1.02–1.25)

RBPJ rs874040 0.30 1.14 (1.08–1.20) - - 0.33/0.31 1.11 (1.00–1.23)

TRAF1, C5 rs3761847 0.43 1.13 (1.08–1.18) 0.45/0.46 0.96 (0.87–1.07) 0.46/0.43 1.12 (1.01–1.24)

STAT4 rs7574865 0.22 1.16 (1.10–1.23) 0.21/0.19 1.12 (0.99–1.27) 0.25/0.22 1.18 (1.05–1.32)

SPRED2 rs934734 0.49 1.13 (1.08–1.19) 0.53/0.51 1.11 (1.00–1.23) - -

CCR6 rs3093023 0.43 1.13 (1.08–1.19) 0.42/0.40 1.10 (0.99–1.22) 0.47/0.44 1.16 (1.05–1.28)

PXK rs13315591 0.09 1.29 (1.17–1.43) 0.10/0.09 1.11 (0.94–1.32) 0.08/0.07 1.10 (0.91–1.33)

C5orf30 rs26232 0.32 0.88 (0.84–0.93) 0.34/0.40 0.78 (0.70–0.86) 0.31/0.31 1.03 (0.92–1.14)

CCL21 rs951005 0.16 0.84 (0.78–0.90) - - 0.13/0.15 0.86 (0.75–0.99)

REL rs13031237 0.37 1.13 (1.07–1.18) 0.45/0.43 1.07 (0.96–1.18) 0.41/0.37 1.22 (1.10–1.35)

AFF3 rs10865035 0.47 1.12 (1.07–1.17) 0.50/0.46 1.19 (1.07–1.31) 0.48/0.45 1.16 (1.05–1.27)

PRKCQ rs4750316 0.19 0.87 (0.82–0.92) 0.16/0.20 0.77 (0.67–0.87) 0.18/0.19 0.89 (0.79–1.00)

IRF5 rs10488631 0.11 1.19 (1.10–1.28) 0.12/0.10 1.22 (1.04–1.44) - -

TNFRSF14 rs3890745 0.32 0.89 (0.85–0.94) 0.29/0.32 0.85 (0.76–0.95) 0.32/0.33 0.97 (0.88–1.08)

CD2, CD58 rs11586238 0.24 1.13 (1.07–1.19) 0.26/0.24 1.08 (0.96–1.21) 0.26/0.26 1.05 (0.93–1.17)

BLK rs2736340 0.25 1.12 (1.07–1.18) 0.27/0.25 1.10 (0.98–1.24) 0.26/0.24 1.14 (1.01–1.28)

CD28 rs1980422 0.24 1.12 (1.06–1.18) 0.25/0.23 1.13 (1.01–1.28) 0.26/0.23 1.15 (1.03–1.30)

PRDM1 rs548234 0.33 1.10 (1.05–1.16) 0.36/0.34 1.11 (1.00–1.23) 0.35/0.35 1.00 (0.90–1.10)

CCL21 rs2812378 0.34 1.10 (1.05–1.16) 0.38/0.34 1.17 (1.05–1.30) 0.36/0.35 1.02 (0.92–1.13)

PTPRC rs10919563 0.13 0.88 (0.82–0.94) 0.11/0.13 0.82 (0.70–0.95) 0.13/0.14 0.93 (0.80–1.07)

KIF5A, PIP4K2C rs1678542 0.38 0.91 (0.87–0.96) 0.34/0.37 0.86 (0.77–0.95) 0.35/0.35 0.97 (0.88–1.07)

TRAF6 rs540386 0.14 0.88 (0.83–0.94) 0.11/0.13 0.90 (0.77–1.05) 0.14/0.13 1.03 (0.89–1.19)

FCGR2A rs12746613 0.12 1.13 (1.06–1.21) 0.14/0.12 1.17 (1.01–1.36) 0.14/0.11 1.26 (1.08–1.46)

TAGAP rs394581 0.30 0.91 (0.87–0.96) 0.28/0.30 0.92 (0.82–1.03) 0.28/0.29 0.94 (0.84–1.05)

TNFAIP3 rs10499194 0.27 0.91 (0.87–0.96) 0.25/0.27 0.90 (0.80–1.01) 0.26/0.28 0.90 (0.81–1.00)

IL2, IL21 rs6822844 0.18 0.90 (0.84–0.95) - - 0.15/0.19 0.80 (0.71–0.91)

IL2RA rs2104286 0.27 0.92 (0.87–0.97) 0.24/0.27 0.85 (0.76–0.96) 0.25/0.26 0.94 (0.84–1.04)

IL2RB rs3218253 0.26 1.09 (1.03–1.15) 0.29/0.25 1.22 (1.09–1.37) 0.29/0.27 1.09 (0.98–1.22)

SNPs are ordered by significance (most significant by PGWAS listed first); all alleles attained genome-wide significance in the published meta-analysis; Ca = Cases;
Co = Controls; MAF = Minor Allele Frequency;
a = MAF in controls.
doi:10.1371/journal.pgen.1003808.t003
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ination with differences observed between HLA and HLA-

smoking model AUCs (P = 0.0051) and HLA-SNP and HLA-

SNP-smoking model AUCs (P = 0.0120).

In UKRAGG AUCs for the SNP, HLA, HLA-SNP, HLA-

smoking and HLA-SNP-smoking models in discriminating be-

tween ACPA-positive RA and controls comprised 0.617 (95% CI

0.577–0.656), 0.748 (95% CI 0.731–0.765), 0.756 (95% CI 0.723–

0.790), 0.813 (95% CI 0.782–0.845) and 0.857 (95% CI 0.804–

0.910), respectively (Figure 3). The HLA model had significantly

better discrimination than the SNP model (P,0.0001). Combined

SNP and HLA data did not improve discrimination with no

differences observed between AUCs for the HLA and HLA-SNP

models (P = 0.665) or the HLA-smoking and HLA-SNP-smoking

models (P = 0.1671). Additional smoking information significantly

improved modelling discrimination with significant differences

observed between HLA and HLA-smoking model AUCs

(P = 0.0003).

An overview of the main findings for each of the 5 prediction

models, alongside the differences between them is provided in

Figure S2.

Risk Distributions. In both datasets the HLA model

provided most risk prediction generating substantially higher and

lower ORs for RA in cases and controls respectively compared

with the SNP model (Figure 4).

In WTCCC the addition of other risk factors to the HLA-DRB1

alleles resulted in further small incremental increases in ORs for

RA in cases; a less pronounced reduction in risk was seen in

controls.

Table 4. Relationship between modelling components and age of RA onset.

WTCCC UKRAGG

Univariate Analysisc Univariate Analysis Multivariate Analysis

Modelling Component
No. Cases
Examined P-Value

Hazard Ratio
(95% CI)

No. Cases
Examined P-Value

Hazard Ratio
(95% CI) P-Value

Hazard ratio
(95% CI)

HLAa,b 1022 ,0.0001 1.034 (1.018–1.050) 1456 0.0004 1.025 (1.011–1.038) 0.0003 1.026 (1.012–1.040)

SNPa 1022 0.1804 1.043 (0.981–1.110) 284 0.294 1.075 (0.939–1.230) - -

Genderb 1021 0.2157 0.914 (0.792–1.054) 1456 0.0107 0.864 (0.722–0.967) 0.0465 0.885 (0.786–0.998)

Smokingb 962 0.1301 0.902 (0.789–1.031) 1361 0.0009 0.830 (0.743–0.927) 0.0041 0.848 (0.757–0.949)

Gender-Smoking Interactionb 961 0.0823 0.870 (0.744–1.018) 1361 0.009 0.846 (0.746–0.959) 0.8369 -

a = HLA and SNP variables represent the summary OR scores generated by the models incorporating HLA and SNP data respectively;
b = variables included in UKRAGG multivariate model after variable pruning using backwards selection and model comparison with Akaike’s Information Criterion;
c = as only one parameter was significant in the WTCCC univariate analysis no multivariate model was fitted.
doi:10.1371/journal.pgen.1003808.t004

Figure 2. Risk categorisation of RA and controls by each prediction model. The y-axis on each graph refers to the proportion of cases/
controls in each risk category; cont = controls; sero+ = seropositive RA; ACPA+ = ACPA-positive RA.
doi:10.1371/journal.pgen.1003808.g002
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In UKRAGG the addition of SNPs to HLA data provided no

changes in case risk profiles, although a minority of controls had

lower ORs. Additional smoking data resulted in significantly

higher ORs for cases; only the HLA-SNP-smoking model clearly

generated lower risk profiles for controls.

Lifetime Risk Prediction. Evaluating risks using genetics

(HLA-SNP model) alone the highest risk WTCCC ACPA-positive

case had an OR for seropositive RA of 79; as a male his lifetime

risk was estimated at 86%. The highest risk control had an OR of

22; as a female her lifetime risk was estimated at 53%. Despite

such high individual odds only a relative minority had relevant

increased lifetime risks: using the same HLA-SNP model 49

(4.61%) ACPA-positive cases and 1 (0.07%) control had ORs for

seropositive RA.20 (lifetime risks .48% if female and .22% if

male) in WTCCC. In UKRAGG 9 (3.06%) ACPA-positive cases

and 1 (0.17%) control had ORs.20.

The HLA-SNP-smoking model identified the greatest propor-

tion of cases with substantially increased lifetime risks for RA. This

model identified 18 (7.53%) and 3 (3.75%) ACPA-positive male

cases to have ORs for seropositive RA.20 (lifetime risk .22%) in

WTCCC and UKRAGG respectively; no controls had ORs.20.

Younger Onset RA Prediction
In WTCCC the HLA model summary OR score was the only

significant predictor of age of RA onset (Table 4). The hazard ratio

(HR) was 1.034 (P,0.0001), which indicated that the hazard (the

rate at which RA occurred) was greater in individuals with higher

HLA derived ORs than those with lower ORs. Therefore a higher

HLA model generated risk score associated with RA occurring at a

faster rate and thus YORA. Conversely ever-smoking was

associated with older onset RA: the HR of 0.902 indicated a

smaller hazard (RA occurred at a slower rate) in ever-smokers

compared with never-smokers, although this was not significant

(P = 0.1301).

In UKRAGG the HLA model summary OR score, gender and

smoking status were significant independent predictors of age of

Figure 3. Prediction model receiver operating characteristic curves. Panel A = WTCCC; Panel B = UKRAGG; ROCs calculated for discriminating
between ACPA-positive RA and controls; AUC = area under the curve. WTCCC model AUC comparisons: SNP versus HLA, P,0.0001; HLA versus HLA-
SNP, P = 0.0118; HLA-SNP versus HLA-Smoking, P = 0.3327; HLA-Smoking versus HLA-SNP-Smoking, P = 0.0001. UKRAGG model AUC comparisons: SNP
versus HLA, P,0.0001; HLA versus HLA-SNP, P = 0.665; HLA-SNP versus HLA-Smoking, P = 0.0145; HLA-Smoking versus HLA-SNP-Smoking, P = 0.1671.
doi:10.1371/journal.pgen.1003808.g003

Figure 4. Prediction model generated risk profiles for ACPA-positive RA and controls. Panel A = WTCCC; Panel B = UKRAGG; the upper set
of lines for each model refer to RA cases; the lower set of lines refer to controls; OR = odds ratio.
doi:10.1371/journal.pgen.1003808.g004
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onset. An increasing HLA summary OR score associated with

YORA (P = 0.0003, HR 1.026); ever-smoking (P = 0.0041, HR

0.848) and male gender (P = 0.0465, HR 0.885) associated with

older onset RA.

We considered that the non-significant relationship between

smoking and age of onset in WTCCC reflected a limited sample

size with our power to detect a 0.88 HR in the 962 WTCCC cases

approximately 51% compared with 65% for the 1,361 UKRAGG

cases. We therefore undertook a pooled analysis of both datasets

(incorporating an additional ‘‘study’’ variable to account for

dataset median age of onset differences). This confirmed that HLA

derived risk scores significantly associated with YORA (P,0.0001,

HR 1.030) and ever-smoking significantly associated with older

onset RA (P = 0.0489, HR 0.889).

Kaplan-Meier curves of age of onset stratified by HLA model

risk categorisation further demonstrate the association of HLA risk

profiles with YORA (Figure 5) with cases classified high-risk

having significantly younger onset ages compared to those

classified reduced-risk. In WTCCC the difference in the median

time to RA (time point at which half the cases have developed RA)

was 3 years between those classed high- and reduced-risk (Log-

Rank = 11.43; P = 0.0007). In UKRAGG a stronger association

was seen (Log-Rank = 27.33; P,0.0001) with a difference in

median time to RA onset between risk groups of 6 years. Further

stratification by ever-smoking status demonstrated a trend towards

an older onset age in ever-smokers. In WTCCC the median time

to onset difference between high-risk never-smokers and reduced-

risk ever-smokers was 7 years (Log-Rank = 14.42; P = 0.0024); a

larger disparity was seen in UKRAGG with a difference of 12

years observed (Log-Rank = 46.2505; P,0.0001).

Examining which four-digit resolution HLA-DRB1 alleles

influenced onset age revealed significant associations between

age of onset and *03:01 (P = 0.0313), *04:01 (P = 0.0001), *04:08

(P = 0.0032) and *13:02 (P = 0.0097) in WTCCC and *04:01

(P,0.0001) and *04:04 (P = 0.0243) in UKRAGG. Three of these

alleles (*04:01, *04:04 and *04:08) are shared-epitope alleles.

Discussion

We have demonstrated that predicting RA development is

possible with our prediction models able to identify individuals

with clinically relevant increased risks for seropositive RA. Our

modelling indicates that most prediction is provided by HLA-

DRB1 alleles and, to a lesser extent, smoking in males; non-HLA

susceptibility SNPs provide only minor predictive benefits. These

findings are consistent with the estimations of heritability variance

Figure 5. Kaplan-Meier curves: RA age of onset stratified by HLA model risk categorisation and smoking status. Panel A = WTCCC
Curves Stratified By Risk Categorisation; Panel B = UKRAGG Curves Stratified By Risk Categorisation; Panel C = WTCCC Curves Stratified By Risk
Categorisation and Ever-Smoking Status; Panel D = UKRAGG Curves Stratified By Risk Categorisation and Ever-Smoking Status; D= change in onset
age; Dm = maximum change in onset age across strata.
doi:10.1371/journal.pgen.1003808.g005
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conferred by different genetic components. We have also shown it

is possible to predict the age of RA onset, using information on

HLA and smoking to identify those at risk of younger and older

onset RA, respectively. Whilst our novel modelling approach,

which uses computer simulation-based categorisation alongside a

greater number of HLA alleles, significantly improves upon the

discriminative abilities of existing models [26], [27] it remains

unsuitable for population screening with only a minority at

significantly increased lifetime risks for RA.

Our approach provides some potential advantages over

existing RA prediction modelling [26], [27]. Firstly, by using a

simulated population to generate risk profiles we do not require

an entire population of real-life data to stratify risks. In contrast

existing approaches categorise wGRS scores using their Gauss-

ian distribution in control groups. Secondly, our CI-based

approach considers the precision with which risk factor effect

sizes are known when classifying risk; this prevents classifying

people high-risk if their risk is imprecisely known. Thirdly, our

models provide greater discrimination: the highest AUC for

existing clinical-genetic models in discerning ACPA-positive RA

from controls is 0.752; the highest AUC for our clinical-genetic

model is 0.857.

SNPs provided only minor improvements in prediction,

highlighting the limitations of genome-wide association study

(GWAS) derived data in this field. Although GWAS-established

SNPs have helped identify cellular pathways relevant to RA

pathogenesis [51] their modest effect sizes limit their predictive

utility. It has been proposed that the missing heritability of RA

may reflect the involvement of rare variants of large effect sizes or

structural variants [52]. Alternative genotyping technologies such

as next-generation sequencing may identify these variants,

although only loci with large effect sizes will substantially improve

prediction modelling.

Although individuals with clinically relevant increased lifetime

risks (such as 86%) for RA were identified there was, overall, only

a minority of individuals at a significantly elevated risk: 7% of

ACPA-positive individuals had lifetime risks of 22% or more when

evaluated using all available risk factors. Therefore despite high

AUCs our modelling is unsuitable for population level screening.

However, if its use was targeted to groups with a priori increased

risks, such as first degree relatives of RA probands [53–55], then a

substantially greater proportion of very high-risk individuals might

be identified.

Individuals classified high-risk by our HLA model were more

likely to develop RA at a younger age. This finding – mainly

attributable to the *04:01 allele – is supported by existing

literature. Hellier et al reported a higher frequency of *04 RA

associated alleles in YORA (present in 52% of 262 RA cases with

onset age ,60) compared with elderly onset RA (present in 37%

of 60 cases with onset age .60; P = 0.045) [18]. Similarly, Wu et al

identified a significantly younger age of onset in Caucasian RA

patients carrying shared epitope encoding *04 alleles (P = 0.0003)

[19]. Other studies report positive correlations between YORA

and shared epitope alleles [25], [56]. Our finding of ever-smoking

associating with older onset RA is less established. It has only been

examined in three relatively small studies, with contrasting

outcomes: one study reported a significant relationship between

smoking at disease onset and a younger onset age [57]; one

reported a younger onset age in current vs. never-smokers

(although ex-smokers had older onset RA in comparison to both

these groups) [58]; the final study found no association [59]. Our

findings – demonstrated in 2,323 individuals across two indepen-

dent datasets – are biologically plausible. As risk genotypes are

present from birth they can exert their effects on disease risk

throughout an individual’s lifetime; therefore possessing high-risk

HLA-DRB1 alleles predisposes to RA at a younger age. In contrast

the risk of RA increases as more cigarettes are smoked [60], [61]

and smokers are exposed to more cigarettes as they age; therefore

smokers are more likely to develop RA as they get older because

they have been exposed to more cigarettes and thus smoking

associates with older onset RA. This logic also explains why ever-

smoking associates with older onset RA in both men and women,

with heavy smoking a risk factor for RA in both genders [5]. We

were, however, unable to incorporate heavy smoking in our

prediction modelling due to a paucity of data on smoking pack-

years in WTCCC/UKRAGG.

We incorporated many genetic risk factors in our modelling but

included only one environmental risk factor, smoking. This reflects

uncertainty regarding relevant environmental risks alongside

limited environmental data within current genetic datasets.

Although many environmental factors are linked to RA their

associations are usually identified in case-control studies, which are

subject to multiple biases, rather than cohort studies. Examples

include alcohol consumption [36], parity [62], [63] and oral

contraceptive pill use [64]. Better characterisation of environmen-

tal risks will enhance predictive modelling.

Our modelling has several limitations. Firstly, WTCCC

participants were included in the meta-analyses that we

obtained our genetic risk loci data from; however WTCCC

comprised only a proportion of the meta-analyses datasets (20%

of the HLA meta-analysis; 29% of the SNP meta-analysis) and

our findings were independently replicated in UKRAGG.

Secondly, missing data meant the number of individuals

included in each model fell as more risk factors were included;

this is particularly seen in models incorporating smoking.

Thirdly, due to marked heterogeneity in published data on

gene-gene/gene-environment interactions we assumed indepen-

dence between these factors despite known interactions existing

between the shared epitope alleles and PTPN22 and smoking

[6], [7], [29], [37], [38].

Improving RA prediction requires better clarification of its

genetic and environmental risk factors. Identifying risk factors with

large effect sizes of known precision will most enhance prediction

modelling. This could be facilitated through fine-mapping studies

that better tag causal variants [65] alongside prospective cohort

studies examining environmental risk factors in RA cases

subdivided by ACPA status, with increasing evidence that risks

differ between these serological subsets [36], [66]. It is, however,

unlikely that identifying such risk factors will substantially increase

the proportion of individuals with clinically relevant high disease

risks. We therefore consider that prediction modelling requires

evaluation in a priori higher risk groups. In this context it may

identify sufficient numbers of very high-risk individuals, facilitating

a better understanding of pre-RA immunopathology and enabling

the assessment of primary prevention strategies.
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