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ABSTRACT
We investigate how different stellar initial mass functions (IMFs) can affect the mass-loss
and survival of star clusters. We find that IMFs with radically different low-mass cut-offs
(between 0.1 and 2 M�) do not change cluster destruction time-scales as much as might
be expected. Unsurprisingly, we find that clusters with more high-mass stars lose relatively
more mass through stellar evolution, but the response to this mass-loss is to expand and
hence significantly slow their dynamical evolution. We also argue that it is very difficult, if
not impossible, to have clusters with different IMFs that are initially ‘the same’, since the
mass, radius and relaxation times depend on each other and on the IMF in a complex way.
We conclude that changing the IMF to be biased towards more massive stars does speed up
mass-loss and dissolution, but that it is not as dramatic as might be thought.

Key words: stars: kinematics and dynamics – stars: low-mass – stars: luminosity function,
mass function – open clusters and associations: general.

1 IN T RO D U C T I O N

Star clusters are used as tracers of stellar populations and past star
formation in galaxies. A key ingredient of ‘reverse engineering’ an
observed population to its initial conditions is knowing how rapidly
clusters lose mass and are destroyed (see e.g. Lamers, Gieles &
Portegies Zwart 2005; de Grijs & Parmentier 2007; Chandar, Fall
& Whitmore 2010; Karl, Fall & Naab 2011; Bastian et al. 2012;
Baumgardt et al. 2013).

If a star cluster survives the first few million years, then it will
evolve as a result of two-body relaxation, stellar evolution, interac-
tion with the Galactic tidal field, close encounters with molecular
clouds and the effects of disc and bulge shocking. All these effects
contribute to mass-loss and dissolution (e.g. Meylan & Heggie 1997;
Fukushige & Heggie 2000; Heggie & Hut 2003; Lamers & Gieles
2006). Numerous studies have investigated the long-term evolution
and final dissolution of various types of star clusters under dif-
ferent environmental conditions (e.g. Portegies Zwart et al. 1998;
Baumgardt & Makino 2003; Lamers et al. 2005; Gieles &
Baumgardt 2008; de Grijs & Anders 2012; Shin et al. 2013).

One issue that has received relatively little attention recently is
the effect of different initial mass functions (IMFs) on the evolution
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of star clusters. Part of the reason for this lack of interest is the
general feeling that the IMF is universal and does not vary among
star clusters (e.g. Bastian, Covey & Meyer 2010). However, as we
shall describe below, there is possibly some evidence for variations,
and variations in IMFs are often claimed, so it is worth investigating
how star cluster evolution will change given different IMFs.

Previous studies have shown that the long-term survival of star
clusters depends on the properties of the low-mass section (� a few
M�) of their IMF. When a deficit of low stellar masses exists, or
when the slope of the IMF is too shallow (i.e. when the stellar mass
distribution is top-heavy), star clusters will likely disperse within
a billion years of their formation (e.g. Chernoff & Shapiro 1987;
Chernoff & Weinberg 1990; Goodwin 1997; Smith & Gallagher
2001; Mengel et al. 2002). Kim et al. (2006) compared the evolution
of clusters with different lower mass cut-offs for the Arches cluster.
They find that clusters with the same upper IMF but with two
different mass cut-offs (0.1 and 1 M�) do not give significantly
different luminosity profiles for the Arches cluster at the current
age.

Theoretical and observational arguments have been proposed
suggesting that the IMF may depend on environment (for a re-
view, see Bastian et al. 2010). For example, the upper mass
limit of the IMF of a star cluster may depend on the environ-
ment in which it forms (e.g. Reddish 1978; Vanbeveren 1982;
Weidner & Kroupa 2006), although observational selection
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effects can complicate the derivation of such a relationship (Parker
& Goodwin 2007; Maschberger & Clarke 2008). Extragalactic stud-
ies also suggest that the IMF may be more top- or bottom-heavy
in different environments (e.g. Brewer et al. 2012; Dabringhausen
et al. 2012; Dutton, Mendel & Simard 2012; Spiniello et al. 2012;
Zaritsky et al. 2012; Barnabè et al. 2013; Bekki 2013; Ferreras et al.
2013; Geha et al. 2013; Goudfrooij & Kruijssen 2013; Läsker et al.
2013; Smith & Lucey 2013; Weidner et al. 2013, and numerous
others).

Several studies have claimed observational evidence for a top-
heavy IMF or a lower mass cut-off in the IMF in young star clus-
ters. McCrady, Gilbert & Graham (2003) suggest that MGG-11,
a star cluster in the starburst galaxy M82, shows evidence of
a top-heavy IMF, with a lack of low-mass stars (M < 1 M�).
McCrady, Graham & Vacca (2005) also discuss a possible lower
mass limit in M82-F. They explain their observations using a top-
heavy IMF with a lower mass cut-off at approximately 2 M�. Smith
& Gallagher (2001) claimed that M82-F has a lower mass cut-off at
2–3 M�, but Bastian et al. (2007) show that this may be explained
by differential extinction. Another example is NGC 1705-1, where
Sternberg (1998) finds that the IMF must be flat or truncated be-
low M < 1 M�. Mengel et al. (2008) examine young star clusters
in NGC 4038/4039 and find that their results can be explained by
a significant range in possible IMF slopes or low-mass cut-offs.
Greissl (2010), on the other hand, finds no evidence for a low-mass
cut-off. Finally, Stolte et al. (2005) find that the present-day mass
function in the Arches cluster near the Galactic Centre is truncated
below 6–7 M�, although Kim et al. (2006) attribute this result to a
bump in the IMF around 6–7 M�.

In summary, whilst there is no definitive evidence of variations
in the IMF with environment (see Bastian et al. 2012), there are
many claims, and environments, where the observations are unclear.
Therefore, the effect of IMF variations on the evolution of star
clusters is worth studying, and even if the IMF is truly universal in
all environments, this is still an interesting theoretical investigation.

In this paper, we carry out numerical simulations of moderately
sized star clusters, focusing on the first 200 Myr of their evolu-
tion. This article is organized as follows. In Section 2, we describe
our method and assumptions. In Section 3, we study how cluster
evolution depends on the properties of the IMF, by comparing the
evolution of star clusters with varying initial conditions. We dis-
cuss the implications of our findings in Section 4 and finally we
summarize our conclusions in Section 5.

2 M E T H O D

We simulate ensembles of moderate-mass star clusters (typically a
few thousand solar masses) with different IMFs. An important point
that we will keep returning to is that it is impossible to create two
clusters with different IMFs that are actually ‘the same’ – at least
one of the parameters mass, radius or relaxation time will differ
between clusters with different IMFs, often significantly.

2.1 Initial conditions

We simulate clusters with typical masses of around 1500 M� (al-
though this varies from 27 to 17 700 M� for reasons we will de-
scribe below). Clusters are evolved with and without stellar evo-
lution to discriminate the dynamical evolution from that driven by
stellar mass loss. We vary the lower mass cut-off in the IMF be-
tween 0.1 and 2 M�. In order to compare ‘like-with-like’, we run
various ensembles in which we keep any two of the cluster mass,

half-mass radius, half-mass relaxation time and the upper end of the
IMF, constant.

We use the publicly available NBODY6 package (Aarseth 2003)
for our simulations. Stellar evolution and binary evolution are in-
tegrated following the recipes of Eggleton, Tout & Fitchett (1989),
Eggleton, Fitchett & Tout (1990), Tout et al. (1997) and Hurley,
Pols & Tout (2000).

Each cluster starts as a Plummer sphere in virial equilibrium
(following Aarseth, Henon & Wielen 1974), and the most massive
star allowed in any cluster is 20 M�. The fundamental upper mass
limit of the IMF may be as high as 300 M� (Crowther et al. 2010),
but what we are effectively doing is ignoring the first few million
years of the life of the cluster and starting with a population of
clusters that have survived any initial gas expulsion phase, and
relaxed into a bound cluster. Therefore, whilst we start our clusters
at a formal age of zero, really the starting point for our simulations
is an age of 5–10 Myr and any star >20 M� will have evolved. This
avoids complications from what are the true initial conditions from
star formation (such as initial substructure; see Allison et al. 2010).
Also note that 20 M� is the maximum mass one would expect in
our canonical Mcl ≈ 1500 M� cluster, either by random sampling
(Parker & Goodwin 2007) or from a cluster mass–maximum stellar
mass relationship (Weidner & Kroupa 2006). It should be noted that,
observationally, it is impossible to tell the difference between these
two scenarios (Cerviño et al. 2013). We do not include primordial
binaries, nor do we consider primordial mass segregation.

We define a canonical reference cluster with a mass of
Mcl = 1500 M�, and a virial radius Rvir = 1 pc, with a corre-
sponding initial projected half-mass radius Rhm = 0.59Rvir and an
intrinsic half-mass radius of 0.77Rvir (see e.g. Heggie & Hut 2003).
These are typical sizes of young open clusters, although the ob-
served spread in radii is large (e.g. Lada & Lada 2003; Schilbach
et al. 2006; Portegies Zwart, McMillan & Gieles 2010).

We sample a stellar mass distribution f(M) in the mass range
Mcut ≤ M ≤ Mmax, where Mcut is a varying low-mass cut-off in
the IMF. We sample Mcut with values each separated by

√
2, i.e.

equally in logarithmic space: Mcut ≈ 0.10, 0.14, 0.20, 0.32, 0.50,
0.71, 1.00, 1.41 and 2.00 M�. The minimum value of Mcut is near
the hydrogen-burning limit, and the range of Mcut roughly brackets
the values claimed in observational studies. The properties of each
of these models are listed in Table 1.

We consider both a full Salpeter IMF (e.g. Salpeter 1955; Oey
2011) and the Kroupa (2001) IMF. The Salpeter IMF is a power-law
f(M) ∝ Mα with α = −2.35. Subsequently, we adopt the more real-
istic Kroupa (2001) IMF, a three-part power-law mass distribution,
which has α = −2.3 at the high-mass end. Although the Salpeter
IMF is unrealistic down to the hydrogen-burning limit, the effect
of a low-mass cut-off is very prominent, and it can therefore be
used to illustrate the general behaviour of clusters with a low-mass
cut-off in the IMF. The Kroupa (2001) IMF is used to determine
how much a low-mass cut-off affects more realistic clusters. For a
simple power-law IMF, f(M) ∝ Mα , the average mass 〈M〉 for the
Salpeter IMF (with α = −2.35), Mmin = Mcut and Mmax = 20 M�,
is

〈M〉S ≈ 3.86

(
0.35 − M−0.35

cut

0.0175 − M−1.35
cut

)
M� . (1)

For the Kroupa (2001) IMF, the average mass can be calculated
numerically, and we find that the following expression is a good
approximation:

〈M〉K ≈ 0.35 + 2.23Mcut + 0.05M2
cut . (2)
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Table 1. Initial conditions of the models used in our analysis. Simulations
of each model are carried out with and without stellar evolution. The first
column lists the model ID (see Section 2.2). The adopted shape of the IMF
(S = Salpeter, K = Kroupa) for each model is listed in the second column.
The remaining columns list initial values of the cut-off mass Mcut, the total
cluster mass Mcl, the average stellar mass 〈M〉, the total number of stars
N, the half-mass relaxation time trlx and finally the half-mass radius Rhm.

ID IMF Mcut Mcl 〈M〉 N trlx Rhm

( M�) ( M�) ( M�) (Myr) (pc)

MR1 S 0.10 1500.0 0.326 4607 19.64 0.59
MR2 S 0.14 1500.0 0.445 3367 14.91 0.59
MR3 S 0.20 1500.0 0.619 2424 11.19 0.59
MR4 S 0.32 1500.0 0.948 1583 7.73 0.59
MR5 S 0.50 1500.0 1.408 1065 5.50 0.59
MR6 S 0.71 1500.0 1.908 786 4.24 0.59
MR7 S 1.00 1500.0 2.550 588 3.32 0.59
MR8 S 1.41 1500.0 3.383 443 2.62 0.59
MR9 S 2.00 1500.0 4.467 336 2.08 0.59

TR1 S 0.10 26.7 0.326 82 5.00 0.59
TR2 S 0.14 62.8 0.445 141 5.00 0.59
TR3 S 0.20 148.5 0.619 240 5.00 0.59
TR4 S 0.32 436.1 0.948 460 5.00 0.59
TR5 S 0.50 1151.9 1.408 818 5.00 0.59
TR6 S 0.71 2392.4 1.908 1254 5.00 0.59
TR7 S 1.00 4766.1 2.550 1869 5.00 0.59
TR8 S 1.41 9261.9 3.384 2737 5.00 0.59
TR9 S 2.00 17700.8 4.469 3961 5.00 0.59

MT1 S 0.10 1500.0 0.326 4627 5.00 0.24
MT2 S 0.14 1500.0 0.445 3389 5.00 0.28
MT3 S 0.20 1500.0 0.619 2437 5.00 0.34
MT4 S 0.32 1500.0 0.948 1591 5.00 0.44
MT5 S 0.50 1500.0 1.408 1071 5.00 0.55
MT6 S 0.71 1500.0 1.909 791 5.00 0.66
MT7 S 1.00 1500.0 2.550 591 5.00 0.77
MT8 S 1.41 1500.0 3.383 446 5.00 0.91
MT9 S 2.00 1500.0 4.466 338 5.00 1.06

UR1 K 0.10 4664.6 0.565 8263 18.67 0.59
UR2 K 0.14 4485.5 0.665 6750 15.91 0.59
UR3 K 0.20 4242.9 0.800 5304 13.22 0.59
UR4 K 0.32 3816.3 1.054 3620 9.96 0.59
UR5 K 0.50 3254.5 1.462 2226 7.05 0.59
UR6 K 0.71 2768.9 1.972 1404 5.13 0.59
UR7 K 1.00 2341.2 2.622 893 3.78 0.59
UR8 K 1.41 1956.6 3.463 565 2.81 0.59
UR9 K 2.00 1602.1 4.551 352 2.09 0.59

We include the external tidal field of the host galaxy, assuming
that the cluster is on a circular orbit in the solar neighbourhood.
The Jacobi radius rJ of a star cluster of mass Mcl at a Galactocentric
distance DG can, to first order, be approximated by

rJ ≈ DG

(
Mcl

3MG

)1/3

≈ 6.65

(
Mcl

1000 M�

)1/3

pc (3)

(Binney & Tremaine 1987), where we adopt MG = 5.8 × 1011 M�
as the mass of a Milky Way-like galaxy and DG ≈ 8 kpc for the
Galactocentric distance. For star clusters of mass Mcl ≈ 1500 M�
(see Table 1), the Jacobi radius is roughly rJ ≈ 7.6 pc.

As the clusters evolve, stars gradually escape through ejection or
through interaction with the Galactic tidal field. Previous work has
shown that simple escape criteria such as the binding energy and/or
a distance beyond the Jacobi radius are not sufficient, as many stars
satisfying these criteria can still spend a significant amount of time

near the cluster and interact with neighbouring stars, or even return
to the star cluster (e.g. Terlevich 1987; Ross, Mennim & Heggie
1997; Fukushige & Heggie 2000). Loosening the escape criteria is
a safer approach, but this also has the risk of retaining escaping
stars for too long, which is problematic when the process of cluster
mass loss is studied. Previous work has indicated that adopting
an escaper criterion of twice the Jacobi radius (equation 3) is a
practical compromise (e.g. Aarseth 1973, 2003; Portegies Zwart
et al. 2001), and this is also the approach we adopt in our study.
The consequence of this choice is that we may identify escaping
stars slightly too late. For example, when a star formally escapes
the star cluster at a distance r from the cluster centre at a radial
orbit with velocity v, then it will be identified as an escaper at a
time �t ≈ (2rJ − r)/v later. Our modelled star clusters typically
have rJ ≈ 7.6 pc, and most stars escape with 1–10 km s−1, such that
�t < 1.5–15 Myr. Although the escape rate and cluster membership
are correctly calculated over longer time-scales, caution should be
taken when interpreting differences in star cluster membership over
shorter time-scales.

The total integration time for each model is 200 Myr, which is
substantially longer than the three time-scales that determine the
global evolution of the star clusters studied: the stellar evolutionary
time-scales, the crossing time and the relaxation time (see Sec-
tion 2.2). Depending on the number of member stars in a cluster, we
run between tens and thousands of realizations of each model (keep-
ing N multiplied by the number of realizations roughly constant at
1.5 × 105) to reduce statistical fluctuations, which is especially
important in some cases with very small N.

2.2 Dynamics and comparisons between clusters

The fundamental process we are interested in is the evolution of
the cluster mass with time – i.e. how fast a cluster loses mass, and
hence its lifetime. We expect two processes to be important in the
evolution of our clusters.

First, and most obviously, stellar evolutionary mass-loss will be
important. Stellar evolution will cause stars to lose a significant frac-
tion of their mass at the end point of their evolution. The time-scale
at which stellar evolution becomes important roughly corresponds
to 10, 20, 50, 100 and 200 Myr for stars of mass 17.5, 11, 6.8, 4.8
and 3.7 M�, respectively: high-mass stars lose more mass, more
rapidly than low-mass stars.

So, the greater the fraction of the initial mass of a cluster that is
in higher mass stars, the more mass that cluster will lose, and the
faster it will evolve.

The effect of stellar evolutionary mass-loss is to cause the cluster
to become less massive (obviously), and also to expand. Expansion
leads to two effects, one hastens destruction and the other slows
it. Expansion causes the crossing time and the relaxation time to
increase, so it slows down dynamical evolution and aids survival.
But expansion due to mass-loss causes the cluster to fill more of
a now smaller tidal radius and eases the loss of stars and hastens
destruction. As we shall see, the balance between these effects is
important.

In most cases, we take a Salpeter IMF between Mcut and
Mmax = 20 M� as our IMF. For a Salpeter IMF with a low-mass cut-
off at Mcut = 0.1 M�, the cluster will lose approximately 10 per cent
of its mass in 100 Myr, and approximately 15 per cent by 200 Myr
through stellar evolution alone. For Mcut = 1 M�, the percentages
are 28 and 35 at 100 and 200 Myr, and for Mcut = 2 M�, 42 and
55 at 100 and 200 Myr, respectively. So we would expect to see the
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masses of clusters fall by at least this amount in 100 and 200 Myr.
Any further mass-loss must be due to dynamics.

The other important process in cluster evolution is dynamics:
interactions redistribute energy between stars and cause the loss of
(preferentially low-mass) stars. This can occur in a violent close
encounter, or simply by small perturbations (and the input of tidal
energy) causing a star to reach the escape velocity and pass beyond
the tidal radius (e.g. Heggie & Hut 2003). In addition, scattering
events can also result in high-velocity ejections of massive stars
(and sometimes even binaries) that have sunk to the centre of the
star cluster as a result of mass segregation (see e.g. Gualandris,
Portegies Zwart & Eggleton 2004), although the vast majority of
massive stars evolve before this occurs, and leave the star clusters
as stellar remnants (see Section 3).

Dynamical interactions are driven by encounters between
stars/stellar systems and the fundamental time-scale for encoun-
ters is the crossing time:

tcr = R

σ
, (4)

where R is the size of the system, and σ the velocity dispersion. The
half-mass crossing time in a virialized system is

tcr(half) =
√

2

G

R3
hm

Mcl
, (5)

where Rhm is the half-mass radius, Mcl the total cluster mass and G
the gravitational constant.

Although we do not include primordial binaries, dynamical bina-
ries may form through three-body encounters. If the cluster contains
a binary system, then that binary can act as an energy sink: en-
counters remove energy from the binary, making it ‘harder’ whilst
decreasing (making less negative) the potential energy of the rest
of the cluster. Close encounters with the binary can also cause ejec-
tions. In a star cluster with a single energetically important binary
(usually near its centre), the encounter rate with this binary system
scales with the crossing time.

Two-body encounters between single stars in the cluster will
cause both energy equipartition/mass segregation and evaporation.
The global dynamical evolution of star clusters occurs at the time-
scale of relaxation. The half-mass relaxation time trlx for a star
cluster with a Plummer (1911) distribution is

trlx ∼
(

N

8 ln N

)
tcr(half) (6)

(Heggie & Hut 2003), where N is the number of stars in the cluster
(see e.g. Binney & Tremaine 1987; Chernoff & Weinberg 1990).

Therefore, there are three time-scales that determine the evolution
of star clusters:

(i) the stellar evolutionary time-scale (the time-scale on which
we lose a significant amount of mass through stellar evolution),
which depends on 〈M〉;

(ii) the crossing time, which depends on Rhm and Mcl; and
(iii) the relaxation time, which depends on the crossing time (i.e.

Rhm and Mcl), and also on N (which depends on Mcl and 〈M〉).
Stars also escape when they pass beyond the tidal boundary, which
also depends on Mcl and therefore shrinks as stars evolve and escape
over time. All cluster parameters will evolve with time: Mcl and N
will always decrease (but not at the same rate) as stars evolve or
are ejected, but Rhm and 〈M〉 can increase, decrease or stay roughly
the same. Therefore, dynamical time-scales can evolve in complex
ways.

2.2.1 Comparing clusters

When studying the effect of varying IMFs on the evolution of star
clusters, one would ideally like to only vary one parameter: Mcut,
and hence 〈M〉. However, as we have seen, changing 〈M〉 changes
N, which changes the relaxation time. Keeping the relaxation time
constant then forces us to change other parameters, and so on.

Therefore, we run several different sets of simulations, for each of
which we keep the initial conditions of several parameters constant
while varying Mcut. The different sets of models, which we refer to
as models MR, TR, MT and UR, respectively, are as follows.

(i) Model MR: the initial total cluster mass and initial half-mass
radius are fixed (Section 3.1).

(ii) Model TR: the initial half-mass relaxation time and initial
half-mass radius are fixed (Section 3.2).

(iii) Model MT: the initial total mass and initial half-mass relax-
ation time are fixed (Section 3.3).

(iv) Model UR: the upper part of the IMF and the initial half-mass
radius are fixed (Section 3.4).

The last model, UR, requires some further explanation. In this
model, the numbers/masses of stars with masses above 3 M� are
kept constant. This is in order to represent clusters that would ‘look’
similar to an observer (for more distant clusters, only the most
massive stars can be observed). Therefore, a hypothetical observer
looking at any cluster in model UR would see a cluster with the
same half-light radius and the same higher mass stellar content.
They might not be able to observe that the low-mass cut-off of the
IMF varied among these clusters.

The initial properties of each of the models are shown in Table 1:
the identifier of the simulations, the initial mass function, the low-
mass cut-off Mcut, the total mass Mcl, the average stellar mass 〈M〉,
the number of stars N, the half-mass relaxation time trlx and the
half-mass radius Rhm.

3 R ESULTS

A reasonable expectation is that clusters with a high Mcut (i.e. a lack
of low-mass stars) will lose mass more rapidly and be destroyed
more rapidly that those with a low Mcut.

High-Mcut clusters inevitably lose more mass through stellar evo-
lution than low-Mcut clusters. But the key question of interest is
how this extra (evolutionary) mass-loss changes the rate at which
dynamical mass-loss or tidal overflow occurs and so changes the
rate at which the cluster is destroyed. In almost all cases we show
that the extra evolutionary mass-loss does not have as significant an
effect as one might expect.

3.1 Identical Mcl and Rhm (model MR)

First, we consider model MR. In this model, we keep Mcl and Rhm

constant. These could be considered the models in which the most
basic cluster parameters are kept the same and might be argued to
be those in which the clusters are truly ‘the same’. Note that the
initial tidal radius is the same for each cluster we consider here.

In the MR models, the initial cluster masses are always
Mcl = 1500 M�, and the initial half-mass radii are Rhm = 0.59 pc.
Since Mcut changes from 0.1 to 2 M�, N decreases from N = 4607
(〈M〉 = 0.33 M�) to N = 336 (〈M〉 = 4.5 M�). As Mcl and Rhm are
initially identical for each cluster, so are the crossing times. But as
N decreases, the relaxation time falls from 20 Myr (Mcut = 0.1 M�)
to 2 Myr (Mcut = 2 M�).
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Figure 1. Evolution of star clusters with constant initial mass and half-mass radii (model MR) without stellar evolution. (a) Fractional evolution of the number
of stars, N. (b) Fractional evolution of the cluster mass, Mcl. (c) Evolution of the half-mass radii, Rhm. In each panel, the darkest curves are for IMF low-mass
cut-offs of 0.1 M�, becoming lighter as the mass of the low-mass cut-off increases to 2 M�.

For model MR, we first consider simulations with no stellar
evolution, shown in Fig. 1. This paper contains several very similar
figures, so it is worth describing them in some detail. Each panel
contains several curves with different colours. Darker shades show
lower values of Mcut from 0.1 M� (darkest colour) to 2 M� (lightest
colour). In each figure, panel (a) shows the evolution of the relative
numbers of stars in each cluster with time. Panel (b) shows the
evolution of the relative mass with time and panel (c) shows the
evolution of the half-mass radii with time. All results represent
the average of an ensemble of simulations.

When we ignore stellar evolution as we do in Fig. 1, the evo-
lution of clusters will be entirely a result of dynamics. One might
expect two-body relaxation to dominate. This would mean that
Mcut = 2 M� clusters should ‘evolve’ around 10 times faster than
Mcut = 0.1 M� clusters (see equation 6). By ‘evolve’ we mean that
the rates at which energy equipartition and ejections occur should
be 10 times faster, but this will also be moderated by contraction of
the core and expansion of the half-mass radius in response to ejec-
tions and evaporation (note that ejections can occur with positive
energy owing to the tidal truncation).

However, examination of Fig. 1 shows that the evolution of
Mcut = 0.1 M� clusters (darkest colour) and Mcut = 2 M� clusters
(lightest colour) are really quite similar and a significant expansion
occurs in all cases. Higher Mcut clusters evolve slightly faster (the
lightest colour curves are offset), but the difference is not as signif-
icant as one might have expected, and certainly not a factor of 10 in
the ‘speed’ of the evolution.

The reason for this is that in all of these clusters the dynamics
is actually dominated by a massive central binary. The dynami-
cal formation of a massive binary system in the centre of a star
cluster is very common, and this binary is made of two of the
most massive stars in the cluster (see e.g. Aarseth 2003; Heggie
& Hut 2003). It acts to heat the cluster, causing the expansion
seen in the half-mass radius (Fig. 1c). This heating occurs on the
time-scale of the crossing time, which is the same in each of these
clusters. This shows that dynamics is not as simple as two-body
relaxation and can be driven on different time-scales if binaries are
present.

The situation we have simulated in Fig. 1 is not particularly
physical. Apart from the fact that stellar evolution occurs in reality,
stellar evolution will be especially important for two other reasons.
First, it will cause mass-loss and drive expansion, and secondly,
it will also evolve the most massive stars, which are the stars that

tend to be in the dynamically important binary which drives the
evolution.

In Fig. 2, we show the results of constant Mcl and Rhm clusters
with stellar evolution. Here, we have the basic result that one would
expect: clusters with a higher Mcut lose more mass more rapidly,
expand more rapidly and are destroyed more rapidly. In addition,
we show in the bottom panels of Fig. 2 the results for the individual
models in the ensemble of simulations, which give an indication of
the spread resulting from stochasticity in the initial conditions and
chaos afterwards.

What is particularly interesting is not that clusters with a higher
Mcut lose mass more rapidly (they cannot lose less mass), but that
their mass-loss is not as dramatic as one might have expected. In
the very extreme case of a cluster with Mcut = 2 M�, there is still a
surviving cluster after 200 Myr. And the evolutionary sequences of
clusters with Mcut = 0.1–0.5 M� are very similar.

Fig. 2(b) and Table 2 show that this mass-loss is not caused only
by stellar evolution. The star clusters with Mcut = 0.1 and 2 M�
lose 15 and 55 per cent of their mass, respectively, in 200 Myr, only
owing to stellar evolution. However, simulations including dynam-
ics show that the mass-loss is 20 per cent in the Mcut = 0.1 M�
clusters, and 72 per cent in the Mcut = 2 M� clusters.

In all cases, the mass-loss is dominated by the mass-loss as a
result of stellar evolution, and ejections/tidal overflow only account
for about a quarter to a third of the mass-loss.

It seems unexpected that the contribution of dynamical mass-loss
is very similar in all cases. Not only do high-Mcut clusters lose more
mass through stellar evolution, but their initial relaxation times are
much shorter, which would be expected to drive faster dynamical
evolution as well.

However, the rapid and significant mass-loss due to stellar evo-
lution causes high-Mcut clusters to expand significantly. This ex-
pansion increases their crossing times, and so significantly reduces
their relaxation times, thus ‘slowing’ their dynamical evolution.

In Fig. 2(c), we see that the half-mass radii of high-Mcut clusters
(lighter colour curves) expand by factors of several. Indeed, all
clusters expand from their initial half-mass radii of 0.6 pc to between
2.4 pc (Mcut = 0.1 M�) to 5.3 pc (Mcut = 2 M�). Therefore, all
clusters have significantly longer relaxation times after 200 Myr
than their initial values.

Crossing times scale as R
3/2
hm M

−1/2
cl ; so for the Mcut = 0.1 M�

clusters, the crossing time has increased by a factor of approximately
10 after 200 Myr, but for the Mcut = 2 M� clusters it has increased
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Figure 2. As Fig. 1, but for the star clusters in model MR with stellar evolution (top panels). The bottom panels show the spread among the individual models
in our ensemble of realizations.

by a factor of 50. This acts to help equalize the initial difference in
which the initial relaxation times of the Mcut = 2 M� clusters was
10 times shorter (changing N also plays a role here to decrease the
relaxation times of the Mcut = 2 M� clusters more, but it is less
significant).

Binary heating can also play a minor role. Fig. 2(c) shows that
low-Mcut clusters keep expanding significantly, even at late times
when stellar evolutionary mass-loss becomes small (especially after
100 Myr). This expansion is driven by binary heating (although not
to the extent that clusters without stellar evolution because of the
lower mass of the binaries – compare Figs 1c and 2c).

An interesting feature is present in the evolution of the number of
stars in the clusters in Fig. 2(a). The number of stars in the high-Mcut

clusters falls sharply during the first 10–60 Myr, and then slows
significantly before declining rapidly again after about 100 Myr.
This feature is most prominent in the highest Mcut clusters, reducing
in importance as smaller values for Mcut are chosen.

The same feature is present in the fractional mass-loss shown in
Fig. 2(b), but to a much lesser extent (a slight change in the slope
of the mass-loss line for high Mcut). This feature is the result of
the supernovae of relatively large numbers of stars. The immediate
effect of stellar evolutionary mass-loss is to reduce the mass of the
cluster, but not the number of stars in the cluster: massive stars
change from being 10–20 M� stars into being ≈1.4 M� neutron
stars. This has two effects.

First, neutron stars are given velocity kicks (for details, see
Aarseth 2003, and NBODY6), which most often leads to them be-
ing ejected from the cluster – this causes the number of stars to
fall fairly rapidly. The production and rapid escape of neutron stars
halts around 60 Myr, which explains the kink in Fig. 2(a) at this

time. Lower mass stars that do not go supernovae evolve into white
dwarfs. These white dwarfs do not get a high-velocity kick, and
only escape at around 100 Myr, which explains the second kink in
Fig. 2(a).

Secondly, the very significant mass-loss caused by stellar evo-
lution unbinds a high-velocity tail of stars in the initial velocity
distribution. These newly unbound stars take some time to escape
the cluster and so are associated with the cluster for some time. This
is an effect very similar to that seen in simulations of gas expulsion
from star clusters (see especially Bastian & Goodwin 2006, who
detail the ‘luminosity bump’ caused by slow escapers).

Therefore, we have three effects that cause the number of stars to
decrease. First, velocity kicks on neutron stars which are responsible
for low-mass objects to be lost. This is clearly seen in Fig. 3, which
shows the cumulative number of neutron stars that have escaped
the star clusters over time. In fact, only 1–5 per cent of the stars
with masses larger than 10 M� escape before they evolve, while
all others experience mass-loss while still being a member of the
star cluster. Secondly, the number of stars decreases following the
unbinding of high-velocity stars due to the change in the gravita-
tional potential from stellar evolutionary mass-loss and the resulting
expansion of the star cluster. The potential Phm(t) at the half-mass
radius, shown in Fig. 4, exhibits a strong decrease around 10 Myr,
which causes part of the stellar population (which at t = 0 Myr
has the same velocity dispersion in all models MR) to escape, and
this is most pronounced for the clusters with a high Mcut. Thirdly,
the ‘normal’ process of two-body encounters and ejections. All of
these processes lead to the loss of relatively low-mass stars in clus-
ters with high Mcut, leading to a different rate of change in mass-loss
and number loss.
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Table 2. Star cluster properties after t = 200 Myr for the initial con-
ditions. The first two columns list the model ID and the cut-off mass
Mcut. The remaining columns show, both for models with and without
stellar evolution, the fraction of the initial number of stars remaining,
N(t)/N(0), the fraction of the total initial mass remaining, M(t)/M(0),
and the final half-mass radius Rhm. Note that the data for model TR1
(with stellar evolution) are missing, since the majority of these clusters
dissolve before t = 200 Myr.

ID Mcut With stellar evolution Without stellar evolution
( M�) N(t)

N(0)
M(t)
M(0)

Rhm
pc

N(t)
N(0)

M(t)
M(0)

Rhm
pc

MR1 0.10 0.92 0.80 2.38 0.88 0.84 3.06
MR2 0.14 0.91 0.77 2.46 0.87 0.82 3.32
MR3 0.20 0.89 0.74 2.61 0.85 0.80 3.52
MR4 0.32 0.87 0.69 2.78 0.82 0.79 3.75
MR5 0.50 0.83 0.63 3.01 0.79 0.77 3.99
MR6 0.71 0.80 0.57 3.25 0.77 0.75 4.05
MR7 1.00 0.74 0.50 3.70 0.75 0.74 4.22
MR8 1.41 0.65 0.41 4.31 0.73 0.73 4.28
MR9 2.00 0.51 0.28 5.29 0.72 0.72 4.37

TR1 0.10 – – – 0.47 0.75 0.18
TR2 0.14 0.18 0.18 2.33 0.38 0.59 0.33
TR3 0.20 0.39 0.36 2.89 0.36 0.48 1.38
TR4 0.32 0.71 0.57 3.12 0.53 0.55 4.53
TR5 0.50 0.81 0.61 3.10 0.76 0.74 4.21
TR6 0.71 0.83 0.60 3.08 0.82 0.79 3.77
TR7 1.00 0.83 0.55 3.21 0.85 0.83 3.31
TR8 1.41 0.79 0.49 3.51 0.87 0.85 3.13
TR9 2.00 0.70 0.38 4.28 0.88 0.87 2.88

MT1 0.10 0.84 0.73 2.27 0.83 0.76 2.65
MT2 0.14 0.84 0.72 2.38 0.82 0.75 2.96
MT3 0.20 0.84 0.71 2.57 0.81 0.76 3.29
MT4 0.32 0.84 0.67 2.78 0.80 0.76 3.67
MT5 0.50 0.83 0.63 2.99 0.79 0.76 3.93
MT6 0.71 0.80 0.58 3.34 0.78 0.76 4.09
MT7 1.00 0.76 0.51 3.76 0.77 0.77 4.19
MT8 1.41 0.68 0.42 4.47 0.77 0.77 4.26
MT9 2.00 0.52 0.29 5.76 0.77 0.78 4.40

UR1 0.10 0.95 0.84 1.90 0.94 0.90 2.21
UR2 0.14 0.94 0.83 1.94 0.94 0.89 2.23
UR3 0.20 0.94 0.82 2.02 0.93 0.89 2.37
UR4 0.32 0.93 0.80 2.08 0.92 0.88 2.61
UR5 0.50 0.90 0.75 2.32 0.90 0.86 2.76
UR6 0.71 0.87 0.71 2.53 0.87 0.84 3.12
UR7 1.00 0.83 0.63 2.85 0.84 0.81 3.35
UR8 1.41 0.75 0.53 3.32 0.79 0.77 3.77
UR9 2.00 0.60 0.38 4.15 0.74 0.74 4.00

Therefore, in Fig. 2(a), we see significant loss by number during
the first 10–60 Myr as a result of the violent early evolution. Subse-
quently, there is a slowing of loss by number at 60–100 Myr once
all the fast stars have passed over the tidal boundary and are ‘lost’
by the cluster. Then a speeding up of the loss of stars after around
100 Myr as the cluster starts to fill (its now-smaller) tidal radius.

An interesting aside with observational consequences is that the
average mass of a star in any cluster remains roughly constant (to
within a factor of 2) after around 20 Myr. The most massive stars
evolve, but lower mass stars are ejected, causing only a very gradual
decline in the average stellar mass in a cluster with time.

Changing Mcut means that even though clusters in the MR models
start at the same mass, their luminosities will be very different.
Initially, clusters with a high Mcut will be much more luminous than
those with a low Mcut. It might be thought that, as the high-Mcut
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Figure 3. Escaping compact objects for model MR with stellar evolu-
tion (cf. Fig. 1). The top panel shows the cumulative number of compact
objects Ncomp, esc that have escaped over time. The bottom panel shows
Ncomp, esc/N(0), where N(0) is the initial number of stars (of all masses) in
the star cluster (see Table 1). Solid and dashed curves indicate the results
for neutron stars and white dwarfs, respectively. All curves are averages for
the ensemble of simulations. In each panel, the darkest curves are for IMF
low-mass cut-offs of 0.1 M�, becoming lighter as the mass of the low-mass
cut-off increases to 2 M�.

clusters lose so much more of their mass, they will become less
luminous.

Let us take our two extreme values of Mcut after 200 Myr. Start-
ing from initially 1500 M� clusters, the Mcut = 0.1 M� clusters
have become 1200 M� clusters with a mean stellar mass of ap-
proximately 0.7 M�. The Mcut = 2 M� clusters have declined in
mass to only ∼400 M�, but the mean mass of a star is 2 M�. So
whilst the Mcut = 0.1 M� clusters have more than 10 times more
stars remaining, the stars that remain in the Mcut = 2 M� clusters
are around 40 times more luminous. Therefore, even though the
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Figure 4. The evolution of the normalized gravitational potential
Phm(t)/Phm(0) at the half-mass Rhm radius for model MR with stellar evolu-
tion. All curves are averages for the ensemble of simulations. In each panel,
the darkest curves are for IMF low-mass cut-offs of 0.1 M�, becoming
lighter as the mass of the low-mass cut-off increases to 2 M�.

high-Mcut clusters have lost much more of their mass, they are still
more luminous than the low-Mcut clusters.

In summary, for clusters with the same initial mass and initial
(half-mass) radius, those with a higher Mcut do lose more mass. But
this is only really significant in clusters with extremely high values
of Mcut (>1 M�). For low values of Mcut, the evolution of different
clusters is actually very similar, this is due to expansion slowing
dynamical evolution and the equal importance of binary heating in
different clusters. This results in a roughly equal importance and
rate of dynamical mass-loss in all clusters, regardless of Mcut.

Comparisons of equal-mass and equal-size clusters appear the
most sensible, but these would observationally be quite different. If
the low-mass component is invisible (e.g. because of distance), then
the clusters with a higher Mcut would appear much more luminous
(since more of their mass would be in higher mass stars). Therefore,
saying what constitutes ‘the same’ is difficult.

3.2 Identical trlx and Rhm (model TR)

Another way of making clusters ‘the same’ is to compare clusters
which initially have the same (dynamical) evolutionary time-scale,
i.e. the same initial relaxation time trlx. If the initial relaxation times
of all clusters are the same, then we are considering clusters with the
same initial dynamical time-scales – therefore, differences should
be solely due to different stellar evolutionary mass-loss.

Identical trlx can be obtained using equation (6) with a fixed Rhm

but varying the number of stars, N, and the total mass of the cluster,
Mcl. Because Mcl depends on both N and Mcut, this is slightly non-
trivial. In the second block (model TR) of Table 1, we can see how
both Mcl and N must vary with Mcut in order to keep a fixed initial
trlx = 5 Myr.

The potential problem with these models is clear when we com-
pare the different N needed in different clusters to keep trlx constant
for a constant Rhm. When Mcut = 2 M�, N = 3961, a reasonably
large number. However, when Mcut = 0.1 M�, we require N = 82
which is so low that we would expect the evolution to be driven by
stochastic encounters rather than any statistically ‘smooth’ evolu-
tion. Indeed, Mcut = 0.1 M� simulations are so stochastic that we
do not illustrate them.

Also note that, by changing the initial cluster mass, we also
increase the tidal radius by a factor of 8 between Mcut = 0.1 and
2 M�. This allows the clusters with higher Mcut to expand more,
which decreases the time-scale at which they evolve dynamically.

The final results of simulations after 200 Myr with stellar evolu-
tion are again listed in Table 2, and their evolution shown in Fig. 5.
Interestingly, the evolution with Mcut is not simple and falls into two
‘regions’.

In all panels of Fig. 5, the low-Mcut clusters (darker colour curves)
show rapid and stochastic evolution due to their small N and low
mass (and therefore small tidal radii). All evolve very rapidly and
can form binaries that dominate their evolution (in the models
with the smallest Mcut, the core radius falls dramatically in a core-
collapse-type event before the star cluster is blown apart). It is
difficult to draw any conclusion about evolutionary trends in the
low-Mcut cases because N is so low. It is also unclear if such low-N
objects constitute a ‘cluster’ under any sensible definition (see e.g.
Gieles & Portegies Zwart 2011, for a discussion on this topic).

In the cases of high Mcut (with reasonable N), we would expect
much less stochastic evolution and this is what we see. Given that
each of the clusters has the same initial relaxation time, we might
expect stellar evolution to dominate over all else, and this appears
to be the case.

Fig. 5(c) shows that each of the high-Mcut clusters expands by
approximately the same fraction and at roughly the same rate. This
means that higher Mcut clusters do not significantly increase their
relaxation times relative to low-Mcut clusters (although the total
mass plays a role).

The expansion is significant enough that in all cases clusters
are starting to fill their tidal radii by 100–200 Myr and it is tidal
overflow that dominates their mass-loss at late times. This effect is
of roughly equal importance in all the high-N clusters since even
though the high-Mcut clusters have lost relatively more mass (thus
reducing their tidal radii), they were initially more massive and so
started with larger tidal radii.

To summarize, in the case where we keep the relaxation time and
the half-mass radius constant, we get the rather unexpected result
that the clusters that survive the longest have intermediate Mcut, and
those which are destroyed most rapidly have the lowest Mcut.

However, at the low-Mcut end, this is due to low-N stochastic
effects in the dynamics. At the high-Mcut end, this is due to the
significant differences in cluster mass that we need to keep the
relaxation times constant, leading to very different tidal boundaries.

We would also argue that nobody would sensibly describe two
clusters as being ‘the same’ if their masses differ by several orders
of magnitude.

3.3 Identical Mcl and trlx (model MT)

In order to avoid the problems introduced by low-N stochasticity and
large differences in tidal radii in the constant trlx and Rhm models
above, we can instead keep Mcl and trlx constant and vary N and
Rhm. In the third block of Table 1 (model MT), we can see that to
keep Mcl and trlx constant we need to vary between N = 4627 and
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Figure 5. As Fig. 1, but for the star clusters in model TR with stellar evolution.
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Figure 6. As Fig. 1, but for the star clusters in model MT with stellar evolution.

Rhm = 0.24 pc for Mcut = 0.1 M�, and N = 338 and Rhm = 1.06 pc
for Mcut = 2 M�. Note that this is the opposite trend in N with Mcut

as previously, now as Mcut increases, N decreases.
Here, clusters are not too ‘different’ – their masses are the same,

and their radii only differ by a factor of approximately 4, although
the number of stars in each cluster can vary by a factor of over
10. Again, we summarize the final states in Table 2, and show the
evolution of the key cluster parameters in Fig. 6.

In Fig. 6, we again see the expected trend that clusters with higher
Mcut and in which stellar evolution is more important (lighter colour
curves) lose more mass than low-Mcut clusters. But yet again, the
differences in the evolution of clusters with different Mcut is not as
extreme as one might expect. By 200 Myr, clusters with Mcut = 0.1
and 1 M� have only lost between 27 and 49 per cent of their initial
mass, respectively – not a great difference for two such different
low-mass cut-offs, both about twice that expected from stellar evo-
lutionary mass-loss alone (15 and 28 per cent, respectively).

The reason that the differences are not as great as one might
expect is that the evolution of the low-Mcut clusters is driven by
binary heating due to a dense initial state. Low-Mcut clusters have
more stars per unit mass, so in order to keep trlx constant, Rhm must be
much smaller. For Mcut = 0.1 M�, Rhm = 0.24 pc initially, compared
to 0.77 pc when Mcut = 1 M�. This leads to central densities of
6 × 104 stars pc−3 in the Mcut = 0.1 M� clusters (compared to
approximately 50 stars pc−3 in the Mcut = 2 clusters). As can be seen
in Fig. 6(c), the Mcut = 0.1 M� clusters start expanding immediately
(and before stellar evolution has any effect). This is caused by rapid
binary formation and heating.

Therefore, even though all clusters have the same trlx initially,
within just 10 Myr the Mcut = 0.1 M� clusters have expanded
by a factor of approximately 4, decreasing their relaxation times
and ‘slowing’ their dynamical evolution. The star clusters with
Mcut = 2 M�, on the other hand, do not experience any signifi-
cant expansion during the first 10 Myr, and lose relatively fewer
stars and less mass during this time than the clusters with smaller
Mcut. Beyond 10 Myr, stellar evolution sets in, driving expansion,
and loss of stars and mass, which is particularly important for the
clusters with high Mcut such that they overtake those with lower
Mcut in terms of mass-loss. By 200 Myr, the Mcut = 0.1 M� clus-
ters have expanded by a factor of 10, compared to a factor of 5 for
the Mcut = 1 M� clusters (in their case driven mainly by stellar
evolutionary mass-loss).

Thus, even though all these clusters have the same initial relax-
ation time-scales, the low-Mcut clusters change so rapidly that this
initial similarity disappears almost immediately. One could stop the
low-Mcut clusters evolving so rapidly by increasing their half-mass
radii by a factor of, say, 10. However, the same scaling would have
to be applied to the high-Mcut clusters, giving ‘clusters’ of a few
hundred stars with half-mass radii of 10 pc. Even if such a ‘cluster’
were formally bound at formation, tidal forces would soon destroy
it.

In summary, it is possible to construct initial conditions that
have the same cluster mass and relaxation time, but the required
differences in radii would either drive rapid dynamical evolution in
extremely dense clusters, or tidal forces would destroy extremely
low-density clusters. Therefore, clusters that start ‘the same’ cannot
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Figure 7. As Fig. 1, but for the star clusters in model UR with stellar evolution.

remain so for long because of processes that have nothing to do with
stellar evolutionary mass-loss.

3.4 An identical upper IMF (model UR)

Finally, we describe a set of models in which the high-mass stellar
content and the half-mass radii of each cluster are the same. By
this we mean that there are the same number of stars with masses
greater than 3 M� in every cluster: such clusters would appear very
similar to observers if seen at a significantly large distance that the
low-mass population is ‘invisible’.

If the high-mass stellar content is the same, then for high Mcut

there will be few other stars in the cluster, but for low Mcut there will
be a significant low-mass population. We use the Kroupa (2001)
IMF in the mass range Mcut < M < 20 M� and change Mcut. In
all cases, we ensure that there are exactly 200 stars with masses
3 < M < 20 M�.

This means that for Mcut = 2 M� the total number of stars is
only 352, and the total mass approximately 1600 M�. But for
Mcut = 0.1 M� the total number of stars is 8263, and the total mass
approximately 4700 M�. This means that the relaxation times vary
from 2 Myr for Mcut = 2 M� to 19 Myr for Mcut = 0.1 M�. The
properties of these models are listed in Table 1. The results of the
simulations are shown in Fig. 7.

The high-Mcut clusters must lose much more mass via stellar
evolution than the low-Mcut clusters, and they have much shorter
relaxation times, and are less massive and so have smaller tidal
radii. Given all of this, one would expect to see much more rapid
and significant mass-loss from high-Mcut clusters.

There is a trend to greater mass-loss from higher Mcut clusters
(especially in the extreme 2 M� cut-off), but it is probably not as
great as one would expect. From previous arguments, one can see
why this is the case.

First, low-Mcut clusters evolve ‘faster’ than one would think.
Fig. 7(c) shows the rapid expansion of low-Mcut clusters (as we saw
earlier in Fig. 6c). This is driven by the high number densities in
these clusters causing binary formation and this driving expansion
and ejections. Although difficult to see in Figs 7(a) and (b), a handful
of stars are ejected before 10 Myr for models with small Mcut but
not for those with large Mcut, and this difference cannot possibly
be due to stellar evolution. The huge expansion of the low-Mcut

clusters decreases their relaxation times, but the binaries formed in
the dense phase are efficient at ejecting stars and keep heating the
clusters.

Also, the high-Mcut clusters evolve more ‘slowly’ than their initial
relaxation times would lead one to believe because the significant
early stellar evolutionary mass-loss drives expansion and signifi-
cantly decreases the relaxation times.

4 D I SCUSSI ON

A key evolutionary property of any star cluster is the rate at which it
loses mass, and on what time-scale it is destroyed. Only by knowing
these things can we start to ‘reverse engineer’ observed clusters and
populations of clusters to their initial states.

The evolution of a star cluster is determined by two fundamental
physical processes. First, by dynamics: stars will be ejected over the
tidal boundary due to internal dynamics or external perturbations.
Secondly, by stellar evolution: stars evolve and lose mass, so reduc-
ing the mass of the cluster. But as we have seen, stellar evolution
causes changes in the radius and energy of the cluster, which change
dynamical time-scales, so these processes are not independent.

In this paper, we have investigated the effect of variations in
the low-mass cut-off of the IMF on the evolution of clusters. We
have simulated clusters in which the low-mass cut-off of the IMF
varies between 0.1 M� and 2 M�. For most cases, we have used a
pure Salpeter power law over all masses which is not a particularly
realistic IMF, but serves our purposes allowing for simple tests of
the general effects of altering the IMF.

The expectation of what will happen when the IMF is varied (and
these were certainly our expectations on starting this project) is that
a higher Mcut in the IMF will cause clusters to lose more mass more
rapidly and be destroyed much more rapidly. One would expect this
as a cluster with a cut-off at 0.1 M� will lose around 15 per cent
of its mass in 200 Myr as a result of stellar evolution alone, while a
cluster with a cut-off at 2 M� will lose around 55 per cent.

A completely unsurprising result is that clusters with higher mass
cut-offs in their IMFs lose more mass. This is unavoidable. However,
the results we have described above show that changing the IMF has
many important, but rather subtle, effects beyond simply altering
the total amount of mass lost by stellar evolution and thus speeding
destruction.

What is ‘the same’? An important, but subtle, effect of changing
the IMF is that it becomes very unclear what should be compared
to what to determine the relative ‘speed’ of evolution. Changing the
IMF means changing the number of stars per unit mass. An IMF
with a high-mass cut-off has few stars per unit mass, while a low-
mass cut-off has many more stars per unit mass. Therefore, clusters
with the same total mass have very different numbers of stars. Thus,
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in order to have any two of mass, radius and relaxation time kept
constant, the third property must be changed significantly between
different cut-offs (sometimes by orders of magnitude). We would
argue that it is impossible and unphysical to ever have two clusters
with different cut-offs in the IMF that can otherwise be described
as ‘the same’. This is true in terms of the physical properties of
a cluster (mass, radius, relaxation time). But it also impacts on
the observable properties of a cluster such as the colour/luminosity
evolution because the mass-to-light ratio evolves in very different
ways. We do not consider these observation problems any further
in this paper and concentrate on the underlying physical properties.

How does stellar evolution impact dynamical evolution? Stellar
evolution and dynamical evolution cannot be separated from one
another. Stellar evolution causes mass-loss from a cluster which
alters the mass and energy of the cluster. In responding to this,
clusters will expand, which will increase their crossing times, and
hence their relaxation times.

Clusters with a high-mass cut-off in their IMF will lose more
mass through stellar evolution than those with a low-mass cut-off.
Therefore, they will expand more, and reduce their relaxation times
more, and hence dynamically evolve more ‘slowly’. The effect of
this is to allow clusters with high-mass cut-offs to survive longer
than one might think looking at their initial conditions. The interplay
of these effects is rather complex since it depends on what two
properties of the cluster were initially ‘the same’.

If a cluster initially has a large radius, then greater expansion
can push a cluster towards overflowing its tidal limit thus greatly
speeding up its destruction. Alternatively, clusters with very small
initial radii can evolve significantly before stellar evolution becomes
important because of binary formation and heating.

4.1 Future work

This rather idealized work has shown that the effects of changing
the IMF on the evolution of star clusters are rather more subtle than
one might have thought. Several interesting lines of enquiry could
be followed from this work.

Our treatment of the IMF is rather simple, and a more compre-
hensive study should consider changes to both low- and high-mass
cut-offs as well as to the shape of the IMF.

A dynamical effect that can be very important is heating by bi-
naries. In a number of simulations with very high initial central
densities (104–105 stars pc−3), binaries can form which heat the
cluster causing expansion and increased ejections (because of the
larger cross-section of a binary). Our simulations contain no primor-
dial binaries, despite observational evidence that large fraction of
stars in the Galactic field (e.g. Raghavan et al. 2010), in young asso-
ciations (e.g. Kouwenhoven et al. 2005, 2007), and in star-forming
regions (e.g. Connelley, Reipurth & Tokunaga 2008; Chen et al.
2013; Duchêne & Kraus 2013; Reipurth et al. 2014) are part of a
binary or multiple system. It is therefore interesting and necessary
to include them to investigate their effect(s).

We have touched upon the implications to the observed properties
of clusters with different cut-offs in their IMFs but this is clearly
something of great importance if one believes that the IMF does
vary in some environments.

5 C O N C L U S I O N

We have performed simulations of ensembles of clusters character-
ized by different mass cut-offs at the bottom of the IMF.

Our main result is that it is impossible to compare the effects of
altering the IMF on two clusters that are otherwise ‘the same.’ If
the IMF is changed, then this changes the number of stars per unit
mass; therefore, only any two (or some complex combination of)
mass, radius, and relaxation time can ever be ‘the same’ initially.

As well as not being ‘the same’ initially, different cut-offs in the
IMF cause clusters to evolve differently. Clusters with more stellar
evolutionary mass-loss will expand more and hence increase their
relaxation times and ‘slow’ their dynamical evolution.

In conclusion, the effect of varying the IMF on the evolution of
star clusters is rather subtle and complex. Star clusters that contain
many more high-mass stars do lose more mass due to stellar evo-
lution, but the impact this has on their destruction might not be as
great as one might naively expect.
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