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ABSTRACT

Dust-Obscured Galaxies (DOGs) are bright 24 um-selected sources with extreme obscuration
at optical wavelengths. They are typically characterized by a rising power-law continuum of
hot dust (7p ~ 200-1000 K) in the near-IR indicating that their mid-IR luminosity is dominated
by an active galactic nucleus (AGN). DOGs with a fainter 24 pm flux display a stellar bump in
the near-IR and their mid-IR luminosity appears to be mainly powered by dusty star formation.
Alternatively, it may be that the mid-IR emission arising from AGN activity is dominant but
the torus is sufficiently opaque to make the near-IR emission from the AGN negligible with
respect to the emission from the host component. In an effort to characterize the astrophysical
nature of the processes responsible for the IR emission in DOGs, this paper exploits Herschel
data (PACS + SPIRE) on a sample of 95 DOGs within the COSMOS field. We derive a wealth
of far-IR properties (e.g. total IR luminosities; mid-to-far-IR colours; dust temperatures and
masses) based on spectral energy distribution fitting. Of particular interest are the 24 pm-bright
DOGS (F24 um > 1 mly). They present bluer far-IR/mid-IR colours than the rest of the sample,
unveiling the potential presence of an AGN. The AGN contribution to the total 8—1000 pm
flux increases as a function of the rest-frame 8 pm-luminosity irrespective of the redshift. This
confirms that faint DOGs (Ls ,m < 10'? L) are dominated by star formation while brighter
DOGs show a larger contribution from an AGN.

Key words: galaxies: high-redshift —cosmology: observations —infrared: galaxies.

1 INTRODUCTION

The unprecedented sensitivity and angular resolution of the Spitzer
*E-mail: riguccini @astro.ufrj.br Space Telescope at infrared (IR) wavelengths led to the discov-
TCAPES/BJT Science Without Borders Postdoctoral Fellow, Brazil. ery of a new type of galaxy that is extremely faint in the optical
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(~22 < R < 27), yet bright at mid-infrared wavelengths (Houck
etal. 2005; Dey et al. 2008; Fiore et al. 2008). These sources, known
to as ‘Dust-Obscured Galaxies’ (hereafter, DOGs) in reference to
the cause of their faintness at optical wavelengths, have extremely
red optical-to-IR colours ( f, (24 um)/ f,(R) > 982). The incidence
of DOGs is relatively low: only 8 per cent of 24 pm detected sources
are DOGs, while ~40 per cent of the sources in the 2 deg? COSMOS
field optical catalogue have similar R-band magnitude [22.4-26.4].
However, their contribution to the total IR output of the Universe
at z ~ 2 where their source numbers peak is estimated to be at
least 30 per cent (Riguccini et al. 2011). This contribution increases
to 50 per cent when considering the high-luminosity tail of their
distribution at these redshifts (i.e. Lir > 10'> Ly ; e.g. Riguccini
et al. 2011). DOGs have IR luminosities >10'" L placing them
in the LIRG and ULIRG' class of galaxies (e.g. Dey et al. 2008;
Bussmann et al. 2009; Riguccini et al. 2011). Such luminosities
require significant amounts of dust-heating, most probably arising
from star formation and/or high levels of nuclear activity (i.e. ac-
tive galactic nucleus or AGN). A number of recent studies have
split the DOG population along these lines: i.e. DOGs showing a
‘bump’ at 1.6 um indicative of star formation (Farrah et al. 2008;
Desai et al. 2009, hereafter bump DOGs) and DOGs displaying a
rising power-law SED in the near- to mid-IR bands, suggesting a
dominant AGN (Houck et al. 2005; Weedman et al. 2006, hereafter
PL-DOGs). Estimating the star formation rate (SFR) of the latter
has proved extremely difficult due to the dominant AGN component
washing out any host galaxy signatures.

The faintness of DOGs at optical wavelengths has made the char-
acterization of their physical properties particularly challenging.
The launch of the Herschel Space Telescope in 2009 provided a
new window on to these galaxies that is largely independent of
dust obscuration, thereby giving us the clearest view yet of these
galaxies. The wavelengths probed by Herschel cover the peak of
the spectral energy distribution (hereafter, SED) of DOGs at the
redshifts where their numbers are highest (i.e. 1.5 < z < 3). This
allows us to accurately constrain important properties, including
the total IR luminosity as well as dust temperature and mass. The
aim of this work is to use the combined diagnostic powers of both
Spitzer and Herschel observations to determine how these proper-
ties relate to the dominant source of energy in these galaxies be
it AGN, intense star formation or a combination of both. For this
we use a sample of Spitzer/MIPS 24 um-selected DOGs (satisfy-
ing Fo4um > 0.08 mJy) selected from the COSMOS field (Scoville
et al. 2007), and detected in all five Herschel bands. We calculate
the contribution from AGN and/or star formation to the total energy
output of these galaxies via SED fitting and relate this to their dust
temperature and masses.

The paper is organized as follows. Our data are described in
Section 2, the far- to mid-IR colours of DOGs sources are detailed in
Section 3. The SED-fitting procedure used and the results obtained
are described in Section 4. In Section 5, we present the model and
results on the dust temperature and mass of our DOG sample and
discuss if the presence of AGN signatures induce a particular trend
in the Ty, distribution. We discuss our results and present our
conclusions in Section 6. Throughout this paper, we assume a A
cold dark matter cosmology with Hy = 70 km s~!, Q,, = 0.3, and
Q, = 0.7. Unless otherwise specified, magnitudes are given in the
AB system.

! Luminous infrared Galaxies with 10'! Lo <Lir < 1012 Lo and ultralu-
minous infrared Galaxies with Lig > 10'2 L@ (e.g. Sanders et al. 1988a,b)

2 DATA

The sample of DOG sources is selected from the deep Spitzer/MIPS
observations of the 2 deg? COSMOS field (Sanders et al. 2007). Our
starting point are the 24 pm detected sources from the catalogue
described in Le Floc’h et al. (2009, see also Riguccini et al. 2011).
‘We note that other studies further require a source to satisfy fo4um >
300 mJy in order to classify it as aDOG (e.g. Dey et al. 2008). In this
study, we consider all sources satisfying f,(24 um)/ f,(R) > 982
as DOGs. Furthermore, DOG studies focusing on heavily obscured
AGN:s (e.g. Fiore et al. 2008, 2009; Treister et al. 2009) also impose
an additional R — K >4.5 (vega) cut.

2.1 COSMOS observations

COSMOS is a wide-area equatorial field with deep coverage at all
wavelengths spanning radio to X-rays (Hasinger et al. 2007; Schin-
nerer et al. 2007; Elvis et al. 2009). Crucial for this study is the deep
IR coverage of this field, particularly at mid- to far-IR wavelengths
by the Spitzer Space Telescope with the MIPS instrument (Le Floc’h
et al. 2009) and, more recently, with PACS (Poglitsch et al. 2010)
and SPIRE (Griffin et al. 2010) onboard Hershel (Pilbratt et al.
2010).

The extensive UV to near-IR coverage of COSMOS (e.g. Ca-
pak et al. 2007; Taniguchi et al. 2007) allows for precise photo-
metric redshifts (hereafter, photo-z) to be derived for extragalactic
sources within this field. For the photo-zs used in this work, we
use an updated® version of the photometric redshift catalogue of
Ilbert et al. (2009) that provides photo-zs for 1400 237 i*-detected
sources among the 2017 800 sources of the COSMOS photometric
catalogue. These redshifts are obtained with an unprecedented accu-
racy, with a dispersion of o a1 + ;) = 0.012 for sources satisfying
ifp <24 andz < 1.25. More relevant to this study — where we focus
on dusty 24 um-selected sources that are very faint at optical wave-
lengths — is their comparison with the optically faint spectroscopic
sample from the z-COSMOS survey (Lilly et al. 2007) where Ilbert
et al. 2009 report a dispersion of only o a/(1 + ;) = 0.06 for sources
with 23< iy, < 25 at 1.5<z <3. Given their accuracy for faint
sources, we use these photo-zs for our 24 um sources, matching
their optical counterparts following the procedure outlined in Le
Floc’h et al. (2009) and Riguccini et al. (2011). We briefly describe
this approach in the following subsection.

2.2 The far-IR counterparts of 24 pm-selected sources

Our 24 um parent sample (from Le Floc’h et al. 2009 and Riguc-
cini et al. 2011) contains 29 395 sources detected at 24 um
with Foym >80 ply over a total area of 1.68 deg?, which
excludes regions contaminated by bright, saturated objects. In
the interest of focusing on the sources’ star formation histo-
ries, we exclude X-ray detected AGNs down to a flux limit of
Sos52key =35 x 1071 erg cm~2 s~! based on AGN catalogues from
Brusa et al. (2007, 2010) and Salvato et al. (2009).

We limit our counterpart identification to 24 pm sources with a
30 PACS detection at 100 and 160 um. SPIRE fluxes will be used
for a subset of our sample. The COSMOS field was observed as
part of the PACS Evolutionary Probe (PEP; Lutz et al. 2011) and
the Herschel Multitiered Extragalactic Survey (HerMES; Oliver

2 Version 1.8: the main improvements compared to Tlbert et al. (2009) reside
in relying on the median of the PDF to define the ‘best’ photo-z, instead of
the minimum x2
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Table 1. Number of sources.

6029 24 pm-sources with a 30 PACS detection (at 100 and 160 pm).
5892  Sources from the previous sample with a photo-z.

314 DOGs (i.e. Fo4 um/Fr > 982) with Fo4 i > 80 wly and
1.5 < z < 3 and with a 30 detection in one or the two
PACS-bands.
Sample used for the far-IR/mid-IR colour analysis (Section 3).
95 DOGs with F24 i > 80 wly and 1.5 < z < 3 and with a 30
detection in the 2 PACS bands and with a detection
(potentially > 30) in the three SPIRE bands.

Sample used for the remainder of the paper.

et al. 2012) campaigns (i.e. PACS 100 & 160 pm and SPIRE 250,
350 & 500 um, respectively). The catalogues provided by PEP
and HerMES calculate source fluxes in each of these five bands
by performing point spread function fitting at the positions of the
24 um-detected sources from Le Floc’h et al. (2009). One of the
key benefits of using such 24 um ‘priors’ as opposed to generating
blind catalogues, is that it helps with deblending, which is particu-
larly problematic at the longer Herschel wavelengths. The HerMES
catalogue was built following the method presented in Roseboom
et al. (2010), based on the 24 um position priors from Le Floc’h
etal. (2009). The PEP catalogue was obtained using the same 24 um
priors (Berta et al. 2011). The reliability and the completeness of the
PACS and SPIRE COSMOS catalogues are detailed in Lutz et al.
(2011) and Oliver et al. (2012), respectively. We identify a total of
6029 24 um-detected sources with a >3¢ detection in the PACS-
bands with Figpum >3.1 mJy and Figp um >6.3 mJy (see Table 1).
‘We match these to the catalogue of optical sources from Ilbert et al.
(2009) in order to obtain their photometric redshifts.

Given the much higher density of sources detected at optical
wavelengths in COSMOS (Capak et al. 2007) compared to those
detected with MIPS, a direct cross-correlation between the 24 pm-
selected catalogue and the optical observations could lead to a large
number of spurious associations with optically detected galaxies
randomly aligned close to the line of sight of the MIPS sources. To
minimize this, we first matched our 24 pm catalogue to the K-band
catalogue of McCracken et al. (2010), employing a matching ra-
dius of 2 arcsec and following the same procedure described in Le
Floc’h et al. (2009) and Riguccini et al. (2011). Of the 6029 sources
in our sample, 5858 were found to have a K-band counterpart. In
an attempt to reduce the number of non-matches, we also matched
our 24 pm catalogue to the InfraRed Array Camera (IRAC)-3.6 pm
catalogue from Capak et al. (2007), adopting the same 2 arcsec
matching radius. This led to 34 additional matches, increasing to
5892 the number of MIPS-24 um+-Herschel sources with either a K
band or an IRAC-3.6 pum counterpart. These 5892 sources were then
matched to the updated version of the i*-band selected catalogue
of photometric redshifts from Ilbert et al. (2009) using a matching
radius of 1 arcsec. Of the 5892 sources, 5768 had i*-band coun-
terparts and associated photometric redshifts, leaving 261 sources
among the 6029 24 um+-Herschel sources (i.e. &4 per cent) with-
out photometric redshifts. These sources were excluded from any
further analyses.

2.3 The PACS-DOGs sample

Our DOGs sample was selected from the 5892 sources selected at
24 um with a 30 detection in at least one of the PACS bands (100
or 160 um). The DOGs criterion introduced by Dey et al. (2008)
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Figure 1. Photometric redshift distribution of the 24 um sources from Le
Floc’h et al. (2009) in black and of the PACS-DOGs from this work in
purple.

is based on the following: Fo4 . m/Fr >982 and Fa4 . > 300 ply,
where the latter is a direct consequence of the depth of the MIPS
imaging in the Bootes field. Considering that the source-extraction
performed by Le Floc’h et al. (2009) reaches a completeness of
~90 per cent with Fo4 ., > 80 wly, we extend the DOGs 24 pm-
flux cut down to 80 wy. The R-band magnitudes used in this work
are from Ilbert et al. (2009) based on observations with the Subaru
telescope by Capak et al. (2007); these include a correction for
Galactic extinction — not applied in Capak et al. (2007) — and reach
a limiting magnitude of Mg > 17.5.3

The sample contains 57 and 138 DOGs detected in only one
of the PACS bands at 100 and 160 pm, respectively, while 119
DOGs are detected in both PACS bands. This amounts to a total
of 314 PACS-detected DOG sources (cf. Table 1) with My > 23.4,
Fiooum > 3.4 mly and Fiepum > 7.8 mJy within the redshift range
1.5 < z < 3 (see Fig. 1), where the DOGs criterion is the most
efficient (e.g. Dey et al. 2008; Bussmann et al. 2009, 2012; Riguccini
etal. 2011). We will use this sample in Section 3.

2.4 The Herschel-DOGs sample

Considering that we seek to undertake SED-fitting across the mid-
to far-IR wavelength range, we further define a subsample of PACS-
DOGs detected in all five Herschel bands; this allows for a better
constraint on the peak of the DOGs’ SEDs. To achieve this we
matched the PACS-DOGs sample with the SPIRE catalogue (Rose-
boom et al. 2010). This results in 95 Herschel-detected DOGs,” i.e.
detected in the five Herschel bands (see Table 1).

The fluxes in the PACS bands are obtained for all sources with a
>30 detection. Although the SPIRE catalogue reaches a 30" limit
of ~ 10, ~ 12 and ~ 15 mJy at 250, 350 and 500 pum, respectively,
the corresponding 3o extragalactic confusion limits are 14.4, 16.5
and 18.3 mJy (Nguyen et al. 2010). In the SED-fitting procedure,
we are cautious (Magnelli et al. 2012a) when including fluxes that

3 We note that 24 um-selected sources with no R-band detection are also
considered DOG sources.
4 All 95 Herschel-detected have R-band detections.
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Figure 2. Distribution of 24 pum flux for the DOG parent sample (~2100
sources) from Riguccini et al. (2011, green), PL-DOGs (blue) and the
Herschel-DOGs from this work (red). The Herschel-DOGs distribution
peaks at higher 24 um fluxes (~0.36 mlJy according to a Gaussian fit),
compared to that of the whole DOGs sample (~0.14 mJy). The distribution
of the PL-DOGs selected from Riguccini et al. (2011) also peaks slightly
higher (~0.22 mJy) than the whole DOGs population distribution and is also
more inclined to select 24 pm bright sources. See Section 2.4 for details.

are lower than the 30 extragalactic confusion limits and use them
merely as upper limits.

Among our sample of 95 Herschel-detected DOGs, 40 have their
fluxes above the 3o threshold only for the 250 and 350 um bands,
20 merely for the 250 pm band, one DOG for the 350 and 500 pm
bands and another DOG solely for the 350 pm; nine of the Herschel-
detected DOGs have all SPIRE fluxes below the 3o threshold. We
quote upper limits for all of these cases. Only 24 sources have fluxes
above the 3o limit in the three SPIRE bands.

We acknowledge that imposing a detection in the five Herschel
bands will impart a bias towards the brightest and reddest IR sources
in our sample. This is shown in Fig. 2, where the distribution of
Herschel-DOGs peaks at higher 24 pm fluxes than that of the DOGs
parent sample from Riguccini et al. (2011). Of particular interest
is to note that although the faintest DOGs (Fo4pum < 0.4 mly)
are missed by the Herschel-selection, beyond F»4,;m > 0.4 mly
the Herschel-DOGs distribution is very similar to that of the DOG
parent population (see Fig. 2). On the other hand, PL-DOGs —known
to be mainly AGN-dominated (e.g. Bussmann et al. 2009) — present
a significantly stronger bias towards 24 pm-bright sources: not only
they have a 24pm flux distribution that peaks slightly higher than the
whole DOGs population distribution, but their selection represents
60 per cent of the DOG population with Fo4 ;m > 1 mJy, compared
to merely a 10 percent at Fo4,,n =0.3 mJy (Bussmann et al. 2009).

In this paper, two samples of DOGs are used. To study the IR
colours of DOGs (Section 3), we use only PACS data and thus base
our analysis on the 314 PACS-DOGs, in an effort to improve our
statistics. For the remainder of our study, we restrict our analysis
to the 95 Herschel-detected DOGs, noting that both samples probe
the same DOG population, as illustrated by their 24 um flux distri-
butions on Fig. 3. We focus our study on the differences observed
between mid-IR bright DOGs (F4um > 1 mly) and DOGs with
more moderate fluxes (~0.2 mly < Fo4um < 1 mly).
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Figure 3. Distribution of 24 um flux of DOGs detected in at least one
PACS-band (314 sources) in blue and the same Herschel-DOGs distribution
than in Fig. 2 in red.

2.5 The reliability of the photometric redshifts for the DOGs
sample

The high accuracy of the photometric redshifts for sources of the
COSMOS catalogue (see Section 2.1) make them highly reliable
for statistical studies on large (i.e. >2000) samples (e.g. Riguccini
etal. 2011). However, because in this study we focus on significantly
smaller numbers, we require particularly robust redshift measure-
ments for each source. To ensure this, we checked the distribution
of the probability density function (PDF) of the photometric red-
shift for each source and divided our sample into three categories,
according to the photometric-redshift reliability. The categories are
the following: (1) sources have a single, secure photo-z, for which
the PDF has a Gaussian shape with a single peak (39 sources); (2)
those with multiple potential photo-zs, for which either the PDF’s
peak is spread over a wider range of redshifts (Az ~ 0.2) or it
includes a lesser peak which may correspond to another photomet-
ric redshift (24 sources); (3) those flagged as presenting inaccurate
photo-zs, because their PDF shows clear multiple peaks of similar
strength (32 sources). For sources in the last two categories, the
photo-z is set to the highest peak value of the z-distribution and
in the case of multiple peaks we keep the value of the subsequent
peaks as secondary options. To get the most reliable and accurate
fit to the SEDs of our sources, we use all of these potential photo-
z values. We make a special note that six DOGs in our sample
have a confirmed COSMOS spectroscopic redshift as part of the
Fiber Multi Object Spectrograph (FMOS) spectroscopic redshift
catalogue (Kartaltepe et al., in preparation) which we use in our
analysis for higher accuracy.

3 RESULTS: FAR-IR/MID-IR COLOURS OF
EXTREMELY MID-IR BRIGHT DOG SOURCES

The DOG sources are not only an extreme subsample of ULIRGs but
also represent a mix between sources dominated by star formation
and those dominated by AGN activity (e.g. Houck et al. 2005; Fiore
et al. 2008, 2009; Bussmann et al. 2009; Melbourne et al. 2012).
In this paper, we seek to quantify the AGN contribution of these
sources and study the evolution of this contribution with respect
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Figure 4. Left: distribution of 100 /24 pum colour as a function of redshift for all the 24 pm-selected sources detected at 100 pum (black open circles), the 176
DOGs detected at 100 um with F4 ;i > 80 umlJy (grey open squares) and with Fa4  mm > 1 mly (green filled circles). The black, grey and green solid curves,
from top to bottom, represent the median of all the 24 um-selected sources with F24 i >80 Wy, the median of the 24 pum-sources selected as DOGs with
Fy4um > 80 umly and the median of the brightest DOGs sources (i.e. with Fo4 m >1 mly), respectively. Errors on the median are calculated as quadratic
propagation of uncertainty. We show the expected flux ratios (red triple dot—dashed tracks) in the case that 25, 50 and 100 per cent of the flux in the 100 pm band
result from an AGN component (Mullaney et al. 2011, 2012). We also include for comparison the star-forming ULIRG CEO1 templates for an IR luminosity
of 10'2 L@ (bottom blue-dashed line) and 10'%5 L@ (top blue-dashed line), as well as the template from Magdis et al. (2012, light blue dotted-dashed line).
The observed PACS/24 colours of the bulk of the 24 pm sources and that of the DOG sources are consistent with these ULIRG templates. Right: distribution
of 160/24 pum colour as a function of the redshift for all the 24 pm-selected sources detected at 160 pm (black open circles) and the 257 DOGs detected at
160 um. The colours and tracks are the same as on the left-hand panel. For clarity, we do not overplot the CEO1 templates on the right-hand panel as they

would give the same results than for the 100/24 colour.

to other galaxy properties, including redshift, the 8 pm rest-frame
luminosity, total IR luminosity, dust temperature and dust mass.

Studies in the past years have explored the PL- and bump-DOGs
population (e.g. Pope et al. 2008; Melbourne et al. 2009). It has
been well established that PL-DOGs have an AGN contribution to
their near-IR emission and that their far-IR emission is most likely
dominated by star formation (Calanog et al. 2013). In this paper, we
aim to gauge the AGN contribution of these DOGs using Herschel
far-IR data.

As an initial, crude assessment of the dominant process responsi-
ble for producing most of the IR output in DOGs (i.e. AGN versus
star formation), we first consider the far- to mid-IR colours (here-
after FIR/MIR) of our sample (e.g. Mullaney et al. 2012). Fig. 4
shows the 100/24 wm and 160 /24 um colour distributions for our
sample of PACS-detected DOGs as a function of redshift; we in-
clude all 24 pm-detected COSMOS sources for comparison. We see
no noticeable trend for the DOGs sample at z > 2; the curves shown
for the 100/24 and 160/24 median colour evolution with redshift
seem to follow the same evolution than that of the whole 24 pm-
detected sample. However, at lower redshifts the DOGs display
a steeper evolution, with bluer 100/24 colours than the non-DOG
24 um-detected sources.

We find that the FIR/MIR distribution of both the bulk of
the 24 um comparison sample as well as the majority of our
DOGs are well represented by the star-forming templates from
(Chary & Elbaz 2001, hereafter CEOl) with IR luminosities
Lig = 107125 L. This is to be expected given that IR-selected
galaxies at z >1 tend to be of the LIRG or ULIRG class (e.g.
Le Floc’h et al. 2005; Magnelli et al. 2009). We emphasize that
although recent work has shown that CEO1 local ULIRG SEDs
are not good fits to z ~ 2 star-forming galaxies with similar IR

luminosities (e.g. Elbaz et al. 2010, 2011; Nordon et al. 2010,
2012), the CEO1 ULIRGs templates are good fits to our DOGs;
17 of our sources are fit using these templates with a x? <5
(Section 4).

We consider the particular case of the brightest DOGs in our
sample (i.e. Fo4um > 1 mly) and find that they show a partic-
ular behaviour in their FIR/MIR colours as a function of red-
shift: the brightest DOGs in our sample show significantly bluer
PACS/24 um colours than the general 24 um-detected population
(i.e. with Fo4 . > 80 ply). We discard the possibility that a variation
in the photodissociation regions (PDR) component and/or variation
in the intensity of the field is responsible for the bluer colour of
these bright DOGs, by comparing to the 100 /24 um colours de-
rived from the templates of Magdis et al. (2012, see Fig. 4). These
SED templates are based on stacked ensembles at different redshift
intervals, considering the varying radiation field and PDR contri-
bution to ULIRGs as a function of redshift; for our study we rely
on their starburst-dominated templates at the two relevant redshift
intervals: 1.75 < z < 2.25 and 2.27 < z < 3.0. We compare to the
FIR/MIR colours of AGN/galaxy composites — using the intrinsic
AGN SED of Mullaney et al. (2011) and assuming different AGN
contributions (25, 50, 100 per cent) at 100 and 160 um — and find
significant similarities, suggesting that the brightest DOGs have
a significant AGN contribution. As we consider higher redshifts,
the median FIR/MIR colour of these bright DOGs point towards a
lower fraction of the AGN contribution, consistent with the SFRs
of galaxies of similar mass increasing with redshift (e.g. Brinch-
mann et al. 2004; Daddi et al. 2007; Pannella et al. 2009; Magdis
et al. 2010). We check the validity of these trends in the following
section by looking at the AGN contribution (based on SED-fitting)
as a function of the 24 pm flux.
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Composite nature of DOGs in the COSMOS field 475

4 AGN CONTRIBUTION TO THE TOTAL
REST-FRAME 8-1000 yM LUMINOSITY IN
DOGS

Based on FIR/MIR colours, bright DOGs likely contain an AGN
component, contributing partly or even dominating their IR lumi-
nosity. To have a better understanding of these sources and to have
a global view of their stage in the evolution of the galaxies, it be-
comes important to know the exact contribution of a potential AGN
to their total 8—1000 pm rest-frame luminosity. In this section, we
present our method to determine the potential contribution of an
AGN component to these DOG sources and show our results on the
variation in AGN contribution with the 24 um flux.

4.1 Method: SED-fitting procedure

Studying the SED of a galaxy provides insights to the physical
nature of the underlying continuum source and can unveil the pres-
ence of an AGN. The impact that an AGN contribution has on
the shape of the SED is distinct from that of dust heated by star-
forming activity. However, deriving the SED of a galaxy is not
an easy exercise especially in the case of an AGN where the im-
prints of the host galaxy is always present. In our study, we use the
ipL-based SED-fitting procedure DecomplR, detailed in Mullaney
et al. (2011). Combining a set of five starburst templates and an
average AGN template, this approach is aimed at fitting the IR pho-
tometry of composite galaxies and to measure the AGN contribution
to their total IR output. A x> method is used to know which com-
bination of these templates best fits the data; i.e. the combination
with the lowest associated x” value is adopted as the best fit. The
validity of this procedure as an accurate way to determine the AGN
contribution to the total IR output of composite galaxies has been
verified by several tests lead by Mullaney et al. (2011), including a
comparison with alternative measures of the AGN contribution (e.g.
emission line diagnostics). Although there are significant uncertain-
ties associated with the precise AGN contribution to an individual
galaxy, this approach is adequate from a statistical point of view
(i.e. large samples, average SEDs).

We apply the DecomplIR procedure to our sample of DOGs
sources. None the less, considering that DOGs have ULIRG-class
luminosities (e.g. Bussmann et al. 2009; Riguccini et al. 2011), we
add two ULIRGs templates with Ljg = 10'? LoandLig = 10'23 Lo
to the set of starburst templates from Mullaney et al. (2011) to fully
cover the luminosity range of our sample. The ULIRG templates are
taken from CEO1 as they build their library from SEDs and mod-
els that only take into account star formation activity. The median
PACS/MIPS colours of the bulk of the DOGs sample are well repre-
sented by these ULIRGs templates (see Fig. 4), motivating their use
as part of our SED-fitting procedure. To determine the AGN con-
tribution to the IR luminosity of our sources, we first derive a best
SED-fit with templates based only on star-forming sources. If the
star-forming templates do not provide a satisfactory result, an AGN
component is added and the SED-fitting proceeds with a composite
spectra. We consider the AGN component as a reasonable option
only if it improves the x2 of the fit by at least 50 per cent.

We implement our SED-fitting procedure to each DOG source
in our sample. Each of the 95 sources are first fit by a star-forming
component only and then by a composite spectra when the x? from
the star-forming fit is > 20. In the case of sources with a less-
accurate photo-z, the source is fit with a star-forming template for
all possible photo-zs obtained from the PDF (see Section 2.5). If
none of these fits are suitable, we add an AGN component and the

fits for each possible photo-z are performed once again. Our method
is robust in fitting most of our sources (90 per cent). Out of 95 DOGs,
71 are fitted with a star-forming galaxy template only, 15 require
an AGN component to the fit, and in 9 cases, no reliable fit was
obtained either using a star-forming-only template nor a composite
spectra. The failure of successfully fitting these sources could be
due to the fact that we cannot reproduce the SED of these sources;
this is most likely due to a wrong redshift, even after probing the
different possibilities indicated by the PDF.

Due to the expected uncertainties on the AGN fraction for an
individual galaxy, we implement the SED-fitting procedure to av-
erage DOG SEDs. We divide our DOG sample in three different
redshift bins (1.5 <z <2.0,2.0 <z <2.5and 2.5 < 7z < 3.0) and in
four 24 um-flux bins (0.09< Fo4 . m < 0.24,0.24 < Fo4pm < 0.65,
0.65 < Foypm < 1.76, and 1.76 < Fyim < 4.74 mly). For each
redshift bin and each 24 um-flux bin, an averaged SED is calculated
at 8, 24, 100, 160, 250, 350 and 500 um, leading to a total of 12
average SEDs. The results of the fits are shown in Fig. 5 for the
average SEDs and in Figs 6 and 7 for the individual sources fitted
with an AGN.

The results from the SED-fitting procedure on the average DOG
SEDs are presented on Table 2, including the AGN contribution to
the total IR flux (fagn), the best-fitting template and corresponding
x2. Our method to get the AGN contribution does not appear to be
biased towards one specific template. Independently of the AGN
contribution, the two templates that were the most successful at fit-
ting the average SEDs were the CEO1 templates for IR luminosities
of 10'? L (CEI2) and 10> L (CE12.5). This is as expected,
since these templates have PACS/MIR colours consistent with that
our DOG sources.

4.2 Results

We list the mid-to-far-IR photometry and the total IR luminosity
of the 95 Herschel-DOGs on Table 3, indicating also whether an
AGN component is included as part of the SED fit. The redshift
distribution of our DOG sample peaks at z ~ 2, allowing us to
use the 24 um band as a probe of the mid-IR emission close to the
rest frame 8 um. This allows us to derive a Lg,, that minimizes
the dependence on the choice of SED template used to perform
the k-corrections. To determine the rest-frame Lg ., we interpolate
the CEO1 library at the redshift and flux of each average SED. We
are then in a position to study the fractional AGN contribution to
the total 8—1000 um output as a function of the 8 pm rest-frame
luminosity (Lg,m); we do this for the average SEDs at the three
redshift bins: z = 1.5-2.0, 2.0-2.5 and 2.5-3.0 (see Fig. 8).

We find that the AGN contribution increases globally with in-
creasing Lg ., for all our redshift bins (see Fig. 8). This confirms
the findings of Pope et al. (2008), where they report — based on mid-
IR colours of 79 sources within the GOODS field and with 24 pm
fluxes down to 100 pJy — that low-luminosity DOGs are primar-
ily powered by star-formation activity. However, only MIPS-70 pm
observations were available for their analysis and the inability to
sample properly the peak of the SED lead to large uncertainties on
the derivation of the dust temperature and the AGN contribution;
Penner et al. (2012) extend the study out to far-IR wavebands but
miss the faintest DOGs by focusing on GOODS DOGs with lu-
minosities 10'> Lo < Lir < 10" L. Furthermore, Fiore et al.
(2008) claimed that even faint DOGs show evidence of hard X-ray
emission, suggesting the presence of an underlying AGN contribu-
tion. Within this context our work — based on the large 2 deg® area
of the COSMOS field and the good sensitivity of the MIPS-24 pm
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Figure 5. SEDs of the 12 average templates of DOGs galaxies from our sample. The solid line corresponds to the total SED fit, the dashed line is the host
template and the dotted line is the AGN component. The name of the template used is written on each panels. The flux bins are specified on the left-hand side

and the redshift bins are written on the top.
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Figure 6. Following the same format as Fig. 5, this figure shows the results of the SED-fitting procedure for DOG80, one of the 15 DOGs which require an
AGN component: the first seven panels are the results of the SED-fitting with a host component only and the last panel (bottom middle panel) is the acceptable
fit, with a contribution of an AGN component (20 per cent < fagn < 40 per cent).

observations that allows us to sample a wider range of 24 um fluxes
(i.e. 80 wly < Fo4um < 5 mly) and the access of far-IR data with
Herschel — allows us to conclude that faint DOGs are mainly star-
forming systems while brighter sources become dominated by an
AGN.

By separating our sample in redshift bins, Fig. 8 also shows that
the relation between AGN fraction and Lg ., evolves with redshift:
the slope of the AGN contribution with respect to the Lg ,, , is steeper
at low redshifts, while at higher redshifts the AGN contribution is
less important. This is consistent with the results from Merloni
& Heinz (2008), where they find that although the accretion rate
density on to supermassive black holes (SMBH) and SFR densities
increase from z ~ 0 to then decrease beyond z ~ 2, the decrease
in SMBH activity is sharper than that of the SFR. We note that the
uncertainties on the derived AGN contributions are calculated from
the formal error output resulting from the x2 in the SED-fitting
procedure.

In the interest of studying the star formation activity in our
sources, we use the results from our SED decomposition to ex-
tract the AGN contribution and calculate IR luminosities only due
to star formation. The resulting values span the range of 10"
Lo < Lr < 10" L, corresponding to one order of magnitude
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fainter than the analysis by Penner et al. (2012). We study these IR
luminosities as a function of the rest-frame 8 um luminosity and
find that for a given 8 wm luminosity DOG sources whose SEDs are
best fitted with the addition of an AGN component exhibit signifi-
cantly lower IR luminosities than DOGs fit with a host-only com-
ponent (see Fig. 9, top panel). In fact, for a given 8 pm luminosity
the majority (~75 per cent) of DOGs fit by a host-only component
display similar IR luminosities to the median star-forming galaxies
within the GOODS-Herschel sample from Elbaz et al. (2011), while
AGN-DOGs populate the lower tail of IR-to-8 pm luminosity ratios
(IR8 = Lir/Lg,m; see Fig. 9, bottom panel). We observe an anticor-
relation between the IRS8 ratio and the Lg,, with the AGN-DOGs
populating the brightest Lg ,-end.

For each DOG source in our sample, we convert the IR luminos-
ity into SFR according to Kennicutt (1998) and adopt the stellar
mass from Ilbert et al. (2009). We consider the redshift evolution of
the specific SFR (sSFR = SFR/M,,) of our DOG sample and find
that the majority of DOGs with no AGN component display sSFRs
that place them at or above the main sequence (MS) from Elbaz
et al. (2011), while 50 per cent of the AGN-DOGs show signifi-
cantly lower sSFR values (i.e. they lie below the MS, see Fig. 10).
Sources that lie a factor of 2 above the MS are considered as

S 452, 470-485 (2015)
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Figure 7. Similar to Fig. 5, SEDs of the 15 DOGs which require the contribution of an AGN component.
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Table 2. Results from the SED-fitting for the average SEDs per redshift bins and per flux
bins. fagn is the percentage of total 8—1000 pm flux that comes from AGN. We specify the
star-forming template best fitting the host galaxy (SB for the starburst templates from Mullaney
etal. 2011) and CE 12.5 and CE 12 for the CEOl ULIRG templates.

Redshift Flux faGN Error Template x2 Lir
(mly) percent percent (Host galaxy) Lo
1.5<z<20 0.09<f<0.24 0 - CE 125 44 9.60e+11
0.24<f<0.65 0 - CE 12 5.3 1.29e+12
0.65<f<1.76 0 - SB3 5.3 1.69e+12
1.76<f<4.74 83 35 SB2 6.5  2.42e+12
2<z<25 0.09<f<0.24 0 - CE 125 6.9 1.50e+12
0.24<f<0.65 0 - CE 12.5 346  3.05e+1
0.65<f<1.76 17 5.6 CE 125 0.8  5.52e+11
1.76<f<4.74 86 15.7 CE 12 0.8  2.43e+12
25<z<30 0.09<f<0.24 0 - CE 12.5 21 2.42e+12
0.24<f<0.65 20 35 CE 12.5 04  5.60e+11
0.65<f<1.76 38 32 CE 12.5 0.1 1.69e+12
1.76<f<4.74 59 45 CE 12 13 6.68e+12

‘starbursts’ by Elbaz et al. (2011). All but three host-component
galaxies lie within a factor of 2 around the MS or in the starburst’s
zone. The distribution in sSSFRs shown in Fig. 10 highlights the com-
posite nature of the DOG population: some DOGs are dominated by
starburst activity, the majority is undergoing star formation as part
of the MS, while others are dominated by an AGN. This prompts
the idea that DOGs are at the crossroads of the ULIRG-quasar sce-
nario proposed by Sanders et al. (1988a,b) and Bussmann et al.
(2012), with AGN-DOGs being closer to a quasar phase, where the
AGN has already started to quench the star formation (explaining
the lower sSFR observed on Fig. 10).

4.3 Comparison with IRAC-colour AGN selection criteria

Our SED-fitting analysis identifies 15 Herschel-detected DOGs
with an important AGN contribution to the total IR output. We
compare our AGN classification of DOGs to prior approaches rely-
ing on an IRAC—colour selection. Fig. 11 shows the IRAC—colour
selection of AGNs by Lacy et al. (2004), as well as the refined
IRAC—colour selection of Donley et al. (2012), which also includes
a power-law criteria in the mid-IR: S35 < S45 and S45 < Ss5 and
Ssg < Sg.0.

The majority of our sources display IRAC colours consistent
with the criteria of Lacy et al. (2004), which would suggest that
90 per cent of our DOGs are AGNs. However, our SED-fitting anal-
ysis indicates that only ~15 percent of our sources have a large
AGN contribution. Based on this, we conclude that relying on the
AGN criteria of Lacy et al. (2004) would lead to a lack of precision
in selecting AGNs versus galaxies dominated by star formation. On
the other hand, more than 50 per cent of our AGN-DOGs lie within
the Donley et al. (2012) criterion, suggesting that it is a more re-
liable way of selecting AGNs in DOGs when considering merely
IRAC colours. However, from the 19 DOGs that lie within the AGN-
criteria of Donley et al. (2012) — and excluding the three that do not
follow the power-law criteria required by the authors — only nine
are classified as AGNs following our SED-fitting analysis. That is,
40 percent of the Herschel-DOGs with IRAC colours consistent
with the criterion of Donley et al. (2012) do not have a significant
AGN contribution according to our analysis. Of particular interest
is that out of all our AGN-DOGs, six (i.e. ~40 per cent) are not

identified as AGNs based on the criteria by Donley et al. (2012),
four of which do not follow the power-law criterion required.

On the one hand, our AGN classification is based on the avail-
ability of far-IR data for obscured sources such as DOGs. On the
other, Lacy et al. (2004) and Donley et al. (2012) classify sources as
AGN-dominated based on IRAC—colour selections. When consider-
ing these selections side by side, we draw two main conclusions: (1)
non PL-DOGs potentially host an AGN that may dominate the far-
IR regime even when missed by the IRAC—colour selection criteria
of Lacy et al. (2004) and Donley et al. (2012); and (2) PL-DOGs
with an AGN according to our SED-fitting procedure can be missed
by IRAC colours criteria. We conclude that our method provides an
alternate means of determining the composite nature of DOGs.

5 DUST TEMPERATURES AND MASSES

It has been well established that interstellar dust absorbs a large
fraction of the UV/optical radiation from DOGs and reemits it in the
IR (Penner et al. 2012) As such, it is essential that we understand
the dust properties of these galaxies if we are to understand this
potentially important population of galaxies. In this section, we
derive the dust temperatures and masses for our sample of DOGs.
The availability of far-IR data from Herschel is crucial to obtain
these properties. We are now able to extend previous studies on
DOGs that did not have access to such high-quality far-IR data (e.g.
Dey et al. 2008; Bussmann et al. 2009, 2012). We are also in a
position to compare results with other recent studies using (limited)
Herschel data on DOGs, including that of SPIRE-detected sources
(down to only F>4,.m > 0.3 mJy) with spectroscopic redshifts in the
Bootes field by Melbourne et al. (2012) and the study by Calanog
et al. (2013) on SPIRE-detected DOGs within COSMOS; no PACS
data were available for either study.

5.1 The single temperature model

The availability of Herschel far-IR data allows us to constrain the
peak of the SED in the far-IR regime and to calculate the dust
masses and temperatures of our galaxies with a higher accuracy
than previous studies. DecompIR does not provide information on
the dust amount of our sources; we fit a blackbody spectrum B,
of temperature T using far-IR data (see Amblard et al. 2014). To
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Table 3. DOGs sample.

2

DOG ID Redshift F24 FlOO F] 60 F250 F350 F500 Flag AGN X Li,-
(mlJy) (mly) (mlJy) (mly) (mJy) (mly) Le)
0 1.87 0.386 9.798  14.33 35.05 17.40 14.67 0 2.90 1.02e+12
1 1.60 0.178  11.48 10.53 23.54  16.14 10.17 0 9.59 8.4le+11
2 2.65 0.176 9.251 11.81 2127  19.14 14.26 0 6.22 3.41e+12
3 2.34 0491  16.73 26.67 2736 20.72 7.077 0 3.00 2.48e+12
4 3.00 0.097 9.961 2731 2593 14.49 3.826 3 0.409 3.67e+12
5 1.00 0.404 9.088  20.96 12.49 8.223 6.096 0 37.8 1.30e+12
6 1.40 0.440 7.806  16.88 15.89  13.25 9.133 0 20.5 6.84e+11
7 2.85 0.326 8.145  13.69 22.02 18.26 5.261 2 2.19 1.20e+12
8 2.34 0.402 8.467  24.79 2232 20.23 9.081 0 3.00 2.48e+12
9 1.89 0312 15.11 10.92 10.72  10.60 8.063 0 7.78 1.49e+12
10 1.14 0.103 5576  16.27 15.17  17.43 5.545 0 3.56 4.15e+11
11 1.98 0.156  14.28 18.67 2549  17.19 2.676 -99 -99 -99
12 1.88 0236  11.65 29.26 19.52 7.441 3.868 0 24.5 1.587e+12
13 1.81 0.444  14.62 43.96 31.01 17.75 7.619 0 0.0739  9.502e+11
14 1.79 0.201 6918  32.55 3033 19.84 9.915 0 31.7 2.460e+-12
15 2.30 0.326 8.989 1893 30.08  21.45 20.49 0 8.01 2.068e+12
16 2.04 0.656 9.732 2043 30.88  34.16 15.04 4 0.668 1.753e+12
17 2.34 0.716  11.18 20.34 2045  16.57 8.984 0 0.311 1.760e+12
18 2.88 0.330  17.99 54.18 43.51  35.79 32.05 0 12.6 4.012e+12
19 2.74 0223  12.73 22.93 32.10  20.40 5.487 0 0.509  4.354e+12
20 241 0.665 16.44 27.88 17.78  14.48 0.769 0 2.57 1.842e+12
21 1.90 0.363 6.506 9.178 2198 19.80 13.77 0 431 1.538e+12
22 2.15 0.319 9.573 3135 50.37  43.09 29.44 0 29.9 1.798e+12
23 2.11 0.400 9.302  26.70 3457 2641 13.75 0 15.8 2.122e+12
24 2.14 0.208 5.767  15.81 18.79  12.01 5.824 0 32.7 2.412e+12
25 2.50 0.414 4.650  14.08 3578  28.10 10.19 -99 -99 -99
26 2.29 0.485 7434 15.55 26.60 25.71 25.31 0 9.11 3.3le+12
27 1.84 0.285 7.054  23.17 2496 2193 9.473 0 5.71 9.19e+11
28 1.79 0.400 7.824  16.42 12.27 1491 6.783 0 3.61 1.5%e+12
29 1.80 0.532 7.399  21.88 2897  24.07 13.26 -99 -99 -99
30 1.91 0.287 8.802  23.61 2799  26.50 17.52 0 2.37 1.14e+12
31 1.80 0.601  10.28 32.24 5022 57.26 37.58 0 0.503 1.67e+12
32 1.43 0.271  27.75 50.52 5432 2267 22.84 0 47.8 1.42e+12
33 1.24 0.405 7274 12.76 2440  25.07 12.53 0 0.0981 6.33e+11
34 1.73 0.090 3.589 1336 18.04 8.671 1.258 0 1.04 1.0de+12
35 1.83 0.669 7372  18.38 29.18  21.97 15.27 0 3.06 1.73e+12
36 1.88 0.388  12.93 17.25 11.61 5.563 3.736 0 13.3 1.63e+12
37 2.18 0.185  11.57 16.36 2027  11.07 7.944 0 4.96 2.85e+12
38 1.68 0.846 7.959 10.58 43.39 4247 40.47 0 2.16 9.40e+11
39 1.56 0.280 9.949  15.29 16.03  18.52 12.97 0 10.0 1.25e+12
40 1.71 0412 17.15 40.69 38.81 23.32 9.754 0 4.66 1.02e+12
41 2.00 0.737 1041 21.83 31.49  28.50 17.59 0 9.79 1.17e+12
42 1.79 0.282 5335 1458 2206 15.15 3.131 0 8.24 1.37e+12
43 2.75 0.277 7.221  21.95 14.15  16.22 13.70 3 15.7 8.33e+12
44 2.03 1.038  29.37 43.28 3496  28.66 7.363 2 13.4 4.74e+11
45 1.91 0.248 5.540  14.59 26.78  19.12 7.714 0 5.65 1.43e+12
46 1.81 0.551  16.28 28.14 17.47  10.42 6.205 0 4.42 1.72e+12
47 2.12 0.179 5.090 8.722 2519  24.05 19.96 -99 -99 -99
48 2.35 0.386 9.840  30.80 3342 4445 28.70 0 11.8 4.28e+12
49 1.96 0.130 6.263  12.26 20.61  23.57 12.48 0 1.40 1.48e+12
50 2.92 0.296 9.159  25.80 40.72 2825 21.91 0 8.62 3.72e+12
51 2.55 0.559 9.291  20.90 20.95 4990 1631 0 1.26 1.82e+12
52 1.94 0.208 6.285 11.61 19.85 18.14 7.037 0 2.37 1.72e+12
53 2.26 0.379 9.616  28.90 38.44  34.29 20.98 0 8.56 1.51e+12
54 1.88 0.704 4.882  29.71 30.02  36.79 7.011 0 0.672 1.4le+12
55 1.61 0.187 7.526 18.13 19.77  23.50 15.58 0 25.1 2.08e+12
56 1.61 0.284 7.408  19.38 21.56  17.52 9.390 0 2.67 1.00e+12
57 1.73 0.537 5251 16.61 2993 25776 9.697 0 24.1 1.73e+12
58 2.77 0.165 7.150 14.23 13.25 8.367 8.701 2 20.9 2.33e+12
59 1.94 0.330 14.65 24.56 2693  21.13 10.50 0 0.369 1.94e+12
60 1.27 0433 10.52 27.31 44.89  44.77 34.52 0 9.25 7.57e+11
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Table 3 — continued
DOG ID Redshift F24 F] 00 FI(,() F250 F350 FSOO Flag AGN X2 Li,-

(mlJy)  (mly)  (mJy) (mJy) (ml]y)  (mly) L)
61 2.00 0.745 1531 25.86 38.35 47.96 29.10 0 50.1  3.18e+12
62 1.58 0.505 6.231 31.96 8.530 45.61 8.272 0 796  1.22e+12
63 1.88 0.621 17.10 39.68 41.01 29.16 21.66 0 6.60  6.77e+11
64 2.55 0.366 8.821 15.62 8.706 3.102 6.735 0 224 2.6le+12
65 1.76 0.419 9.343 19.55 28.59 27.63 20.37 -99 -99 -99
66 2.03 0.407  14.68 28.11 22.86 15.96 10.10 0 244 2.69e+12
67 2.85 0.497  16.95 27.73 10.42 8.087  11.99 0 147 4.00e+12
68 1.94 0.943  13.47 26.86 15.43 7.120 2.860 -99 -99 -99
69 1.62 0.925 43.88 66.54 54.21 32.34 6.816 -99 -99 -99
70 1.93 0.437 7177 19.51 21.00 8.710 8.849 0 1.69  1.39e+12
71 2.53 0.132  16.52 44.25 51.89 34.34 23.83 3 120 2.98e+12
72 291 0.555 7.702 23.22 19.01 19.22 10.53 —-99 -99 -99
73 1.61 0395 13.92 23.40 31.45 13.30 11.82 4 144 2.49e+12
74 1.61 0.266 7.749 20.32 20.94 10.23 1.243 3 0200  3.54e+11
75 2.70 0.256 6.372 13.61 29.14 24.31 23.73 0 1.67 3.36e+12
76 2.92 0.465  13.72 41.37 39.27 37.63 28.69 0 1.60  2.94e+12
77 2.00 1.487 10.00 17.00 29.15 27.47 5.519 0 14.1 1.48e+12
78 1.98 0.554  22.49 71.89 74.66 50.33 50.14 -99 -99 -99
79 2.11 0.359 14.87 21.01 25.52 18.83 15.39 0 11.0 2.55e+12
80 1.89 4742 20.84 26.75 20.47 16.42 8.412 2 0.761  6.38e+11
81 2.33 1.385  30.01 59.63 62.33 50.04 24.83 0 3.97 1.31e+12
82 1.97 0.625 12.46 20.73 26.62 27.96 11.84 0 5.23 1.26e+12
83 1.98 1.059  28.67 36.87 32.63 40.06 27.67 3 156 2.07e+12
84 1.91 0.578 7.835 13.90 48.09 51.41 32.16 0 345  1.74e+12
85 2.58 1917 1449 18.95 13.09 9.595 2.781 0 159  2.26e+12
86 291 0.759  11.60 21.18 35.11 4991 24.43 2 0.021  1.00e+12
87 2.34 0.637 7.290 17.49 20.34 23.81 13.98 0 6.19 2.14e+12
88 2.64 3.744 5574 102.9 100.3 59.92 55.24 1 8.16  3.29e+12
89 2.20 0.860  12.87 22.32 12.75 19.16 21.22 0 19.6 5.25e+12
90 2.89 0.671  16.75 27.59 41.20 36.35 4.689 1 433 554e+11
91 2.88 0.931 5.011 11.63 15.30 13.39 16.10 1 519  8.52e+11
92 2.60 2392 17.72 34.43 49.46 32.61 10.89 0 8.08  2.23e+12
93 1.73 3.131 8.783 10.84 18.91 13.82 2.563 0 128 1.76e+12
94 1.75 1.559  20.80 20.48 16.66 8.258 4.248 0 6.89  2.05e+12
Notes. Flag AGN is the contribution from an AGN to the host galaxy obtained from DecomplIR: (0): only host galaxy,
(1): percent AGN < 20 per cent, (2): 20 < per cent AGN < 40 per cent, (3): 40 < per cent AGN < 70 per cent, (4): per cent
AGN > 70 per cent.

su.mrnarize., we Perform asingle temperature fit (hereafter 1 T model) My =La/ / A (MB(., T)dA, 3)
with an emissivity, B, of 1.5 to fluxes longward of Aegframe > 40 pm.

The luminosity is then expressed as
L(v) &< B(v, Tyv”. (M

Considering Aregiframe > 40 pm, we avoid emission from the AGN
that can boost the dust temperature and bias our results (Netzer et al.
2007; Mullaney et al. 2011). For this reason, we restrict ourselves
to using only the PACS 100, 160 pm and SPIRE 250, 350, 500
pm bands for galaxies with z < 1.7 and only the SPIRE 250, 350,
500 pum bands (when available) for z >1.7 galaxies. We require a
minimum of three data points to fit the SED. At z < 1.7, 15 DOGs
comply with this requirement (from the 16 DOGS at z < 1.7). At
z >1.7, from the 24 sources that have SPIRE fluxes above the 3o
limit, 22 have three data points.

We enforce the dust temperature to be constrained between 10
and 95 K, the luminosity between 10'° and 10'# L@, acknowledging
the high luminosities of our sample (see Fig. 9). We observed the
same definition as Amblard et al. (2014) for the dust luminosity and
for the dust mass,

La(A) = 4tMakc Q) B(L, Td) 2)
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where « is taken at 850 pum (Dunne et al. 2000) and equal to
0.077 kg~! m~2 (Draine & Lee 1984; Hughes et al. 1993).

We find a median dust temperature of 7y ~(40.6 + 9.2) K for
our sample. The dust temperatures of our DOGs are in overall good
agreement with estimates from the literature for other samples of
DOGs. Bussmann et al. (2009) predicted a high dust temperature
for DOGs sources with 7y > 35-60 K, but this estimate was mainly
based on observed wavelengths shortward of ~350 um; only 4 of
their 12 DOGs have 350 pm fluxes, the rest of the sample has only
upper limits. Melbourne et al. (2012) find lower dust temperatures
for their Herschel-detected DOG sources (i.e. 20 < Ty < 40 K).
They split their sample into bump DOGs and PL-DOGs and find that
the PL-DOGs are less likely to be detected at far-IR wavelengths
using SPIRE than the bump DOGs. They also claim that SPIRE
detections are biased towards very cold sources. We note that our
range of temperature (~24-65 K, cf. Fig. 12) is wider than that
of Melbourne et al. (2012). Our dust temperatures are in good
agreement with Calanog et al. (2013, within uncertainties): they find
Tq = (37 £ 6) K for detected PL-DOGs and T4 = (35 + 7) K for
detected bump sources. As raised in the literature (e.g. Melbourne
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Figure 8. Evolution of the contribution of the AGN component to the total
rest-frame 8-1000 um flux of the sources as a function of the 8 pm rest-
frame luminosity (Lg.m). The AGN fraction is given for three different
redshift bins: 1.5 < z < 2.0 (solid black line), 2.0 < z < 2.5 (pink dot—
dashed line) and 2.5 < z < 3.0 (blue dashed line). The AGN contribution is
obtained from the fitting procedure described in Section 4 on the 12 average
SED (see Table 2). The general trend is an increasing contribution of the
AGN component with respect to the Lg . of the source irrespective of the

redshift range.

8um* sol

et al. 2012), using only SPIRE data tends to underestimate the
dust temperature. Therefore, we need to be cautious in our analysis
since more than half of our dust temperatures are obtained using

only SPIRE data.

5.2 Discussion
5.2.1 Effect of the AGN contribution on the dust temperatures

With the goal of improving our accuracy in deriving dust tempera-
ture and mass, we use the average SEDs obtained per bin of 24 pm
fluxes and per bin of redshift (see Section 4.1 and in Table 2 for
details) instead of the SEDs of individual DOG sources. The dust
temperatures have been derived for the average SEDs following the
procedure described in Section 5.1. These are presented in Fig. 13
as a function of AGN fractional contribution. Roughly half of the
average SEDs have no AGN contribution and show a wide range
of T4 as seen on the left-hand side of Fig. 13. The two sources
with no AGN fraction and with the highest dust temperatures show
extremely large errors bars on the dust temperature (i.e. =15 K and
+16 K) while the average dust temperature error for the sample is
around 9 K. The rest of the average SEDs have an AGN contribution
ranging from 20 to almost 90 per cent and are within the same Ty
range as the sources with no AGN component. The DOGs’ average
SEDs with an AGN contribution display a correlation between the
AGN contribution and the dust temperature. We perform a best- x>
fit on the 12 data points, taking into account the errors both on the
x and y axes and find a slope of 0.3340.08 with a reduced x> of
0.94. To insure the validity of our fitting method, we also perform

a fit T = cste with
) T/O'T 2

=107 2 =426K.

cste =
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Figure 9. Upper panel: comparison of Lijg with Lg (rest-frame 8 pm) for
DOGs from our sample (galaxies with host component only are marked
with black open circles and AGNs are marked with red filled circles). For
comparison, we show the median location of star-forming galaxies from
Elbaz et al. (2011, solid line), with the dashed lines showing the 68 per cent
dispersion. Lower panel: variation of the IR8 ( = Lir/Lg) ratio with the
8 um luminosity for our DOG sample, following the same colour code
as in the upper panel. For comparison, we also plot galaxies from Elbaz
et al. (2011), including local galaxies (blue crosses), star-forming galaxies
at z>1.5 (orange triangles) and AGNs at z>1.5 (green asterisk). See the text

for details.

The reduced x> for this flat fit being 2.53, this gives us a strong
indication that our previous fit is valid. We also estimate the Spear-
man’s (rho) rank correlation of Ty, and the AGN percentage. The
significance is low (0.04), which indicates a significant correlation.
The correlation between the dust temperature and the AGN per-
centage for the average SEDs with AGN contribution is thus real,
even though the slope is small. However, we do not confirm the
presence of a general trend between the AGN fraction and the dust
temperature of the sources since half of the data points with no
AGN activity present similar dust temperatures than the average
SEDs with a large contribution from an AGN.

5.2.2 Effect of the AGN contribution on the dust masses

In addition to dust temperatures, the 1T model fitting procedure
also provides us with the dust masses of our sample sources. We
obtain a range for the entire sample of 7 x 107 < My, < 10° Mgp
and a median dust mass of ~ (3 &+ 3) x 108 M@ . Our results are
in very good agreement with Bussmann et al. (2009) who found
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Figure 10. Redshift evolution of the specific SFR (sSFR = SFR/M.,) of
DOGs; we distinguish between DOG sources whose SEDs are best fitted
with a host-only component (black open circles) and with the addition of
an AGN component (red filled circles). The solid line represents the star-
forming MS from Elbaz et al. (2011) and the dashed lines are a factor 2
above and below this fit. See the text for details.
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Figure 12. Distribution of the dust temperature of the 24 DOGs with a
detection in the three SPIRE bands with the 1T model (22 sources at z > 1.7
and 2 sources at lower redshifts). The dust temperature peaks at Tq ~ 40 K
and is comprised within the range 24 <Tq,s < 65 K.
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Figure 11. IRAC colours of host-component DOGs (black open circles)
and of the AGN-DOGs (red filled circles) from this work; we also indicate
the IRAC colours of the nine sources for which no SED fit was possible
(blue crosses; see Section 4.3 for details). The solid line box is the AGN
selection criterion from Donley et al. (2012) and the wider dashed box is
from Lacy et al. (2004).

a median dust mass of 3x 108 M for their sample of 31 of the
brightest DOGs (F24,,m >0.8 mly) in the Bootes Field and with
Hubble Space Telescope (HST) imaging. Their sample is dominated
by sources with a power law in the mid-IR IRAC bands, which is a
signature of the presence of an AGN (Donley et al. 2007).

DOGs are believed to be an intermediate AGN phase between
high-redshift submillimetre galaxies (SMGs) and quasars at z ~ 2
(Bussmannetal. 2012). Accounting for uncertainty in « which could
be as much as a factor of 3, the median dust mass of our sample
is not different from those estimated for high-redshift SMGs by
Magnelli et al. (2012b, My ~ 10° M¢@). Pope et al. (2008) found
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Figure 13. Evolution of the dust temperature obtained with the 1T model as
a function of the AGN fraction. The results are obtained for the 12 average
SEDs presented in Table 2 and detailed in Section 4.1. To improve clarity, we
have slightly changed the x values for the six points with no AGN fraction
in order to exhibit more clearly the error bars on the figure. The blue line is
the best x fit with a slope of 0.334:0.08 for the six average SEDs with an
AGN contribution. The dotted lines represent the 1o error.

that 30 per cent of the SMGs from their sample also satisfy the DOG
criteria, and of those SMG-DOGs, 30 per cent are AGN-dominated.
DOGs could then be the descendants of these SMGs with similar
dust content, but representing a more advanced AGN-phase than
could later quench the star formation and lead to elliptical galaxies.

6 SUMMARY AND CONCLUSIONS

We carry out a study that aims to understand the composite nature
of 24 um-bright DOGs. These sources are a subset of ULIRGs at
high redshift (z ~ 2) with Fo4 ,n/Fr > 982. ULIRGs are considered
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to represent an important phase in the evolution of galaxies as they
are linked to the formation of massive galaxies via gas-rich star-
bursting mergers followed by an AGN-driven quenching of the star
formation (e.g. Sanders et al. 1988a,b). Recent studies (Dey et al.
2008; Bussmann et al. 2009, 2012) have suggested a similar evolu-
tionary sequence where DOGs are an important intermediate phase
between gas-rich major mergers (traced by SMGs) and quasars at
z ~ 2. These studies describe an evolutionary scenario in which the
starbursting nature of SMGs evolves into the composite nature of
DOGs as an underlying AGN grows; this is followed by a quasar
phase that terminates star formation, leading to the formation of a
passive, massive elliptical galaxy. Within this context, DOGs could
provide a key insight to an extremely dusty stage in the evolution of
galaxies at z ~ 2, where both AGN and star formation activity coex-
ist. Their composite nature was until relatively recently inaccessible
prior to the availability of sensitive mid- to far-infrared data.

We base our work on a sample of 95 Herschel-detected DOG
sources. We perform SED-fitting on our sources using composite
spectra to obtain AGN contributions, dust temperatures and dust
masses. We summarize below our results and our conclusions.

(i) DOGs with the brightest 24 um fluxes (Fasum > 1 mly)
present significantly bluer PACS/24 pm colours than other 24 pm-
selected sources. These bluer colours may be explained by templates
containing an AGN contribution of at least 25 per cent.

(i) Among our sample of 95 sources, 74 per cent are fit by a host
galaxy template while for 16 per cent require an additional AGN
component. The remaining 10 per cent of the sample could not be
properly fit, likely due to inaccurate photometric redshifts.

(iii) Faint DOG sources with Lg, ., < 10" Lo are dominated
by star formation at all redshifts, while DOGs brighter than
Lgum > 2x10' Lg display a high contribution (>20 per cent)
from an AGN component.

(iv) DOGs with no significant AGN contribution are mainly lo-
cated within the star-forming MS as defined in Elbaz et al. (2011).
Those identified as AGN-DOGs present the lowest IR8 ( = Ljr/L8)
ratio of our sample and 50 per cent of them lie below this sequence,
with significantly lower sSFRs. This results support the evolution-
ary scenario where DOGs may represent a transition phase between
high-redshift starburst-dominated SMGs and red-dead ellipticals,
passing through an AGN-phase that would quench star formation.

(v) The dust temperature of DOGs peaks at (40 £ 9) K and our
range of temperatures (24<T4 < 65 K) is overall in good agreement
with the literature (Bussmann et al. 2009, 2012; Melbourne et al.
2012; Calanog et al. 2013). DOGs with a contribution from an AGN
in the far-IR of at least 60 per cent have dust temperatures >50 K,
suggesting that the AGN heats the dust of its host galaxy. We find a
median dust mass of ~ (3 £ 3) x 10% M, for our sample consistent
previous analysis in the literature (Bussmann et al. 2012).

This work sheds light on DOG sources and their underlying
composite nature, bringing unequivocally to light that mid-IR bright
DOGs are powered by an AGN. The submillimetres facilities in
the near future, such as the Cerro Chajnantor Atacama Telescope
(CCAT) and the Atacama Large Millimeter/submillimeter Array
(ALMA) will provide critical insight to study the AGN properties
of these obscured ULIRGs at z ~ 2.

This paper is the first of a series on the panchromatic view of
DOG:s. In this paper we focus on their far-IR properties, while in the
upcoming papers we will focus on their X-ray properties based on
X-ray stacking analysis and on their contribution to the Cosmic
X-ray Background. The far-IR/radio correlation of these sources
and their radio properties using JVLA-COSMOS observations pre-

sented in Smolci¢ et al. (2014) will be detailed in a forthcoming
paper.
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