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Fractional Herglotz Variational Principles
with Generalized Caputo Derivatives
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Abstract. We obtain Euler–Lagrange equations, transversality condi-
tions and a Noether-like theorem for Herglotz-type variational prob-
lems with Lagrangians depending on generalized fractional derivatives.
As an application, we consider a damped harmonic oscillator with time-
depending mass and elasticity, and arbitrary memory effects.
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1. Introduction

Fractional variational principles and their applications is a subject under
strong current research [3, 19, 20]. For classical fields with fractional deriva-
tives, by using the fractional Lagrangian formulation, we can refer to [7]. An
Hamiltonian approach to fractional problems of the calculus of variations is
given in [25], where the Hamilton equations of motion are obtained in a man-
ner similar to the one found in classical mechanics. In addition, classical fields
with fractional derivatives are investigated using the Hamiltonian formalism
[25]. A method for finding fractional Euler–Lagrange equations with Caputo
derivatives, by making use of a fractional generalization of the classical Faá di
Bruno formula, can be found in [5]. There the fractional Euler–Lagrange and
Hamilton equations are obtained within the so called 1 + 1 field formalism
[5]. For discrete versions of fractional derivatives with a nonsingular Mittag-
Leffler function see [1], where the properties of such fractional differences are
studied and discrete integration by parts formulas proved in order to obtain
Euler–Lagrange equations for discrete variational problems [1]. The readers
interested in the discrete fractional calculus of variations are refereed to the
pioneer work of Bastos et al. [8, 9]. Here we are interested in the generalized
continuous calculus of variations introduced by Herglotz.

The generalized variational principle firstly proposed by Gustav Her-
glotz in 1930 [14] gives a variational principle description of non-conservative
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systems even when the Lagrangian is autonomous [28, 30]. It is essentially
based on the following problem: find the trajectories x(t), satisfying given
boundary conditions, that extremize (minimize or maximize) the terminal
value z(b) of the functional z that satisfies the differential equation

ż(t) = L (t, x(t), ẋ(t), z(t)) , t ∈ [a, b],

subject to the initial condition z(a) = γ. Herglotz proved that the necessary
condition for a trajectory to be an extremizer of the generalized variational
problem is to satisfy the generalized Euler–Lagrange equation

∂L

∂x
−

d

dt

∂L

∂ẋ
+

∂L

∂z

∂L

∂ẋ
= 0.

The main physical motivation for the development of generalized variational
methods behind the classical calculus of variations is linked to the inverse
variational problem of classical mechanics in the cases where dissipation is
not negligible [18]. In [2], Almeida and Malinowska have considered a frac-
tional variational Herglotz principle, where fractionality stands in the depen-
dence of the Lagrangian by the Caputo fractional derivative of the general-
ized variables. See also the more recent papers [33, 34] on fractional Herglotz
variational principles. In [33], new necessary conditions for higher-order gen-
eralized variational problems with time delay, which are semi-invariant under
a group of transformations that depends on arbitrary functions, is obtained.
Fractional variational problems of Herglotz type of variable order are investi-
gated in [34], where necessary optimality conditions, described by fractional
differential equations depending on a combined Caputo fractional derivative
of variable order, are proved, both for one and several independent variables
[34]. Using such results, it is possible to find, by using a variational approach,
the equations of motion of a dissipative mechanical system with memory. This
is useful, since in many classical cases, memory effects play a relevant role in
systems with dissipation. A relevant example is given by the Basset memory
force acting on a sphere rotating in a Stokes fluid. It is well-known that this
force can be represented by means of Caputo derivatives of order 1/2 (see,
e.g., [6] and references therein). However, a limit in this approach stands to
the fact that the particular choice of the dependence of the Lagrangian by
the Caputo fractional derivative of the generalized variable, implies that it
describes equations of motion of systems with power-law memory kernels.
On the other hand, in the framework of the fractional calculus of variations
(a quite recent topic of research, started from the seminal investigations of
Riewe [26] and then developed by many researchers, see for example the recent
monographs [3, 4, 16, 19, 20]), Odzijewicz et al. [21, 22] discusses the case
of the Lagrangian depending on generalized Caputo-type derivatives with
arbitrary completely monotonic kernels [19]. Here we consider a generalized
calculus of variations in the sense of Herglotz with Lagrangians depending on
generalized Caputo-type operators treated in [12, 19, 21]. Our aim is to find
a general and adequate variational approach to describe mechanical systems
with arbitrary memory forces.
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The paper is organized as follows. In Section 2, we recall the necessary
definitions and results from the generalized fractional variational calculus.
Our results are then given in Sections 3, 4 and 5: we prove in Section 3
necessary optimality conditions of Euler–Lagrange type (Theorem 3.1) and
transversality conditions (Theorem 3.3) to the generalized fractional varia-
tional problem of Herglotz; we show in Section 4 how our approach can deal,
in an elegant way, with dissipative dynamical systems with memory effects
and time-varying mass and elasticity; and we obtain a generalized fractional
Herglotz Noether theorem (Theorem 5.2) in Section 5. We end with Section 6
of conclusions and some directions of future work.

2. Preliminaries

In this section, we recall the main definitions of the generalized Riemann–
Liouville and Caputo-like operators and their properties, according to the
analysis of generalized fractional variational principles developed in [19, 21].
For a general introduction to fractional differential operators and equations
we refer to the classical encyclopedic book [27]. See also [24]. For an intro-
duction to the fractional variational methods, and in particular integration
by parts formulas for fractional integrals and derivatives, we refer to the
monographs [4, 20]. For computational and numerical aspects see [3, 11, 15].

Definition 2.1. The operator Kα
P is given by

Kα
P [f ](x) = Kα

P [t → f(t)](x)

= p

∫ x

a

kα(x, t)f(t)dt + q

∫ b

x

kα(t, x)f(t)dt,

where P = 〈a, x, b, p, q〉 is the parameter set, x ∈ [a, b], p, q ∈ R, and kα(x, t)
is a completely monotonic kernel.

For the sake of completeness, we should remark that similar generaliza-
tions of the Riemann–Liouville integrals have been considered in the frame-
work of the fractional action-like variational approach (FALVA) [13, 17]. On
the other hand, a similar generalization is considered in a probabilistic frame-
work in [35].

Theorem 2.2 (See [21, Theorem 3]). Let kα ∈ L1([a, b]) and

kα(x, t) = kα(x− t).

Then, the operator Kα
P : L1([a, b]) → L1([a, b]) is a well-defined bounded and

linear operator.

Definition 2.3. Let P be a given parameter set and α ∈ (0, 1). The operator
Aα = D ◦ K1−α

P is the generalized Riemann–Liouville derivative, where D
stands for the conventional integer order derivative operator.
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The corresponding generalized Caputo derivative is defined as Bα
P =

K1−α
P ◦ D. A key-role in the following analysis is played by the following

theorem that provides the integration by parts formula for the generalized
operators defined before.

Theorem 2.4 (See [21, Theorem 11]). Let α ∈ (0, 1) and P = 〈a, x, b, p, q〉.
If f,K1−α

P g ∈ AC([a, b]), where P ∗ = 〈a, x, b, q, p〉 and kα(·) is a square-

integrable function on ∆ = [a, b]× [a, b], then

∫ b

a

g(x)Bα
P [f ](x)dx = f(x)K1−α

P∗ [g](x)

∣

∣

∣

∣

a

b

−

∫ b

a

f(x)Aα
P∗ [g](x)dx.

3. Generalized fractional Herglotz variational principles

One of the main aims of this work is to prove generalized Euler–Lagrange
equations related to the generalized fractional variational principle of Her-
glotz. In particular, the generalization is based on the fact that the La-
grangian depends on the generalized Caputo derivative Bα

P . As explained
before, by using this approach, we will be able to find a variational approach
to mechanical systems involving an arbitrary (suitable) memory kernel kα(t).
Therefore, let us consider the differential equation

ż(t) = L (t, x(t), Bα
P [x](t), z(t)) , t ∈ [a, b], (3.1)

with the initial condition z(a) = za. We moreover assume that

• x(a) = xa, x(b) = xb, xa, xb ∈ R
n,

• α ∈ (0, 1),
• x ∈ C1([a, b],Rn), Bα

P [x] ∈ C1([a, b],Rn),
• the Lagrangian L : [a, b] × R

2n+1 → R is of class C1 and the maps
t → λ(t) ∂L

∂Bα
P
xj
[x, z](t) exist and are continuous on [a, b], where we use

the notations

[x, z](t) := (t, x(t), Bα
P [x](t), z(t)),

λ(t) = exp

(

−

∫ t

a

∂L

∂z
[x, z](τ)dτ

)

.

The generalized fractional Herglotz variational principle is formulated
as follows:

Let functional z(t) = z[x; t] be given by the differential equation

(3.1) and η ∈ C1([a, b],R) be an arbitrary function such that η(a) =
η(b) = 0 and Bα

P [η] ∈ C1([a, b],R). Then, the value of the func-

tional z has an extremum for the function x if and only if

d

dǫ
z[x+ ǫη; b]

∣

∣

∣

∣

ǫ=0

= 0.
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We are now able to state and prove a generalized fractional necessary
optimality condition of Euler–Lagrange type that, together with the frac-
tional Herglotz Noether theorem (see Theorem 5.2), constitute the central
results of the paper.

Theorem 3.1 (Generalized fractional Herglotz Euler–Lagrange equations).
Let function x be such that z[x; b] in (3.1) attains an extremum. Then x(t),
t ∈ [a, b], is a solution to the generalized Euler–Lagrange equations

λ(t)
∂L

∂xj

[x, z](t) +Aα
P∗

(

λ(t)
∂L

∂Bα
Pxj

[x, z](t)

)

= 0, (3.2)

j = 1, . . . , n.

Proof. The proof uses the generalized integration by parts formula for Caputo-
like operators Bα

P given by Theorem 2.4. Let x be such that the functional
z[x; b] attains an extremum. The rate of change of z in the direction η is given
by

θ(t) =
d

dǫ
z[x+ ǫη; t]

∣

∣

∣

∣

ǫ=0

.

The variation ǫη of the argument in equation (3.1) is given by

d

dt
z[x+ ǫη; t] = L (t, x(t) + ǫη(t), Bα

P [x](t) + ǫBα
P [η](t), z[x+ ǫη; t]) .

Observing that, from equation (3.1), we have

d

dt
θ(t) =

d

dǫ
L

(

t, x(t) + ǫη(t), Bα
P [x](t) + ǫBα

P [η](t), z[x+ ǫη; t]

)∣

∣

∣

∣

ǫ=0

,

this gives a differential equation of the form

dθ(t)

dt
−

∂L

∂z
[x, z](t)θ(t) =

n
∑

j=1

(

∂L

∂xj

[x, z](t)ηj(t) +
∂L

∂Bα
Pxj

Bα
P [ηj ](t)

)

,

whose solution is
∫ t

a

n
∑

j=1

(

∂L

∂xj

[x, z](t)ηj(t) +
∂L

∂Bα
Pxj

Bα
P [ηj ](t)

)

λ(t)dt = θ(t)λ(t) − θ(a),

where λ(t) = exp
(

−
∫ t

a
∂L
∂z

[x, z](τ)dτ
)

and θ(a) = 0. For t = b, we get

∫ b

a

n
∑

j=1

(

∂L

∂xj

[x, z](t)ηj(t) +
∂L

∂Bα
Pxj

Bα
P [ηj ](t)

)

λ(t)dt = θ(b)λ(t).

Since θ(b) is the variation of z[x; b], if x gives a maximum, also θ(b) = 0, and
therefore we get

∫ b

a

n
∑

j=1

(

∂L

∂xj

[x, z](t)ηj(t) +
∂L

∂Bα
Pxj

Bα
P [ηj ](t)

)

λ(t)dt = 0.

Then, by using the integration by parts formula (see Theorem 2.4), and the
fact that η(a) = η(b) = 0, we obtain the claimed result by the fundamental
lemma of the calculus of variations. �
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Remark 3.2. Let kα(x, t) = 1
Γ(1−α) (x − t)−α, α ∈ (0, 1), and the parame-

ter set be given by P = 〈a, x, b, 1, 0〉. In this particular case, the operator
Bα

P coincides with the standard Caputo fractional derivative C
a D

α
x , and our

Theorem 3.1 gives the Euler–Lagrange equation of [2].

Observe that, in order to determine uniquely the unknown function that
satisfies equation (3.1), the following system of differential equations







ż(t) = L[x, z](t),

λ(t)
∂L

∂xj

[x, z](t) +Aα
P∗

(

λ(t)
∂L

∂Bα
Pxj

[x, z](t)

)

= 0,
(3.3)

j = 1, . . . , n, should be studied with the given boundary conditions. In the
case xj(b) is not fixed, similar arguments as those used in the proof of The-
orem 3.1 allow us to obtain the generalized fractional integral transversality
conditions (3.4).

Theorem 3.3 (Generalized fractional Herglotz transversality conditions). Let
x be such that z(b) = z[x; b] in equation (3.1) attains an extremum. Then x is

a solution to the system (3.3). Moreover, if xj(b) is not fixed, j ∈ {1, . . . , n},
then the integral transversality condition

K1−α
P∗

[

t → λ(t)
∂L

∂Bα
Pxj

[x, z](t)

]

(b) = 0 (3.4)

holds.

4. An application: generalized damped harmonic oscillator
with memory effects

As already discussed in the literature, generalized variational methods can
be useful to treat the inverse problem for dissipative systems where mem-
ory or damping effects are not negligible. For example, in [21], the authors
discussed an application of generalized variational problems to the Caldirola–
Kanai approach to quantum dissipative systems; while in [6] an application
to the inverse problem for the Basset system was discussed. One can argue
that the starting point to research on generalized variational problems was
given by the Lemma of Bauer [10], stating that the equations of motion of a
classical dissipative system with constant coefficients cannot be derived from
a classical variational approach. Here we show the peculiarity of the approach
considered in this paper, to treat dissipative dynamical systems with memory
effects and time-varying mass and elasticity. Let us consider the mechanical
system described by the following autonomous Lagrangian:

L (x(t), Bα
P [x](t), z(t)) =

1

2
m (Bα

P [x](t))
2
−

1

2
kx2(t) + λ0z(t), (4.1)

where we take a = 0, b > 0, p = 1 and q = 0. By using the generalized Euler–
Lagrange equations discussed in Theorem 3.1, we have that the equation of
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motion in this case is given by

mAα
P∗

(

e−λ0t (Bα
P [x](t))

)

− ke−λ0tx(t) = 0. (4.2)

Equation (4.2) describes a dynamical oscillatory system with exponentially
time-decaying mass and elasticity coefficient and arbitrary memory. The gen-
eralized velocity Bα

P [x](t) can be physically interpreted as a time–weighted
velocity, where memory effects are induced by viscosity (and clearly depends
by the relaxation kernel kα in the definition of the generalized operators
Bα

P and Aα
P∗). Therefore, the generalized Herglotz approach here considered

provides a variational method to treat the inverse problem of a damped har-
monic oscillator with time-depending mass and elasticity (as a consequence of
the Herglotz approach) and with arbitrary memory effect implying a velocity
delay (due to the dependence of the Lagrangian by a generalized fractional in-
tegral). Clearly, in the case in which the memory is neglected, that is, α → 1,
the Lagrangian (4.1) takes the form

L (x(t), ẋ(t), z(t)) =
1

2
mẋ2(t)−

1

2
kx2(t) + λ0z(t) (4.3)

and we recover from (4.2) the equation m d
dt

(

e−λ0tẋ(t)
)

+ ke−λ0tx(t) = 0 of
an harmonic oscillator with dissipation. Moreover, if λ0 = 0, then we are in
the case in which the Lagrangian (4.3) does not depend on z(t) and we have
the classical equation of the harmonic oscillator: if α → 1 and λ0 = 0, then
the Euler–Lagrange equation (4.2) reduces to mẍ(t) + kx(t) = 0.

5. Noether theorem for generalized fractional Herglotz
variational problems

The analysis of possible generalizations of Noether-type theorems to frac-
tional and Herglotz variational principles, has been subject of recent research:
we refer, for example, to [30, 31] and the references therein. Noether-like the-
orems play indeed a key-role in mathematical-physics by giving the relation
between the invariance of the action with respect to some parametric trans-
formation and the existence of conserved quantities [36, 37]. Here we consider
a one-parameter family of transformations

x̄j = hj(t, x, s), j = 1, . . . , n, (5.1)

depending on the parameter s ∈ (−ǫ,+ǫ), with hj ∈ C2 such that

hj(t, x, 0) = xj for all (t, x) ∈ [a, b]× R
n.

The Taylor expansion is given by

hj(t, x, δ) = hj(t, x, 0) + sξj(t, x) + o(s)

= xj + sξj(t, x) + o(s),
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where ξj(t, x) = ∂shj(t, x, s)

∣

∣

∣

∣

s=0

. In this case the linear approximation of the

transformation (5.1) is simply given by

x̄j(t) = hj(t, x(t), s), j = 1, . . . , n. (5.2)

Let

θ(t) =
d

ds
z̄[x+ sξ, t]|s=0

be the total variation produced by the transformation (5.1).

Definition 5.1. The transformation x̄ given by (5.1) leaves the functional z
(3.1) invariant if θ(t) ≡ 0.

By using the generalized fractional Euler–Lagrange equation (3.2) of
Theorem 3.1, we are now able to state the following Noether-type result.

Theorem 5.2 (Generalized fractional Herglotz Noether theorem). If the func-
tional z in (3.1) is invariant in the sense of Definition 5.1, then

n
∑

j=1

Ôα

[

λ(t)
∂L

∂Bα
Pxj

[x, z](t), ξj(t, x(t))

]

= 0

holds along the solutions of the generalized Euler–Lagrange equation (3.2),
where

λ(t) = exp

(

−

∫ t

0

∂L

∂z
[x, z](τ)dτ

)

and

Ôα[f, g] := fBα
P g − gAα

P∗f.

Proof. By using the transformation (5.2) into equation (3.1), we get

d

dt
z̄(t) = L (t, x̄(t), Bα

P x̄(t), z̄(t)) .

Differentiating with respect to s and setting s = 0, we obtain

θ̇(t)−
∂L

∂z
θ(t) =

n
∑

j=1

(

∂L

∂xj

ξj +
∂L

∂Bα
Pxj

Bα
P ξj

)

, (5.3)

where we omit, in order to simplify the notation, that the partial derivatives
of L are evaluated at [x, z](t) and ξj at (t, x(t)). The solution of (5.3) is given
by

θ(t)λ(t) − θ(a) =

∫ t

a

n
∑

j=1

(

∂L

∂xj

ξj +
∂L

∂Bα
Pxj

Bα
P ξj

)

λ(τ)dτ. (5.4)

Since, along the solutions of the generalized Euler–Lagrange equation (3.2),
we have that

λ(t)
∂L

∂xj

= −Aα
P∗

(

λ(t)
∂L

∂Bα
Pxj

)

, (5.5)

we obtain the claimed result by substituting (5.5) into (5.4). �
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6. Conclusions

We introduced the study of fractional variational problems of Herglotz type
that depend on generalized fractional operators in the sense of [19, 23]. As a
particular case, one gets a generalization of the Herglotz variational princi-
ple for non-conservative systems with Caputo derivatives. Main results give
a necessary optimality condition of Euler–Lagrange type (Theorem 3.1), in-
tegral transversality conditions (Theorem 3.3), and a Noether-type theorem
(Theorem 5.2). Our motivation comes from physics, where such variational
principles can be used to describe mechanical systems with memory of ar-
bitrary form. As an application, a fractional mechanical system is analyzed
with a fractionally generalized velocity that reproduces, for α = 1, the stan-
dard Lagrangian of a harmonic oscillator with exponential damping, which
also contains the non-damped conservative oscillator.

The research here initiated can now be enriched in different directions,
by trying to bring to the fractional setting the recent results [28, 29, 30, 31, 32]
of Santos et al. on Herglotz variational problems.
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