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ABSTRACT 
Cavity contraction method has been used for decades for the design of tunneling and 

prediction of ground settlement, by modelling the cavity unloading process from in-situ 

stress state. Analytical solutions of undrained cavity contraction in a unified state 

parameter model for clay and sand (CASM) are developed in this paper to predict the 

soil behaviour around tunnels. The overall behaviour of clay and sand under both 

drained and undrained loading conditions could be properly captured by CASM, and 

the large-strain and effective stress analyses of cavity contraction provide the 

distributions of stress/strain within the elastic, plastic and critical-state regions around 

a tunnel. The effects of ground condition and soil model parameters are investigated 

from the results of stress paths and cavity contraction curves. Comparisons of the ground 

reaction curve and the excess pore pressure are also provided between the predicted and 

measured behaviour of tunneling, using data of centrifuge tunnel tests in clay. 

 

INTRODUCTION 
With the increasing demand for construction of tunnels in urban areas, it becomes more 

important to understand the tunneling-induced ground movements and to investigate 

their effects on preexisting underground structures and other services (Mair, 2008; 

Kolymbas, 2008). With symmetric assumption for deep tunnels, the ground movements 
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at the tunnel heading are in a spherical scenario, while cylindrical symmetry is used for 

radial movements around lining, as can be seen in Fig. 1 (after Mair & Taylor, 1993; 

Mair, 2008). Undrained condition for clay behaviour around the heading is often applied, 

indicating the sufficiently fast advance of the tunnel (Mair, 2008).  

Cavity expansion theory, concerning stress/displacement fields around cavities, has 

been developed and applied to a variety of geotechnical problems, as described in Yu 

(2000). By modelling the cavity unloading process from the in-situ stress state, cavity 

contraction method has been used for decades for the design of tunneling and the 

prediction of ground settlement (e.g. Hoek & Brown, 1980; Mair & Taylor, 1993). Mair 

& Taylor (1993) reported simple plasticity solutions for prediction of ground 

deformations and pore pressure changes caused by tunnelling in clay. Closed form 

solutions were proposed based on linear elastic-perfectly plastic solutions of cavity 

contraction in a Tresca material. In the past two decades, critical state solutions were 

increasingly proposed to account for the dependence of soil strength with deformation 

history (e.g. Collins & Yu, 1996; Yu & Rowe, 1999; Chen & Abousleiman, 2012). 

Additionally, undrained solutions of cavity expansion were recently developed using a 

unified state parameter model for clay and sand (CASM), which has the ability of 

capturing the overall behaviour of clay and sand (Mo & Yu 2016a). The undrained 

expansion solutions of Mo & Yu (2016a) are modified in this paper with respect to the 

problems of cavity contraction and tunneling.   

This paper provides novel analytical solutions of undrained cavity contraction in a 

unified state parameter model for clay and sand (CASM) to predict the soil behaviour 

around tunnels. The solution aims to propose a unified approach for cavity contraction 

analysis in both clay and sand with two additional soil parameters (the stress-state 

coefficient and the spacing ratio), as well as a non-associated flow rule. Large strain 

analysis is adopted for both elastic and plastic regions by using the logarithmic strains. 

Taking account of the effect of stress history by an effective stress analysis, the 

predictions of stress fields and soil deformation are compared with previous analytical 

results and centrifuge data, with attempts to improve the prediction of the uniform 

convergence under the assumption of axisymmetry.  
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PROBLEM DEFINITION 
The contraction of a spherical/cylindrical cavity with initial radius ܽ଴ embedded in an 

infinite soil under undrained condition is concerned in this paper. The geometry and 

kinematics of cavity contraction are illustrated schematically in Fig. 2. The initial 

isotropic stress state is assumed with the initial ambient pore pressure ݑ଴ . The 

preconsolidation pressure is referred to as ݌୷଴ᇱ  and ܴ ଴ ൌ ୷଴ᇱ݌ Ȁ݌଴ᇱ  represents the isotropic 

overconsolidation ratio in terms of the mean effective stress. The specific volume keeps 

as a constant (ߥ ൌ  ଴) during the process of contraction for undrained analysis. Noteߥ

that a compression positive notation is used in this paper. 

For cavity expansion/contraction problems, the quasi-static equilibrium equation 

can be written as: ߪఏ െ ௥ߪ ൌ ௥௠  డఙೝడ௥         (1) 

where the parameter ‘݉’ is used to integrate both cylindrical (݉ ൌ ͳ) and spherical 

(݉ ൌ ʹ) scenarios; ߪ௥ and ߪఏ are the total radial and tangential stresses, and ݎ is the 

radius of the material element (ݎ଴ indicates the initial position before cavity contraction). 

Excess pore pressure ȟݑ is calculated as ݑ െ  ଴. According to Collins & Yu (1996), theݑ

mean and deviatoric effective stresses (݌ᇱ; ݍ) for cavity contraction problems can be 

defined as follows: ݌ᇱ ൌ ఙೝᇲା௠ήఙഇᇲଵା௠    Ǣ ݍ    ൌ ௥ᇱߪ െ ఏᇱߪ       (2) 

Similarly, the volumetric and shear strains (ߜǢ ߜ :are expressed as (ߛ  ൌ ௥ߝ ൅ ݉ ή ఏߝ ൌ Ͳ   Ǣ ߛ    ൌ ௥ߝ െ  ఏ      (3)ߝ

It is assumed that strains can be decomposed additively into elastic and plastic 

components while yielding occurs, and superscripts ‘݁’ and ‘݌’ are used to distinguish 

the elastic and plastic components of the total strains. To accommodate the effect of 

large deformation in cavity contraction process, large strain analysis is adopted for both 

elastic and plastic regions by using logarithmic strains: ߝ௥ ൌ െ ݈݊ ቀ ௗ ௥ௗ ௥బቁ   ;   ߝఏ ൌ െ ݈݊ ቀ ௥௥బቁ      (4) 

The state parameter ߦ was defined by Been & Jefferies (1985), representing the 

difference of specific volume between the current and critical states at the same mean 

effective stress (see Fig. 3a): 
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ߦ ൌ ߥ ൅ ln ߣ ᇱ݌ െ Ȟ        (5) 

It has shown to be an important parameter to describe the behaviour of granular 

material over a wide range of stresses and densities (Been & Jefferies, 1985; Sladen et 

al., 1985; Sladen & Oswell, 1989). In addition, it is also established that the state 

parameter can be used to determine the soil responses for both clay and sand (Yu, 1998). 

With the benefits of the concept of state parameter, Yu (1998) proposed a unified 

state parameter model for clay and sand, which is referred to as CASM. It is a simple 

constitutive model with two additional material constants introduced to the standard 

Cam-clay model, whereas the overall behaviour of clay and sand can be satisfactorily 

modelled by CASM under both drained and undrained loading conditions. The state 

boundary surface of CASM (Fig. 3b) is described as: ቀ ఎெቁ௡ ൌ ͳ െ కకೃ ൌ െ ௟௡൫௣ᇲȀ௣೤ᇲ ൯௟௡ ௥כ        (6) 

where ߟ ൌ െݍȀ݌ᇱ is known as stress ratio (note that the negative symbol indicates the 

negative deviatoric stress during process of contraction); ݊ is the stress-state coefficient; ߦோ ൌ ሺߣ െ ሻ lnߢ  is the spacing ratio, defined כݎ is the reference state parameter; and ,כݎ

as ݌௬ᇱ Ȁ݌௫ᇱ  (see Fig. 3a). In addition, a non-associated flow rule based on the Rowe’s 

stress-dilatancy relation is adopted here to better describing the deformation of sands 

and other granular media: ఋ೛ሶఊ೛ሶ ൌ െ ଽ ሺெିఎሻଽାଷ ெିଶ ெ ఎ  ൈ  ௠௠ାଵ       (7) 

Note that the relationship between the volumetric and shear strains in this paper and 

the conventional definitions is given by: ߜ௣ሶ Ȁߛ௣ሶ ൌ ௣௣ሶߝ Ȁߝ௤௣ሶ ൈ  ௠௠ାଵ . The plastic potential 

can then be obtained by the integration of the stress-dilatancy relation (Eq. 7), and the 

hardening law is adopted based on a typical isotropic volumetric plastic strain hardening, 

as shown to be: ݌௬ᇱሶ ൌ ఔ ௣೤ᇲఒି఑ ௣ሶߜ           (8) 

 

PLASTICITY SOLUTIONS 
Plasticity solutions are presented in this section, for a cavity contracted from ܽ଴ to ܽ  
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until the soil around the cavity reaches the critical state (i.e. soil medium is deformed to 

include elastic, plastic and critical-state regions). ‘ܿ’ is the radius of the elastic-plastic 

boundary, and ܿ௖௦ is the radius where critical-state region initially commences. Thus, 

for ݎ ൐ ܿ, soil is in elastic region; whereas for ܿ௖௦ ൏ ݎ ൏ ܿ, soil is in plastic region, and 

critical-state zone is for soil at ܽ ൏ ݎ ൏ ܿ௖௦  (see Fig. 2b). Note that the contraction 

solutions are modified based on the cavity expansion solutions by Mo & Yu (2016a). 

Although some formulations can be found in Mo & Yu (2016b), the detailed derivations 

and solutions for cavity contraction are provided in this section. 

 

Solution in Elastic Region 

Soil volume within an arbitrary radius (ݎ) can be assumed as constant with respect to 

undrained condition, and this relation leads to the following expression: ݎ଴௠ାଵ െ ௠ାଵݎ ൌ ܽ଴௠ାଵ െ ܽ௠ାଵ ൌ ܶ     (9) 

‘ܶ’ keeps constant at a certain contraction instant and represents the volumetric 

change at an arbitrary radius. To describe the stress-strain relationship in elastic region, 

the elastic strain rates are given as follows: ߜ௘ሶ ൌ ଵ௄ ᇱሶ݌     Ǣ ௘ሶߛ    ൌ ଵଶ ீ ሶݍ         (10) 

where ܭ is the elastic bulk modulus, which equals to 
ఔ ௣ᇲ఑  ,is the elastic shear modulus ܩ ;

which is determined by 
ሺଵା௠ሻ ሺଵିଶ ఓሻ ఔ ௣ᇲଶ ሾଵାሺ௠ିଵሻ ఓሿ ఑ , and ߤ denotes Poisson’s ratio. In elastic region, 

elastic volumetric strain rate equals total volumetric strain rate (ߜሶ ൌ ௘ሶߜ ൌ Ͳ); thus the 

mean stress rate is zero based on Eq. (10), i.e. ݌ᇱ ൌ ଴ᇱ݌ . When the radial and tangential 

stresses are written as: ߪ௥ᇱ ൌ ଴ᇱ݌ ൅ ௥ᇱߪ߂ ఏᇱߪ ; ൌ ଴ᇱ݌ ൅ ȟߪఏᇱ , the cumulative changes of 

effective stresses have the following relationship: ߪ߂௥ᇱ ൌ െ݉ ߪ߂ఏᇱ . Thus ߪ߂ఏᇱ  can then 

be derived as a function of radius ߪ߂ :ݎఏᇱ ൌ ఏߝ ଴ܩ ʹ ൌ ଴ܩ ʹ  ݈݊ ቀ௥బ௥ ቁ ൌ ଶ ீబ௠ାଵ  ݈݊ ቀ௥೘శభା்௥೘శభ ቁ ൌ  ሻ   (11)ݎሺܣ

where ܩ଴  represents the constant shear modulus in elastic region. With the aid of 

equilibrium Eq. (1), the incremental form of radial total stress can be obtained as: 

௥ߪ ߲ ൌ ௠ ሺ௠ାଵሻ௥ ݎ ߲ ሻݎሺܣ  ൌ ଴ ݉ ௟௡൬ೝ೘శభశ೅ೝ೘శభܩ ʹ ൰௥  (12)    ݎ ߲ 
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The integration of Eq. (12) from ݎ to ݎ ൌ λ leads to: 

௥ߪ െ ଴݌ ൌ ׬ ݉ ଴ܩ ʹ ௟௡൬ೝ೘శభశ೅ೝ೘శభ ൰௥  (13)      ݎ ߲ 

and the integration can be written as a series function: 

׬ ௟௡൬ೝ೘శభశ೅ೝ೘శభ ൰௥ ݎ ߲  ൌ ଵ௠ାଵ  σ ൫ି்Ȁ௥೘శభ൯ೖ௞మஶ௞ୀଵ ൌ  ሻ    (14)ݎሺܤ

Therefore, the distributions of stresses and strains in elastic zone are formulated as 

follows: ߪ௥ᇱ ൌ ଴ᇱ݌ െ ሻ   Ǣݎሺܣ ݉ ఏᇱߪ    ൌ ଴ᇱ݌ ൅ ௥ߝሻ   Ǣݎሺܣ  ൌ െ ௠ଶ ீబ ൈ ሻ  Ǣݎሺܣ  ఏߝ    ൌ ଵଶ ீబ ൈ ݑ߂ሻ  Ǣݎሺܣ  ൌ ሻݎሺܤ ݉ ଴ܩ ʹ ൅  ሻ                            (15)ݎሺܣ ݉

where ܣሺݎሻ and ܤሺݎሻ can be determined by Equations (11) and (14). 

For soil at elastic-plastic boundary (ݎ ൌ ܿ), the stress state is on the initial yield 

surface (i.e. ݌ᇱ ൌ ଴ᇱ݌ ݍ ; ൌ ௬ᇱ݌ ;ȁ௥ୀ௖ݍ ൌ ௬଴ᇱ݌ ). From the yield surface function (Eq. 6) for 

initial yielding, the deviatoric stress (ݍȁ௥ୀ௖) is derived as: 

ȁ௥ୀ௖ݍ  ൌ െ ቀ௟௡ ோబ௟௡ ௥כቁభ೙ ଴ᇱ݌ ܯ        (16) 

On the other hand, the deviatoric stress can also be obtained from the distributions 

in elastic region (Eq. 15): ݍȁ௥ୀ௖ ൌ െሺ݉ ൅ ͳሻ ܣሺܿሻ ൌ െʹ ܩ଴  ݈݊ ቀ௖೘శభା்௖೘శభ ቁ    (17) 

Combining Equations (16) and (17) leads to the expressions of the elastic-plastic 

boundary radius and its original position before contraction: 

ܿ ൌ ൞ ି்ଵି௘௫௣൥ቀౢ౤ ೃబౢ౤ ೝכ ቁభ೙ ಾ ೛బᇲమ ಸబ ൩ൢ
భ೘శభ    Ǣ    ܿ଴ ൌ ሺܿ௠ାଵ െ ܶሻ భ೘శభ   (18) 

Cavity contraction starts with elastic responses, and further contraction may lead to 

yielding of soil around cavity. ܶ௬௜௘௟ௗ can be obtained from Eq. (18) for ܿ ൌ ܽ, which is 

used to indicate the plastic stage when ܶ ൐ ௬ܶ௜௘௟ௗ. 

 

Solution in Plastic Region 



 Page 7                               

When soil is in plastic region (ܿ௖௦ ൏ ݎ ൏ ܿ), the elastic moduli (ܭ  and ܩ ) are not 

constant but functions of mean effective stress ݌ᇱ; and the undrained condition gives: ߜ௣ ൌ െߜ௘ . Following the integrations from ݎ ൌ ܿ  to ݎ , the elastic and plastic 

volumetric strains (Eq. 19) are derived with the aid of the elastic modulus (Eq. 10) and 

the hardening relation (Eq. 8), respectively: ߜ௘ ൌ ׬ ௘ߜ ݀ ൌ ׬ ఑ఔ  ଵ௣ᇲ ᇱ௣ᇲ ௣బᇲ݌ ݀  ൌ ఑ఔ  ln ቀ௣ᇲ௣బᇲ ቁ              ߜ௣ ൌ ׬ ௣ߜ ݀ ൌ ׬ ఒି఑ఔ  ଵ௣೤ᇲ ௬ᇱ௣೤ᇲ ௣೤బᇲ݌ ݀  ൌ ఒି఑ఔ  ln ൬ ௣೤ᇲ௣೤బᇲ ൰    (19) 

Substitute into Eq. (6) leads to: ቀ ఎெቁ௡ ൌ ଵܣ ൅ ଶܣ  ൈ  ݈݊  ᇱ       (20)݌

where 

ଵܣ  ൌ ௟௡ ோబାஃషభ  ୪୬ ௣బᇲ୪୬ ௥כ    Ǣ ଶܣ    ൌ െ ஃషభ୪୬ ௥כ    Ǣ    Ȧ ൌ ఒି఑ఒ     (21) 

Additionally, the differential forms of ݍ and ln ௬ᇱ݌  are expressed as follows: ݀ ݍ ൌ െܯ ൈ  ቄሾܣଵ ൅ ଶܣ  ൈ  ݈݊ ᇱሿభ೙݌ ൅ ஺మ௡  ሾܣଵ ൅ ଶܣ  ൈ  ݈݊ ᇱሿభ೙ିଵቅ݌ ᇱ݀ ln݌ ݀  ௬ᇱ݌ ൌ ఑఑ିఒ  ݀ ln ௬ᇱ݌ ൌ ఑఑ିఒ  ௡஺మ ெ೙  (22)                                               ߟ ݀ ௡ିଵߟ 

Together with the boundary condition: ߛ௘ȁ௥ୀ௖ ൌ ିሺ௠ାଵሻଶ ீబ  ሺܿሻ based on Eq. (15), theܣ 

elastic deviatoric strain (ߛ௘) in plastic region is obtained through the integration: ׬ ௘ߛ ݀ ൌ ௘ߛ െ ௘ȁ௥ୀ௖ߛ ൌ ሾଵାሺ௠ିଵሻ ఓሿ ఑ሺଵା௠ሻ ሺଵିଶ ఓሻ ఔ  ׬ ଵ௣ᇲ௤௤ȁೝస೎ ൌ                                                     ݍ ݀  െ ሾଵାሺ௠ିଵሻ ఓሿ ఑ ெሺଵା௠ሻ ሺଵିଶ ఓሻ ఔ  ቄ ௡ሺଵା௡ሻ஺మ ሾܣଵ ൅ ଶܣ  ൈ  ݈݊ ᇱሿభ೙ାଵ݌ ൅ ሾܣଵ ൅ ଶܣ  ൈ  ݈݊ ᇱሿభ೙                                          െ݌ ௡ሺଵା௡ሻ஺మ ሾܣଵ ൅ ଶܣ  ൈ  ݈݊ ଴ᇱ݌ ሿభ೙ାଵ െ ሾܣଵ ൅ ଶܣ  ൈ  ݈݊ ଴ᇱ݌ ሿభ೙ቅ   

           (23) 

Accordingly, the integration of plastic deviatoric strain (ߛ௣) is derived based on the 

stress-dilatancy relation (Eq. 7): ߛ௣ ൌ  െ ׬ ሺଽାଷ ெିଶ ெ ఎሻ ሺఒି఑ሻ ሺ௠ାଵሻଽ ఔ ሺெିఎሻ ௠௟௡ ௣೤ᇲ௟௡ ௣೤బᇲ  ݀ ݈݊ ௬ᇱ݌                                                 ൌ ఑ ௡ ሺ௠ାଵሻଽ ఔ ஺మ ெ೙ ௠  ቄଶ ெ௡ ሾߟ௡ െ ௖௡ሿߟ ൅ ሺͻ ൅ ܯ ͵ െ ׬ ଶሻܯ ʹ ఎ೙షభெିఎ ఎఎ೎ߟ ݀  ቅ   (24) 

where ߟ௖ ൌ െݍȁ௥ୀ௖Ȁ݌଴ᇱ , and the integration form can also be written as series functions: 



 Page 8                               

׬ ఎ೙షభெିఎ ߟ ݀  ൌ ۔ۖەۖ
௖ߟͲ                                           ሺۓ ൌ ሻఎ೙ெܯ  σ ൤ ଵ௡ା௞  ൈ  ቀ ఎெቁ௞൨ஶ௞ୀ଴   ሺߟ௖ ൏ ሻσܯ ቂെܯ௞ ఎ೙షభషೖ௡ିଵି௞ቃஶ௞ୀ଴          ሺߟ௖ ൐  ሻ    (25)ܯ

For associated flow rule of standard Cam-clay model, the stress-dilatancy relation 

can be rewritten as: ߜ௣ሶ Ȁߛ௣ሶ ൌ ሺܯ െ ሻߟ  ൈ  ௠௠ାଵ, hence the plastic deviatoric strain in Eq. 

(24) needs to be replaced by: ߛ௣ ൌ  ఑ ௡ ሺ௠ାଵሻఔ ஺మ ெ೙ ௠ ׬  ఎ೙షభெିఎ ఎఎ೎ߟ ݀         (26) 

Combining Equations (3), (19), (23), and (24) leads to the distribution of radial and 

tangential strains. However, to obtain the total stresses and the excess pore water 

pressure, a numerical integration is required based on the equilibrium Eq. (1): ׬ ௥ߪ߲ ൌ െ݉ ׬ ௤௥  (27)        ݎ ݀ 

 

Solution for soil in critical-state region 

When the cavity is contracted further after plastic stage, critical-state region commences 

from the cavity wall. The boundary of the critical state soil is referred as to ܿ௖௦, and the 

critical-state region is for soil where ܽ ൏ ݎ ൏ ܿ௖௦. In critical-state region, the deviatoric 

and mean effective stresses remain constants, and expressions can be given as: ݌௖௦ᇱ ൌ ቀோబ௥כቁஃ ଴ᇱ݌ ൌ ݌ݔ݁ ቂ୻ିఔఒ ቃ      ݍ௖௦ ൌ െ݌௖௦ᇱ  ൈ ௬ǡ௖௦ᇱ݌                          ܯ ൌ ௖௦ᇱ݌  ൈ כݎ  ൌ ቀோబ௥כቁஃ ଴ᇱ݌ כݎ
      (28) 

 

RESULTS AND DISCUSSION 
Comparisons with Results of Solutions by Yu & Rowe (1999) 

In this section, the results of soil behaviour around deep tunnels are presented by using 

the provided plasticity solutions of cavity contraction in undrained condition, as also 

shown in Mo & Yu (2016b). As the yield criterion of the original Cam-clay model can 

be recovered from CASM by selecting the material constants: ݊ ൌ ͳǤͲ and כݎ ൌ ʹǤ͹ͳͺ͵, 

the validation of the solutions is carried out by comparing the results of original Cam-

clay model with the results of solutions by Yu & Rowe (1999). The values of the critical 
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state parameters, chosen to be relevant for London clay, are identical to Yu & Rowe 

(1999). It needs to be noted that the ambient pore pressure is not included in the results 

of total stresses (i.e. ߪ ൌ ᇱߪ ൅ οݑ). 

Figures 4 and 5 present the results of soil behaviour around tunnels using cylindrical 

and spherical scenarios, with the overconsolidation ratio of ܴ଴ ൌ ͳǤͲͲͳ . The final 

contraction for both cylindrical and spherical tests is ܽ଴Ȁܽ ൌ ͳǤͻͷ  and ͳǤͳʹ , 

respectively. Subplots (a) show the cavity pressure and the excess pore pressure at the 

cavity wall during unloading. The obtained ground reaction curves caused by the 

tunneling are usually referred to as the convergence-confinement graphs (Panet & 

Guenot, 1982). The decreasing relationship between the support pressure and tunnel 

deformation is provided by the curve of ߪ௥. Negative excess pore pressure is predicted 

after an increasing stage at the initial contraction. Subplots (b) show the distributions of 

soil displacement (ܷ), which is normalized by the cavity radius (ܽ). The results are 

found to be comparable with data from Yu & Rowe (1999) when using non-associated 

flow rule, while identical results are shown for tests using associated flow rule.  

 

Parametric study of cavity contraction 

After validation of the proposed plasticity solutions by original Cam-clay model, 

parametric study is carried out in this section to investigate the variation of stress and 

deformation distributions with overconsolidation ratio (ܴ଴) and soil parameters. The 

reference soil parameters are selected to simulate London clay ( ߁ ൌ ʹǤ͹ͷͻ, ߣ ൌ ͲǤͳ͸ͳ, ߢ ൌ ͲǤͲ͸ʹ, ߤ ൌ ͲǤ͵, ݊ ൌ ʹǤͲ, כݎ ൌ ͵ǤͲ, ߶௧௫ ൌ ʹʹǤ͹ͷι), as suggested by Yu (1998). 

The friction constant ܯ is determined by: ܯ ൌ ଶሺ௠ାଵሻ ୱ୧୬ థ೎ೞሺ௠ାଵሻିሺ௠ିଵሻ ୱ୧୬ థ೎ೞ, where the critical 

state friction angle ߶௖௦ can be assumed based on the triaxial critical state friction: ߶௖௦ ൌ߶௧௫ for spherical scenario and ߶௖௦ ൌ ͳǤͳʹͷ ߶௧௫ for cylindrical scenario.  

Fig. 6 presents the strain distributions around both spherical and cylindrical 

contracted cavities for ܽ଴Ȁܽ ൌ ʹ. It can be seen that contraction results in negative 

radial strain and positive tangential strain; spherical scenario has larger radial strain and 

smaller tangential strain when comparing with cylindrical scenario. Radial deformation 

for both spherical and cylindrical contraction is shown in Fig. 7. In addition, the 
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variation of strain distributions or radial deformation with soil parameters and 

overconsolidation ratio is not obvious due to the kinematics of undrained cavity 

contraction.  

Fig. 8 shows the stress paths in normalised ݌ᇱ െ space for ܽ଴Ȁܽ ݍ ൌ ͳ to ʹ . Two 

spherical tests are for overconsolidation ratio ܴ଴ ൌ ͳǤͲͲͳ  and ͳͲ , with the initial 

specific volume ߥ଴ as 2.0. After initial yielding, plastic region is generated around the 

cavity, and the stress path is gradually approaching the critical state line. The undrained 

plasticity solutions provide the exact stress paths after yielding. Both ultimate 

normalized mean and deviatoric effective stresses decrease with overconsolidation ratio. 

It should be noted that the stress paths for spherical scenario (Fig. 9) overlaps with 

cylindrical scenario in normalised ݌ᇱ െ  .space ݍ

The distributions of effective stresses (ߪᇱ௥, ߪᇱఏ) and excess pore pressure (ȟݑ) are 

presented in Fig. 10(a, b, c) respectively for both spherical and cylindrical scenarios. 

Stresses are normalised by undrained shear strength (ݏ௨, defined as ͲǤͷ ݌ݔ݁ ܯሾሺȞ െ ߭ሻȀߣሿ, based on the Mohr circle of effective stresses at failure), and the radial coordinate is 

normalised by cavity radius ܽ. Critical state regions can be found in Fig. 9(a, b), where 

effective stresses keep constant. Blue circular symbols represent the elastic-plastic 

boundary (ܿ) for tests with ܴ ଴ ൌ ͳͲ,  while ܿ Ȁܽ is larger than ͳͷ for tests with ܴ ଴ ൌ ͳ. 

At critical state, normalized effective stresses are independent of overconsolidation ratio. 

The elastic-plastic boundary is shown to decrease with overconsolidation ratio, and 

cylindrical cavity contraction has larger size of plastic region compared with spherical 

scenario. Negative excess pore pressure is generated during undrained cavity 

contraction, as shown in Fig. 9(c). ȟݑ  increases with overconsolidation ratio, and 

spherical scenario has larger value of negative excess pore pressure compared with 

cylindrical scenario. Fig. 9(d) shows the cavity contraction-pressure curves with 

different scenarios and overconsolidation ratio. Cavity pressure decreases with 

contraction, and negative cavity pressure might occur caused by the excess pore 

pressure.  

Parametric study was also carried out to investigate the effects of two additional soil 

parameters of CASM (݊ and כݎ), as presented in Figures 10 ~ 13. The stress-state 

coefficient ݊ , varying from ͳǤͲ  to ʹǤͷ , has small influence on the distributions of 
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normalized radial effective stress, for both spherical and cylindrical scenarios (see Fig. 

10a and Fig. 11a). Constant value was also found at ݎȀܽ ൌ ͷǤͷ for spherical contraction 

and ݎȀܽ ൌ ͻǤͷ  for cylindrical contraction. However, both normalized tangential 

effective stress and negative excess pore pressure increase with the stress-state 

coefficient. In addition, positive excess pore pressure appears in plastic region for soil 

with small value of stress-state coefficient. Compared with cylindrical scenario, higher 

negative excess pore pressure was found for spherical contraction. 

The effects of spacing ratio כݎ, varying from ʹ ǤͲ to ͷǤͲ, have been shown in Fig. 12 

for spherical scenario and Fig. 13 for cylindrical scenario. The increases of normalized 

effective stress with spacing ratio are obvious, relative to the effects of stress-state 

coefficient (see Fig. 12a,b and Fig. 13a,b). Conversely, negative excess pore pressure 

decreases with the spacing ratio, and positive excess pore pressure appears for soil with 

large value of spacing ratio. Due to the constant normalised effective stresses at critical 

state region, cavity contraction-pressure curves increase with spacing ratio, resulting 

from the effects on excess pore pressure. 

 

Comparisons with Results of Centrifuge Tests by Mair (1979) 

The proposed analytical solutions are related to soil behaviour around tunnels, with 

comparisons to centrifuge results by Mair (1979). Fig. 14(a) presents the prediction of 

tunnel crown displacement for the selected centrifuge test 2DP with cover to diameter 

ratio: ܪȀܦ ൌ ͳǤ͸͹. The tunnel test in clay can be assumed to be undrained condition. 

According to Mair (1979) and Yu & Rowe (1999), soil properties are chosen as: ߁ ൌ͵Ǥͻʹ, ߣ ൌ ͲǤ͵, ߢ ൌ ͲǤͲͷ, ܯ ൌ ͲǤͺ, ߤ ൌ ͲǤ͵, ݏ௨ ൌ ʹ͸݇ܲܽ. The ground reaction curve 

indicates the crown displacement with reducing the tunnel support pressure. The crown 

displacement shows comparable results with the previous analytical results (Yu & Rowe, 

1999) and the centrifuge data (Mair, 1979).  

Fig. 14(b) shows the prediction of the distribution of excess pore pressure around a 

tunnel in soft clay. According to Mair & Taylor (1993), the equivalent stability ratio is 

defined as: ܰ ൌ ሺ݌଴ െ  .௟௜ represents the support pressure on the liningߪ  ௨, whereݏ௟௜ሻȀߪ

Comparing with the centrifuge data for three different unloading stages of the tunnel 

test (ܰ ൌ ʹǤͶǡ ͵Ǥ͵ǡ ͶǤʹ), the excess pore pressure is generally well predicted in the plastic 
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region. Additionally, the proposed analytical solution provides the variation of the 

excess pore pressure and the plastic region with the soil properties and 

overconsolidation ratio, as well as the equivalent stability ratio, which was the only 

influence factor reported by Mair & Taylor (1993).   

As noted by Yu & Rowe (1999), the cavity solutions tend to underpredict the 

observed mid-surface settlement, probably owing to the shallow tunnel test with the 

effect of free ground surface. As the tunneling induced deformation is a combination of 

three components: uniform convergence, ovalisation, and vertical translation (e.g. 

Verruijt & Booker, 1996; Gonzalez & Sagaseta, 2001; Pinto & Whittle, 2006), the present 

solution provides an approach to improve the prediction of the uniform convergence 

under the assumption of axisymmetry. Further study is therefore required to incorporate 

the effects of ovalisation and vertical translation for the prediction of soil deformation 

around a tunnel. 

 

CONCLUSIONS 
By modelling cavity unloading process, analytical solutions of undrained cavity 

contraction in a unified state parameter model for clay and sand (CASM) were proposed 

in this paper to predict the soil behaviour around tunnels, including stress fields and 

crown/ground settlements. Taking the advantages of CASM with the ability of capturing 

overall behaviour of clay and sand, large-strain and effective stress analyses of cavity 

contraction provided the distributions of stress/strain within elastic and plastic regions 

around tunnels. The results of soil behaviour around tunnels using cylindrical and 

spherical scenarios showed identical results with previous analytical solutions using 

original Cam-clay model. The parametric study was carried out to investigate the 

variation of stress and deformation distributions with overconsolidation ratio ܴ଴ and 

soil parameters (i.e. stress-state coefficient ݊ and spacing ratio כݎ).  
Although the variation of strain distributions or radial deformation with soil 

parameters and overconsolidation ratio is not obvious, both ultimate normalized mean 

and deviatoric effective stresses decrease with overconsolidation ratio, as well as the 

elastic-plastic boundary. The negative excess pore pressure, generated during undrained 

cavity contraction, increases with the overconsolidation ratio. The stress-state 
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coefficient has small influence on the distributions of normalized radial effective stress, 

whereas both normalized tangential effective stress and negative excess pore pressure 

increase with the stress-state coefficient. Conversely, the increases of normalized 

effective stress with spacing ratio are relatively obvious; negative excess pore pressure 

decreases with the spacing ratio; and positive excess pore pressure appears for soil with 

large value of spacing ratio. Good agreement with the centrifuge data of the ground 

reaction curve and the excess pore pressure indicates the ability for prediction of soil 

behaviour around tunnels and the potential implication of cavity contraction solution to 

tunnel modelling.  
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NOTATION 

The following symbols are used in this paper: ܽ = radius of cavity; ܿ = radius of the elastic/plastic boundary; ܿ௖௦ = radius of the critical-state region boundary; ݃ = undrained gap parameter; ݉ = parameter to combine cylindrical and spherical scenarios; ݊ = stress-state coefficient for CASM; ݌Ԣ = mean effective stress; ݌௬଴ᇱ  = preconsolidation pressure; ݍ = deviatoric effective stress; ݎ = radial position of soil element around the cavity; כݎ = spacing ratio for the concept of state parameter; ݏ௨ = undrained shear strength for soil; 
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ǡܩ ௬଴ᇱ݌ elastic bulk modulus; ܰ = equivalent stability ratio; ܴ଴ = isotropic overconsolidation ratio, defined as = ܭ ;cover of tunnel (from tunnel crown to surface) = ܪ ;଴ = elastic shear modulus and small-strain shear modulus of soilܩ Ȁ݌଴ᇱ ; ܶ = parameter for volumetric change of cavity, defined as ܽ଴௠ାଵ െ ܽ௠ାଵ; 

U = radial displacement after cavity contraction; οݑ = excess pore pressure; ߜǡ ௥ߝ ;volumetric and shear strain = ߛ ǡ ௥ᇱǡߪ ;specific volume; ߶௖௦ = critical state friction angle = ߥ ;ᇱ݌Ȁݍ stress ratio, defined as = ߟ ;ఏ = radial and tangential strainsߝ ఏᇱߪ ;௥ = effective and total radial stressesߪ ǡ ǡܯ ;ோ = reference state parameterߦ ;state parameter = ߦ ;ఏ = effective and total tangential stressesߪ ǡߢ ǡߣ Ȟǡ Ȧ = critical state soil parameters. 
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