
This is a repository copy of Simulating crowd evacuation with socio-cultural, cognitive, and
emotional elements.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/122415/

Version: Accepted Version

Book Section:

Van der Wal, CN, Formolo, D, Robinson, MA orcid.org/0000-0001-5535-8737 et al. (2 
more authors) (2017) Simulating crowd evacuation with socio-cultural, cognitive, and 
emotional elements. In: Nguyen, NT, Kowalczyk, R and Mercik, J, (eds.) Transactions on 
Computational Collective Intelligence XXVII. Lecture Notes in Computer Science, 10480 . 
Springer , Cham, Switzerland , pp. 139-177. ISBN 978-3-319-70646-7 

https://doi.org/10.1007/978-3-319-70647-4_11

© Springer International Publishing AG 2017. This is an author produced version of a 
paper published in Transactions on Computational Collective Intelligence XXVII. The final 
publication is available at Springer via https://doi.org/10.1007/978-3-319-70647-4_11. 
Uploaded in accordance with the publisher's self-archiving policy. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


FINAL VERSION SUBMITTED MANUSCRIPT – ACCEPTED FOR PUBLICATION 

Simulating Crowd Evacuation with Socio-Cultural, 

Cognitive, and Emotional Elements 
C. Natalie van der Wal

1
, Daniel Formolo 

1
, Mark A. Robinson

2
,                               

Michael Minkov
3
, Tibor Bosse

1 

1
Vrije Universiteit Amsterdam, Department of Computer Science, Netherlands 

2
Socio-Technical Centre, Leeds University Business School, United Kingdom 

3
Varna University of Management, Sofia, Bulgaria 

{c.n.vander.wal,d.formolo}@vu.nl 

Abstract. In this research, the effects of culture, cognitions, and emotions on 

crisis management and prevention are analysed. An agent-based crowd evacua-

tion simulation model was created, named IMPACT, to study the evacuation 

process from a transport hub. To extend previous research, various socio-

cultural, cognitive, and emotional factors were modelled, including: language, 

gender, familiarity with the environment, emotional contagion, prosocial behav-

iour, falls, group decision making, and compliance. The IMPACT model was 

validated against data from an evacuation drill using the existing EXODUS 

evacuation model. Results show that on all measures, the IMPACT model is 

within or close to the prescribed boundaries, thereby establishing its validity. 

Structured simulations with the validated model revealed important findings, 

including: the effect of doors as bottlenecks, social contagion speeding up 

evacuation time, falling behaviour not affecting evacuation time significantly, 

and travelling in groups being more beneficial for evacuation time than travel-

ling alone. This research has important practical applications for crowd man-

agement professionals, including transport hub operators, first responders, and 

risk assessors.  

Keywords. crowd behaviour, crowd management, crowd simulation, evacua-

tion, emotional contagion, social dynamics, culture, cognition, group-decision 

making. 

1! Introduction 

Crisis management and prevention involves preparing for many different emer-

gency situations. This research focuses on studying the socio-cultural, cognitive, and 

emotional factors influencing an evacuation from a building, such as a transport hub. 

This is important, because few crisis managers and risk assessment professionals 

currently deal with these factors and their resulting behaviours. Accordingly, this 

research developed and validated a crowd evacuation simulation model that includes 

socio-cultural, cognitive, and emotional factors in order to simulate what-if scenarios. 

Consequently, it will help transport hub operators, crisis managers, risk assessment 

professionals, and policy makers understand human behaviour, deal with socio-

cultural crowd diversity, and ultimately save lives.  



Faster evacuation from public buildings during emergencies saves more lives. Ob-

servations of actual emergencies show that people tend to be slow to respond to evac-

uation alarms (taking up to 10 minutes) and take the familiar route out instead of the 

nearest exit [4, 7, 14, 21, 23, 30]. These risky behaviours stem from being unfamiliar 

with the environment, not seeing immediate signs of danger, and following others’ 

(unsafe) behaviour, leading to preventable deaths in many disasters. For instance, in 

the Station Nightclub fire, in Rhode Island in 2003, the majority of people tried to 

escape back through the familiar main entrance, leading to falls, crushing, and 100 

deaths. Many of the 56 deaths in the Bradford City Stadium fire in 1985 could have 

been prevented if response time to the fire had been faster [3], and similarly slow 

responses were found among occupants of the World Trade Center towers during the 

9/11 terror attacks in New York City [23]. In recent emergencies, some people have 

even remained in dangerous areas to film events with their smartphones instead of 

escaping (Nice Boulevard, 14/07/2016; Westgate Shopping Centre, Nairobi, 

21/9/2013).  

Current crowd evacuation models simulate how crowds move through built envi-

ronments [9], enabling ethical tests of how to improve crowd movements in emergen-

cy evacuations. In addition to informing how to build safer buildings, computer mod-

els can identify safer behaviours in existing buildings. For example, it is well-

documented that not running leads to faster evacuations due to fewer falls and less 

congestion at the exit [17, 36]. However, traditional computer models of evacuations 

have been criticized for being unrealistic, because they treat people as ‘moving parti-

cles’ with identical characteristics [9, 36]. Such models wrongly assume that all peo-

ple will respond to alarms without delay, know their way, and take the nearest exit. 

As noted above, however, each of these assumptions has been proven wrong [4, 7, 14, 

21, 23, 30]. 

The aim of this research, therefore, is to develop and validate an evacuation simu-

lation model that includes socio-cultural, cognitive, and emotional factors, to address 

the need for crowd models to incorporate more realistic human behaviours. To do so, 

the model developed here draws on insights from social and cross-cultural psycholo-

gy, interviews with crisis management experts, and is based on scientific findings and 

literature. Furthermore, the model is validated against data from an evacuation drill 

related to the existing EXODUS evacuation model [13, 26]. It is intended that this 

model will help transport hub operators, crisis managers, risk assessment profession-

als, and policy makers understand human behaviour, deal with socio-cultural crowd 

diversity, and ultimately save lives.  

The paper is organised as follows. First, the background literature on crowd evac-

uation models is reviewed and the current approach is introduced in Section 1.1. In 

Section 2, the formal model is presented, followed by the validation and simulation 

results in Section 3. The work is then summarised and discussed in Section 4.  

1.1! Background Evacuation Models 

There are many different approaches for crowd evacuation simulations, of which 

Zheng et al. [48] describe seven: (1) cellular automata, (2) lattice gas, (3) social force, 

(4) fluid dynamics, (5) agent-based, (6) game theory, and (7) animal experiments. In 

microscopic models (e.g. cellular automata, lattice gas, social force, agent-based 



models), the pedestrian is modelled as a particle. However, in macroscopic models 

(e.g. fluid dynamic models), a crowd of pedestrians is modelled as a fluid. In conclu-

sion, Zheng et al. [48] concluded that in further research, evacuation models should: 

(1) combine different approaches, and (2) incorporate psychological and physiologi-

cal elements. Our IMPACT model addresses both of these recommendations.   

Moreover, Templeton et al. [39] conclude that current crowd simulations do not 

include psychological factors and therefore cannot accurately simulate the collective 

behaviour that has been found in extensive empirical research on crowd events. Spe-

cifically, they argue that crowd members should be able to identify with other people 

in crowd simulations to form psychological sub-groups known as in-groups. This is 

critical for evacuation models, as research indicates that people are more likely to 

help fellow in-group members during emergencies [8]. Accordingly, our IMPACT 

model also incorporates social identity.  

Most of the evacuation models that Santos and Aguirre [36] reviewed do not mod-

el social dimensions, such as group decision making, but focus more on physical con-

straints and factors such as walking speed, walkways, and stairways, to find the opti-

mal crowd flow for the evacuation process. Agents are rational in these simulations: 

they can find the optimal escape route, avoid physical obstructions and, in some mod-

els, even overtake another person obstructing them. However, even though these 

models do include parameters like gender, age, individual walking speeds, and differ-

ent body dimensions, they still lack socially interactive characteristics such as the 

monitoring of others. Again, to address this, our IMPACT model incorporates such 

social processes. 

Santos and Aguirre [36] also reviewed the incorporation of social and psychologi-

cal factors into evacuation simulation models, noting their inclusion in three models: 

(1) FIRESCAP, (2) EXODUS, and (3) Multi-Agent Simulation for Crisis Manage-

ment (MASCM). EXODUS includes 22 social psychological attributes and character-

istics for each agent, including age, sex, running speed, dead/alive, and familiarity 

with the building. Agents can also perform tasks before evacuating the building, such 

as picking up a purse or searching for a lost child. Still, the agents in EXODUS can-

not have micro-level social interactions that would create a collective understanding 

of the situation for the group. However, MASCM does include social interaction with 

so-called ‘evacuation leaders’ who can communicate (‘please follow me’) and start to 

walk along the evacuation route, or find an evacuee, or wait for an evacuee to ap-

proach them. Finally, FIRESCAP implements the social theory of ‘collective flight 

from a perceived threat’. The egress is a result of a socially-structured decision mak-

ing process guided by norms, roles, and role relations.  

From this literature review, it can be concluded that the ideal simulation approach 

for realistic crowd evacuation models should seek to develop sub-models that include 

an active, ‘investigative’, socially-embedded agent that assesses the state of other 

people and defines the situation collaboratively. Essentially, then, group dynamics 

must be considered, and our IMPACT model aims to address this. 

1.2! Current Approach 

Based on the lack of psychological and socio-cultural factors in existing evacua-

tion models, we created our IMPACT evacuation model based on an earlier model 



called ASCRIBE [2]. This allows for the social contagion of emotional and mental 

states, and enables group decision making and other social dynamics [1,2]. The 

ASCRIBE model has outperformed other models in reproducing real crowd panic 

scenes and was extended here with many psychological and socio-cultural factors – 

such as familiarity, falls, and prosocial behaviour – and applied to a specific evacua-

tion scenario [41]. The evacuation dynamics were modelled using agent-based belief-

desire-intention (BDI) and network-oriented modelling approaches [32, 40]. A first 

version of the IMPACT model was introduced in [43] and the further-developed and 

validated model was introduced in [12]. The final version of the IMPACT model 

presented here has now been fully refined and certain characteristics have been updat-

ed. We introduce it here with its most important findings. The updates concern speed, 

falls, compliance levels, egress flowrate, observation distance, helping behaviour, and 

cultural divisions, and these are based on psychological and socio-cultural research as 

described below. 

1.3! Background Psychological and Socio-Cultural Factors in the IMPACT 

Model 

Overview. Although the computer simulation of crowd behaviour has been ongo-

ing for several decades, most existing models are still founded on erroneous assump-

tions of human behaviour and movement as linear, logical, and driven primarily by 

the laws of physics [4]. A key reason for this has been the disciplinary division in 

crowd behaviour research. Modellers engaged in crowd simulation are typically 

drawn from technical fields, such as computer science and engineering, while psy-

chologists and other social scientists who study crowd behaviour do not generally use 

computer simulation methods [18]. Consequently, only truly interdisciplinary re-

search can effectively simulate crowd behaviour, particularly in emergencies, in com-

plex systems comprising both social and technical elements [5]. To address these 

issues in our IMPACT model, alongside the conventional features of traditional 

crowd simulation models we have included additional psychological and socio-

cultural elements. For instance, at an individual level, we have simulated the effect of 

people’s socio-cultural characteristics such as age, gender, and nationality on their 

behaviour (e.g. based on the national cultural clusters in [35]) in emergencies; while, 

at a group level, we have simulated social processes such as social identity [8] and 

emotional contagion [1,2]. 

Speed. The walking speeds varied for each demographic group (children, adult 

males, adult females, elderly males, elderly females) and were based on the observa-

tional work of Willis et al. [46], ranging from 1.12 m/s to 1.58 m/s. We calculated 

running speeds by multiplying the walking speed for each demographic group by 

three – to account for the luggage, belongings, and clothes that people wear while 

travelling – to yield speeds between 3.36 m/s and 4.75 m/s. Moreover, a crowd con-

gestion factor was added that reduces the speed according to the number of agents 

within the same square metre: ≤ 4 people (no speed reduction), 5 people (62.5% re-

duction), 6 people (75%), 7 people (82.5%), 8 people (95%). These speed adjustments 

were based on research by Still [38], where 8 is the maximum number of people per 

square metre and 4 the number of people at which speed reduces. 



Falls. The number of falls in the initial model seemed unrealistically high during 

structured simulations. So, we manually tuned the value to a more realistic level by 

visually inspecting the movement patterns during many different settings. This result-

ed in a new rule: if there are more than 4 people in the same square metre as the agent 

and if he is running faster than 3 m/s, then there is a 5% chance of a fall for each new 

movement. 

Compliance. In the current version, the probability of compliance is based on data 

from Reininger et al.’s [33] study of gender differences in hurricane evacuation, mod-

ified for different age groups using data from Soto et al.’s [37] personality study. The 

model has 6 compliance values according to the category of the agent: male or fe-

male, and child, adult, or elderly. The precise levels can be found in Section 2.  

Egress flowrate at each exit. The maximum flowrate is 6 people per exit per se-

cond (p/m/s), based on guidelines from Still [38] indicating an egress flowrate of 82 

people/metre/minute (p/m/m), equivalent to 1.37 p/m/s, then multiplied by 4 (as doors 

are 4 metres wide) to indicate 5.47 people per exit door per second.  

Observation distance. Public distance (space in which social interactions are still 

possible, extending the personal and formal social interaction space) is 12–25 feet 

(3.7 –7.6 metres), in relation to public speaking to large groups, while no social inter-

action is possible over 25 feet [15], though this might not take shouting into account. 

Considering the size of the environment that was implemented in the model (e.g. a 

square room of 20 × 20 metres), it was decided to keep the observation distance (i.e. 

the maximum distance at which staff instructions could be understood) at 5 metres 

rather than 10. Otherwise, at 10 metres, the passengers could observe everything in 

the building from the centre and the important effects of social contagion would be 

downplayed in the simulations.  

Helping. The probabilities of helping others during the emergency evacuation 

were modelled as a function of the characteristics of helpers and fallers. This was 

based on research indicating that, in emergencies: (a) men are most likely to help 

others, (b) women, children, and older adults are most likely to receive help [10], and 

(c) people are more likely to help members with a shared identity [8]. The precise 

probabilities can be found in Section 2.1. 

Culture. In the model, the passengers are divided into different clusters of cultur-

ally similar nationalities based on previous research [35]. Data concerning the per-

centage of English speakers for each country in each cluster were then obtained, 

where available, from multiple verified and official sources compiled by Wikipedia 

[45]. We then calculated a weighted average percentage of English speakers in each 

cluster – using the population sizes of each cluster’s constituent countries – and these 

were the values used in the simulation model to determine the percentage of passen-

gers from each cluster who could understand an English instruction by a staff member 

or public announcement. The precise probabilities can be found in Section 2.1.  

Group decision making. Like in previous work [1,2], group decision making is 

based on findings from social neuroscience to make a biologically plausible human-

like model. Decision making is modelled as both an individual process called somatic 

marking and a social group process based on mirroring of cognitive and emotional 

states. [6, 34]. Damasio’s somatic marking hypothesis is a theory of decision making 

which provides a central role to emotions felt. [6]. Each decision option induces a 

feeling to mark that option. In social neuroscience, neural mechanisms have been 



discovered that account for mutual mirroring effects between mental states of differ-

ent people. For example, when one expresses an emotion in a smile, another person 

can observe this smile which automatically triggers preparation neurons (called mirror 

neurons) for smiling within this other person and consequently generates the same 

emotion. Similarly, mirroring of intentions and beliefs can be considered. This is 

called emotional contagion (for emotions alone) or social contagion (for emotional 

and mental states) in this work.  

2! Model 

2.1! Formal Model 

Fig. 1. Agent Modules in the IMPACT Evacuation Model  gives an 

overview of the formal model, showing the four modules of each passenger and how 

they interact. The passenger has individual characteristics – such as age, gender, fa-

miliarity, and group membership – which influence their interactions. For example, 

familiarity influences the choice of exit (people-environment interaction), while age, 

gender, and group membership influence the pro-social behaviour (people-people 

interactions). The full details of these four modules, their constituent concepts, and 

their dynamic relationships are shown in Fig. 2, using the same coloured key as Fig-

ure 1 for the modules. 

 

 
Fig. 1. Agent Modules in the IMPACT Evacuation Model  



 
Fig. 2. Dynamic Relationships between Concepts in the IMPACT Evacuation Model 

Below, all the formal rules of the proposed model are presented in the form of 

mathematical formulas representing all dynamic relationships between all concepts 

from Fig. 2. Creating the formal model in this way, using mainly difference equa-

tions, is based on the network oriented modelling approach [40].  

Firstly, the following environmental states have the value 0 (‘off’) or 1 (‘on’). 

These are ‘inputs’ of the model and vary over time. For example, the fire_alarm is 

‘on’ after three minutes of the simulation and the public_announcement is ‘on’ one 

minute after the fire_alarm is ‘on’.  

	 crowd_congestion_location(t);	fire_location(t);	alarm(t);	staff_instructions(t);															

public_announcement(t)   (1)	

   The aggregated impacts of others on agent x, for the levels of the belief that the 

situation is dangerous and the levels of fear, are calculated as a weighted sum at every 

time step, based on previous work [1,2]: 

 others_belief_dangerous9(t) = 	����>(�≅Α9 ∙ ������_���������≅Α	, … , �Π9 ∙

������_���������Π	) 	= 	 ����>(�≅Α9 ∙ ������_���������≅Α +	…+	�Π9 ∙

������_���������Π	) 	= 	
ΡΣΤΥ⋅WΞΨΖΞ[_∴]⊥_ΞαβχΣΤ(δ)

ΣΤ

ε

ΡΣΤΥ
ΣΤ

ε

 .    (2) 

others_fear9(t) = 	 ����> �≅Α9 ∙ ����≅Α	, … , �Π9 ∙ ����Π	 = 	����> �≅Α9 ∙ ����≅Α +	…+

	�Π9 ∙ ����Π	 = 	
ΡΣΤΥ⋅[Ξ]ΣΤ(δ)

ΣΤ

ε

ΡΣΤΥ
ΣΤ

ε

 .  (3) 

whereby	� = �≅Α9
≅Α
Π 	



All observations of events or other passengers are calculated as stated below. The 

observation_fire becomes 1 if the passenger is within a distance of 5 metres, repre-

senting the observation distance which is adjustable by the modeller, based on [15], 

see Section 1.3. When the fire alarm sounds, then 50% of the time the passenger will 

observe this alarm and this, in turn, will change the passenger’s belief_dangerous to 1. 

This represents the risk-taking passengers have, as not all passengers react quickly to 

a fire alarm. [21, 23, 30]. Note that, for example, for observation_others_fear(t) = 

others_fear(t) a simplification of the real world has been made to model the values to 

match each other instantaneously instead of with a delay, as further detail was not 

necessary in the model. 

 

observation_fire(t) = 1 if ( (�Α − �ϕ)
ϕ +	(�Α − �ϕ)

ϕ ≤ 5) else 0; whereby agent_location(t) = 

(x1 y2) and fire_location(t) = (x2 y2) .                  (4) 

P(observation_alarm(t) = 1| alarm(t) = 1) = 0.5 . (5) 

observation_others_belief_dangerous (t) = others_belief_dangerous(t); observa-

tion_others_fear(t) = others_fear(t); observation_staff_instr (t) = staff_instructions(t); observa-

tion_pa(t) = public_announcement(t)  (6) 

If there is a fire at the same location as the passenger, then the passenger dies. 

Die(t) has a binary value of 0 (‘not dead’) or 1 (‘dead’). This strict rule was chosen as 

more detail was not necessary for the goal of this model. We chose not to model the 

effect of the fire and smoke, like the heat and toxicity in the room, so we could purely 

focus on the human behavioural effects in the simulations not combined with the ef-

fects of the fire. 

die(t)	=	1	(if	fire_location	==	agent_location)	else	0	. (7) 

 

Each passenger has an initial speed based on his/her age and gender, based on [38, 

46], see Section 1.3.  
At	t=0:	

•! If	age+gender	=	female	adult	then	basic	speed	=	0.9	+	rand	(0,	0.5)	.	

•! If	age+gender	=	male	adult	then	basic	speed	=	1	+	rand	(0,	0.5)	.	

•! If	age+gender	=	child	then	basic	speed	=	0.5	+	rand	(0,	0.5)	.	

•! If	age+gender	=	female	elderly	then	basic	speed	=	0.9	+	rand	(0,	0.5)	.	

•! If	age+gender	=	male	elderly	then	basic	speed	=	0.9	+	rand	(0,	0.5)	.	

•! If	group_membership	=	1,	then	speed	=	min(basic	speeds	of	other	mem-

bers)+0.4∙(max(basic	speeds	of	other	members)	–	min(basic	speeds	of	other	

members)	.	

•! If	group	membership	=	0,	then	speed	=	basic	speed	.	 	 	 							(8)	
Whereby:	rand	is	a	random	number,	min	=	minimum,	and	max	=	maximum. 
 



Each passenger has an initial compliance level based on his/her age and gender, 

based on [33, 37], see Section 1.3. 
At	t=0:		

•! If	age+gender	=	male	child	then	compliance	=	0.89	.	

•! If	age+gender	=	female	child	then	compliance	=	0.89	.	

•! If	age+gender	=	male	adult	then	compliance	=	0.89	.	

•! If	age+gender	=	female	adult	then	compliance	=	0.94	.	

•! If	age+gender	=	male	elderly	then	compliance	=	0.92	.	

•! If	age+gender	=	female	elderly	then	compliance	=	0.97	.	 	 							(9)	

 
Each passenger has a 5% chance (i.e., a 0.05 probability) of falling when there is 

crowd congestion at their location, as explained in Section 1.3. Fall(t) has a binary 

value of 0 (‘not fallen’) or 1 (‘fallen’). 

P(fall(t)	=	1|crowd_congestion_location	==	agent_location)	=	0.05	. (10) 

Each passenger has a belief about how dangerous the situation is. This belief has a 

value between 0 (‘minimum danger’) and 1 (‘maximum danger’). The belief will 

increase to 1 when a fire or alarm is sensed. The beliefs of other passengers can de-

crease or increase the passenger’s own belief, based on mirroring/contagion mecha-

nisms as described in Section 1.3, based on previous research [1,2]. The passenger’s 

fear level influences his belief (somatic marking): if the amount of fear is higher than 

the belief, it will increase the belief, and if the amount of fear is lower than the belief, 

it will decrease the belief. The belief is also based on the passenger’s belief from the 

previous time-step (persistence). The equations are presented in both difference and 

differential equation format to show how, hereafter, every difference equation can be 

translated into a differential equation.  

belief_dangerous(t + ∆t) 	= 	belief_dangerous t 	+ � ∙ (max	(�χΞ⊥χΖ⊥_ ∙ ���� � , 	�χΞ⊥χΖ⊥_ ∙

�����(�), 	��ΞχΖχδΖ⊥_ ∙ ������_��������� � , ���
Ρ����������������∙[Ξ] δ �	]__WΞΨΖΞ[χΥ(δ)

Ρ�����������������Α
) −

������_���������(�)) ∙ Δ� .  (11) 

∴WΞΨΖΞ[_���������

∴�
= 	� ∙ (max	(�χΞ⊥χΖ⊥_ ∙ ���� � , 	�χΞ⊥χΖ⊥_ ∙ �����(�), 	��ΞχΖχδΖ⊥_ ∙

������_��������� � , ���
Ρ����������������∙[Ξ] δ �]__WΞΨΖΞ[χΥ δ

Ρ�����������������Α
− ������_���������(�))  

.  (12) 

whereby, 	aggbeliefs9 t = 	����>(�≅Α9 ∙ ������_���������≅Α(�), … , �Π9 ∙

������_���������Π(�)	) = 	 ����>(�≅Α9 ∙ ������_���������≅Α(�) + 	…+	�Π9 ∙

������_���������Π(�)	) 	= 	
ΡΣΤΥ⋅WΞΨΖΞ[_∴]⊥_ΞαβχΣΤ(δ)

ΣΤ

ε

ΡΣΤΥ
ΣΤ

ε

		.	

� = 	 �≅Α9
≅Α
Π 		

	

The amount of fear a passenger feels is based on the fear level of the previous 

time-step (persistence), the levels of intentions to evacuate (amplifying fear) or walk 



randomly (decreasing fear), the other passengers’ levels of fear (emotional conta-

gion), and the staff instructions or public announcements they observe (decreasing 

fear). These processes are based on mirroring/contagion mechanisms as described in 

Section 1.3, based on previous research [1,2]. The fear value ranges from a minimum 

of 0 (‘no fear’) to a maximum of 1 (‘maximum fear’). 

 

fear t + ∆t = 	fear t + 	� ∙ max ��ΞχΖχδΖ⊥_ ∙

���� � , ��������� �������� � , �]��ΨΖ[≅Ζ⊥_[ΞΞΨΖ⊥_ ∙ ������Ξ�]�β]δΞ δ , �Ζ⊥�ΖWΖδΖ⊥_[ΞΞΨΖ⊥_ ∙

�������]ΨΠ]⊥∴ δ , �∴Ξ�Ξ]χΖ⊥_[Ξ] ∙ �����������χδ][����ϒ �
, �∴Ξ�Ξ]χΖ⊥_[Ξ] ∙

������������] δ − ���� � ∙ Δ�	.           

    (13) 
whereby,	aggfears(t)	is	calculated	similarly	as	aggbeliefsx(t)	(see	equation	12)	and	

���������′	≤ �Α, … , �Π = (
Α

Α�Ξ∞ƒ ♣Τ♦⋯♦♣ε∞♠
) − 	

Α

Α�Ξƒ♠
)(1 + �↔′≤)	.	

 
The desire to evacuate value ranges from 0 (‘minimal desire’) to 1 (‘maximal de-

sire’). It is amplified by the level of compliance, the passenger’s belief of how dan-

gerous the situation is (cognitive responding), the passenger’s level of fear (somatic 

marking), and staff instructions or public announcements to evacuate. The somatic 

marking and cognitive responding are processes based on mirroring/contagion mech-

anisms as described in Section 1.3, based on previous research [1,2]. 

desire_evacuate(t + ∆t) 	= 	desire_evacuate(t) 	+ 	� ∙ ���������� ∙

	 max �]��ΨΖ[≅Ζ⊥_Ξ�]�β]δΖα⊥ ∙ ������_���������(�), �]��ΨΖ[≅Ζ⊥_Ξ�]�β]δΖα⊥ ∙

���� � , �]��ΨΖ[≅Ζ⊥_Ξ�]�β]δΖα⊥ ∙ �����������_�����_����� � , �]��ΨΖ[≅Ζ⊥_Ξ�]�β]δΖα⊥ ∙

�����������_��(�) − ������_��������(�) ∙ Δ� . (14) 

Whereby, 

����>(�Α ∙ �Α � , … , �Π ∙ 	�Π ,) =����>(�Α ∙ �Α � , … , �Π ∙ 	�Π ,) = 
ΡΤ⋅�1(δ)

Τ
ε

ΡΤ
Τ
ε

, � = 	 �1
1
�  . 

 
The value of the desire to walk randomly ranges from 0 (‘minimal desire’) to 1 

(‘maximal desire’). It is inhibited by the level of compliance, the passenger’s belief of 

how dangerous the situation is (cognitive responding), the passenger’s level of fear 

(somatic marking), and staff instructions or public announcements to evacuate. The 

somatic marking and cognitive responding are processes based on mirror-

ing/contagion mechanisms as described in Section 1.3, based on previous research 

[1,2]. 

 
desire_walkrand(t + ∆t) = 	desire_walkrand(t) 	+ �	 ∙ ���������� ∙ (1 −

max �Ζ⊥�ΖWΖδΖ⊥_�]ΨΠ]⊥∴ ∙ ������_���������(�), �Ζ⊥�ΖWΖδΖ⊥_�]ΨΠ]⊥∴ ∙

���� � , �Ζ⊥�ΖWΖδΖ⊥_�]ΨΠ]⊥∴ ∙ �����������_�����_����� � , �Ζ⊥�ΖWΖδΖ⊥_�]ΨΠ]⊥∴ ∙

�����������_��(�) − ������_��������(�) ∙ Δ� .          (15) 

 



The intention to evacuate value ranges from 0 (‘minimal intention’) to 1 (‘maxi-

mal intention’), and so too does the intention to walk randomly value. To decide 

whether the desire to evacuate or walk randomly is larger, a logistic function is used, 

and this outcome is then multiplied by the desire to walk randomly. This, in turn, is 

multiplied by (1-fall(t)) to make sure it is only a value larger than 0 when the passen-

ger has not fallen. When the passenger has fallen, the value will become 0, then the 

passenger cannot actually walk randomly or evacuate.  

���������_�������� � + ∆t 	=	 ���������_�������� � +	 � ∙ 	 ( 1 − fall t ∙

������_�������� � ∙ logistic((�]��ΨΖ[≅Ζ⊥_Ζ⊥δΞ⊥δΖα⊥ ∙ ������_�������� � ,

�Ζ⊥�ΖWΖδΖ⊥_Ζ⊥δΞ⊥δΖα⊥ ∙ ������_�������� � ) ∙ Δ�	. (16) 

���������_�������� � + ∆t  = ���������_�������� � + � ∙ ( 1 − fall t ∙

������_�������� � ∙ logistic((�Ζ⊥�ΖWΖδΖ⊥_Ζ⊥δΞ⊥δΖα⊥ ∙ ������_�������� � ,

�]��ΨΖ[≅Ζ⊥_Ζ⊥δΞ⊥δΖα⊥ ∙ ������_�������� � ) ∙ Δ� . (17) 

whereby:	

��������	′,≤(�Α, … , �Π) =
Α

Α�℮∞ƒ(♣Τ♦⋯♦	♣ε∞♠
		. 

 
The action movetoexit is a combination of the speed of the passenger and his tar-

get (i.e. the location/exit he moves towards). The value of the intention to evacuate 

influences the speed of moving to the exit. The familiarity, observation of staff in-

structions, and the public announcement all influence the choice of exit [4, 14]. 

If	 (familiarity	=	1	OR	observation_staffinstructions	=	1	OR	observation_pa	=1)	 then	ac-

tion_movetoexit(t)	=	(target	=	nearest	exit)	AND	(speed	=	intention_evacuate(t)∙	speed)	

else	 action_movetoexit(t)	 =	 (target	 =	 entrance)	 AND	 (speed	 =	 intention_evacuate(t)	∙	

speed)	.  (18) 

The action walkrandom is a combination of the speed and heading of the agent in 

the environment. The value of intention_walkrand is multiplied by the maximum 

speed of the agent.  

action_walkrand(t)	=	(heading	=	random)	AND	(intention_walkrand	∙	speed)	. (19) 

 
The action help_other is calculated as stated below, based on previous research [8, 

10], as described in Section 1.3. 

When	 ( (�Α − �ϕ)
ϕ +	(�Α − �ϕ)

ϕ ≤ 5 );	 whereby	 agent_location(t)	 =	 (x1	 y2)	 and	

agent_location	of	other	passenger(t)	=	 (x2	 y2)	and	other	passenger	 fall(t)	=	1,	 then	 the	

chance	of	helping	depends	on	the	age+gender	of	the	helper	and	the	fallen	passenger	and	

whether	they	share	a	social	identity	(in-group)	or	not	(out-group).	The	overall	probability	

of	helping	is	shown	in	Table	1.  (20) 

 

 

 



Table 1. Probabilities of Helping a Fallen Passenger 

 
 Fallen passenger 

Helper 

passen-

ger 

 Social 

identity  

Male 

child 

Male 

adult 

Male 

elderly 

Female 

child 

Female 

adult 

Female 

elderly 

Male 

adult 

In-group 

0.30 0.15 0.30 0.40 0.30 0.40 

Male 

elderly 

In-group 

0.15 0.08 0.15 0.20 0.15 0.20 

Male 

adult 

Out-

group 0.25 0.13 0.25 0.34 0.25 0.34 

Male 

elderly 

Out-

group 0.13 0.06 0.13 0.17 0.13 0.17 

Female 

adult 

In-group 

0.15 0.08 0.15 0.20 0.15 0.20 

Female 

elderly 

In-group 

0.08 0.04 0.08 0.10 0.08 0.10 

Female 

adult 

Out-

group 0.13 0.06 0.13 0.17 0.13 0.17 

Female 

elderly 

Out-

group 0.06 0.03 0.06 0.08 0.06 0.08 

 

The expressions of fear and the passenger’s belief of the situation are modelled in 

a simple way, where the values match each other instantaneously instead of with a 

delay, as further detail was not necessary in the model.  

express_belief_dangerous(t) = belief_dangerous(t); express_fear(t) = fear(t) (21) 

2.2! Pseudo-code and Model Overview 

The model was implemented in the NetLogo multi-agent language [25]. To do so, 

the formal model presented in the previous section was transformed into multiple IF 

THEN rules. An example of how these rules were translated into NetLogo code is 

shown below, taking Formula 18 (see previous section) as an example. It is shown 

that for each agent in the model the heading (direction) is set as a random number 

between 0 and 360 (degrees), and then based on the age and gender of the agent a 

speed is also set. Then, for the action to walk randomly, the level of the intention is 

multiplied by the speed.  

;-- EXAMPLE RULE IN NETLOGO -- 

ask agents [ 

    set heading random 360 

    if st_gender = 0 and st_age = 1 [set speed 0.9 + ran-

dom-float 0.52]   ;female adult 

    set st_action_walkrandom st_intention_walkrand * 

speed 

] 

Fig. 3 shows the activity diagram of the created simulator focusing on the internal 

model. The system updates internal states and actions of each agent. After that, it 

updates the environment, considering the actions of the agents, and finalizes the cycle 



by updating the statistics. The simulation stops when all agents are either evacuated or 

dead. At any moment, the user can change the parameters available on the interface 

and influence the environment or agents. 

 

Fig. 3. Activity Diagram Overview of the IMPACT Crowd Evacuation Model 

3! Validation and Structured Simulation Results 

3.1! Validation Results: IMPACT Model versus EXODUS Benchmark 

Our IMPACT model has been compared with a benchmark to establish its validi-

ty. In [12] the validation process and results have been explained and discussed al-

ready, and a summary is provided here. The EXODUS model [26] was selected as a 

benchmark for the IMPACT model, as it is accepted by specialists in this area as real-

istic [26]. The environment selected is called SGVDS1, a complex ship environment 

composed of three floors, with different escape routes to the four assembly areas [13] 

(Figure 4).  

A validation experiment was conducted comparing three versions of the IMPACT 

model with the benchmark of the EXODUS model (see Table 2 for the experimental 

design). The IMPACT model covers more aspects than the benchmark EXODUS 

model, however, so some of the IMPACT model’s variables were fixed to enable a 

fair comparison:  

•! Familiarity: it was assumed that everybody was not familiar with the environment. 

•! Relationship: it was assumed that all passengers were unrelated.  

•! Social contagion: this was ‘on’ or ‘off’, depending on the experimental condition 

(see Table 2).  

•! The passenger’s speed: in experimental condition 1 the speeds indicated in [13] 

were used. In experimental conditions 2 and 3, the speed was calculated by the 

IMPACT model. 

•! Groups and Helping: these were not considered in any experimental condition. 

  



 

Fig. 4. Scenario of the software simulation.  

Table 2. Results of the validation protocol for the overall arrival times. 

Condi-

tion: 

Benchmark Experimental 

Condition 1 

Experimental 

Condition  2 

Experimental 

Condition  3 

Expla-

nation: 

Exodus 

SGVDS1 

data 

No Social Conta-

gion. Response 

time and Speed 

taken from the 

benchmark. 

No Social Conta-

gion. Response 

times and Speed 

calculated by the 

model itself.  

Social Contagion 

activated. Response 

times and Speed 

calculated by the 

model itself. 

FET: 585 (seconds) 498.6 (seconds) 543.4(seconds) 516.6(seconds) 

TAT: 0 14.77 7.11 11. 69 

ERD: 0 0.568171 0.575657 0.565754 

EPC: 0 0.724621 0.731295 0.731634 

SC: 0 0.522105 0.423135 0.451471 

 
The outcome measures of the validation experiment are: (1) Final Evacuation 

Time (FET); (2) the percentage difference between the predicted and Total Assembly 

Time (TAT); (3) the curve differences between the predicted and expected arrivals to 

the Assembly Areas (exits). This last measurement is calculated based on Euclidean 

Relative Difference (ERD), Euclidean Projection Coefficient (EPC), and Secant Co-

sine (SC). In [13] it is stated that a ‘good’ TAT should be below 40, which is true for 

all experimental conditions here. For ERD, all experimental conditions are over, but 

close to, the expected boundary that is ≤ 0.45, while for EPC, the results stay within 

the expected boundaries of 0.6 ≤ EPC ≤ 1.4. For SC, the values are below the bounda-

ry 0.6, but close to the acceptance threshold. See Table 2 for all the results. In Figure 

5 below, the assembly curves of the benchmark and the three IMPACT versions (the 

three experimental conditions) are shown. These results show that on all measures, 

the IMPACT model is within or close to the prescribed boundaries, thereby establish-

ing its validity. 



 

Fig. 5. Total Arrival Time Pattern for One Simulation Run of EXODUS Benchmark and 

IMPACT Experimental Conditions 1, 2 and 3. 

3.2! Simulation Experiments Setup 

Number of Repetitions. To determine the number of repetitions for each combi-

nation of factor and level, an evacuation scenario with the most variability was run 

100 times. First, the cumulative averages and variances in evacuation time were in-

spected to detect the threshold number of repetitions at which evacuation time stabi-

lised. Second, Equation 22 below was used to find the minimum number of repeti-

tions (56) to guarantee that the error in the outcome results is within 5% of the maxi-

mum error with a 95% confidence level. Then, 60 repetitions of each variation were 

run and the results presented in this Section represent the average of these 60 runs. 

� ≥ 100 ∙ � ∙ � � ∙ � ϕ = 56.61599 → 60	samples	 (22)	

Whereby,	

� = ����������	��������	��	95%; 								� = ��������	���������, 53.4287	

� = �������	�����	��	5%;																				� = ����������	����	�������	��	100	�������	

 
Outcome measures and emergence. There are three outcome measures for each 

simulation experiment: (1) evacuation time, (2) total falls, (3) response time. The 

evacuation time was measured as the number of seconds from the onset of the fire 

until all (living) passengers have evacuated. The number of falls was measured cumu-

latively (all falls in total in one simulation run). The individual response time was 

measured as the time between the onset of the fire until the passenger develops the 

intention to move to the exit. The reported response time is the average of all individ-

ual’s response times.  

Besides these outcome measures, emergence is of interest in the analyses. Emer-

gence is the spontaneous establishment of a qualitatively new behaviour through non-

linear interactions of many objects or subjects [17]. In other words, it is a behaviour 



observed at the group level, which cannot be directly explained from the individual 

behavioural rules. This could lead to unexpected findings in our simulation experi-

ments, because the hypotheses are formulated based on individual behavioural rules, 

since a priori you do not always know what group level behaviour will occur. There 

are important crowd movement phenomena related to evacuation situations known 

from the literature, such as herding, the faster-is-slower-effect, and collective intelli-

gence [16,17]. Herding refers to a situation that is unclear and causes individuals to 

follow each other instead of taking the optimal route [16].  The faster-is-slower-effect 

refers to when, in evacuation situations, certain processes take longer at high speed; 

so, waiting can sometimes help competing people (competing for space) and speed up 

the average progress [17]. Collective intelligence, as Helbing and Johansson name it, 

is emergent functional behaviour of a large number of people resulting from interac-

tions of individuals instead of individual reasoning [17].  

We hope our model will create these emergent phenomena, as that would prove our 

model can create self-organisation [9]. Self-organisation can be defined as the sponta-

neous establishment of qualitatively new behaviour through non-linear interaction of 

many objects or subjects without the intervention of external influences. However, we 

do not expect our model to show emergent lane formation and the zipper effect [9]. 

Lane formation is a process where a number of lanes of varying width form dynami-

cally at a corner; however, the passengers in our model do not have to go around a 

corner towards the exit.  

Other evacuation modellers have studied behavioural and environmental effects on 

evacuation time as well. For example, in [20], it was found that the optimal evacua-

tion time needs a combination of herding behaviour and the use of environmental 

knowledge (about the location of exits). In [47] it was found that when exits are 

placed symmetrically in a room, the evacuation time is shortest. It was also found that 

including social elements in the model (finding your group member before exiting, 

exiting through the entrance, and not wanting to stop but keep moving towards the 

exit) can make a more robust and realistic model. In [44] the social force model (Hel-

bing social force) was implemented in a cellular automata model to simulate evacua-

tion from a room with one exit. Arching, clogging, and the faster-is-slower-effects 

were found, showing that the three social forces (repulsion, friction, and attraction) 

can be basic reasons for complex behaviours emerging from evacuations. Also, 

changing the width of the door can have a large effect on evacuation time. In [11] it is 

shown that the crowd density around a person has an impact on that person’s speed 

and that this is an exponential relationship, with more surrounding people reducing 

the person’s speed. In [22] it is shown that evacuation time is not only based on the 

distance from the exit but also on effects such as the crowd density around the people 

evacuating and exit choice behaviour. In [27, 28] the social force model was applied. 

It was found that the wider the doors, the less faster-is-slower-effect there is, because 

there will be less congestion at the door. Also, the repulsive and dissipative forces 

seem to have the largest effects on the faster-is-slower-effect. In [19] a lattice gas 

model of people escaping a smoke filled room was created to replicate the findings of 

an experiment in which blindfolded students had to find the exit. It was found that 

adding exits did not shorten evacuation time, but that the evacuation process was 

based on herding behaviour (following the acoustics). Based on these findings from 



others, we expect the evacuation time to increase as crowd density increases in our 

model. 

Basic settings simulation experiments. Simulation experiments with different 

factors and levels were designed to answer different research questions introduced in 

the following sections. The agent environment chosen for the simulations was a 

square (20 × 20 metres) layout of a building with four exits (top, down, left, right; 

main exit = down). All environmental and personal factors such as width of the doors, 

gender, age, and level of compliance were kept constant across simulations. Only the 

factors and levels stated in each experimental setup in the following sections were 

systematically varied. The settings that were kept similar, except the few parameters 

that are structurally changed to answer the current research question, are shown in 

Table 3 below.   

Table 3. Basic Parameter Settings for the Simulation Experiments. 

Parameter Setting 

Familiarity 50% (i.e. 50% of passengers are familiar 

with the environment) 

Helping Off 

Falls On 

Contagion Model On 

Percentage Children 15 (based on [29]) 

Percentage Elderly 15 (based on [29]) 

Percentage People Travelling Alone 50 

Group Ratios 33-33-34 (we assume an equal distribution 

for group sizes) 

Percentage Females 50% 

Fire location Random location, but always 3 metres away 

from an exit and present from the 1
st
 second 

Cultural Cluster Distribution Equal division of all passengers over all 11 

clusters (9.09% of passengers per cluster) 

Length of Fall (before standing up) 30 seconds 

Start Fire Alarm 180 seconds after the fire starts 

Start Public Announcement 20 seconds after the fire alarm starts 

3.3! Simulation Results: Effect of Falls 

Table 4 shows the design of the simulation experiment to determine the effect of 

falling on evacuation time, total falls, and the average response time. The total num-

ber of simulation runs is based on the number of factors and levels, and number of 

repetitions per combination of factor and level, resulting in 3×2×60=360 simulation 

runs here. The hypotheses were: (1) when falling behaviour is ‘on’, evacuation time 

will be slower than when there are no falls (because it will take extra time to fall and 

stand back up); (2) when falling behaviour is ‘on’, falls will happen, but no falls will 

happen when this feature is turned ‘off’; (3) there will be no difference in response 

times for falling ‘on’ versus ‘off’ (as response time precedes evacuation movement). 



Table 4. Factors and Levels in the Simulation Experiment for Falls. 

        Factor 

Crowd Density Falls 

Level 1: Low On 

Level 2: Medium Off 

Level 3: High  

 
Evacuation time. The results are shown in Figure 6. As expected, the higher the 

crowd density, the slower the evacuation time. Unexpectedly, though, the evacuation 

time decreases when falls occur, compared to no falls (see Figure 6, top left), which is 

the opposite of what was expected. However, this can be explained due to the fact that 

the evacuation of the fallen agents is delayed, thereby reducing the overall crowd 

congestion at exits. Essentially, then, a more phased evacuation takes place, which 

takes less time. In other words, this could be explained by the faster-is-slower-effect 

[17]. This effect reflects the observation that certain processes (in evacuation situa-

tions, production, traffic dynamics, or logistics) take more time if performed at high 

speed. In other words, waiting can often help to coordinate the activities of several 

competing units and thus speed up the overall progress. In our case, falling seems to 

have similar effects to waiting and speeds up the overall evacuation. 

To find out if these effects could be significant, statistical analyses were performed 

on the data. A 2 × 3 independent ANOVA was performed on the evacuation time with 

Falls (with or without) and Crowd Density (low, medium, and high) as between fac-

tors. The main effect of Crowd Density was significant, F(2, 354) = 12.96, p < .001, 

and the main effect of falls was approaching significance, F(1, 354) = 3.72, p = .055, 

but the interaction effect of Falls × Crowd Density was not significant, F(2, 354) = 

1.23, n.s. Post hoc tests with Tukey HSD corrections showed that only high Crowd 

Density differs significantly from low and medium Crowd Density, but low and me-

dium Crowd Density do not differ significantly: high-low, p < .001; high-medium, p < 

.001; low-medium, n.s. In conclusion, then, evacuation time seems to significantly 

increase for high crowd density versus low or medium crowd density, and a trend is 

visible for slower evacuation time without falls versus with falls.  

Total number of falls. As expected, both the total falls and average falls per per-

son increase as the crowd density increases, for two reasons. First, the more agents 

there are in the environment, the less room there is to move and so more falling oc-

curs. Second, the more agents there are in the environment, the higher the chances of 

individuals falling which will increase the average rate (see Figure 6, bottom row). A 

2 × 3 independent ANOVA was performed on the Total Falls with Falls (with or 

without) and Crowd Density (low, medium, and high) as between factors. The main 

effects of Falls and Crowd Density and the interaction effect of Falls × Crowd Densi-

ty were significant: F(2, 354) = 5612.60, p < .001; F(1, 354) = 11306.25, p < .001; 

F(2, 354) = 5612.60, p < .001, respectively. Post hoc tests with Tukey HSD correc-

tions showed that each level of Crowd Density differs significantly from each other 

level: high-low, p < .001; high-medium, p < .001; low-medium, p < .001. 

Response time. As expected, response time increases as crowd density increases 

and no significant differences were found in response time for falling behaviour ‘on’ 

versus ‘off’. Statistical analyses confirm these findings. A 2 × 3 independent ANOVA 



was performed on the response time with Falls (with or without) and Crowd Density 

(low, medium, and high) as between factors. The main effect of Crowd Density was 

significant, F(2, 354) = 4773.30, p < .001. There was no main effect of Falls, F(1, 

354) = .012, n.s., and no interaction effect of Falls × Crowd Density, F(2,354) = .681, 

n.s. Post hoc tests with Tukey HSD corrections show that each level of Crowd Densi-

ty differs significantly from the other two: low-medium, p <.001; medium-high, p 

<.001; low-high, p <.001. 

  

 

Fig. 6. Effect of Falls on Evacuation Time, Falls, and Response Time. 

3.4! Simulation Results: Helping Behaviour 

Table 5 shows the design of the simulation experiment to determine the effect of 

helping behaviour on evacuation time, falls, and response time, resulting in 

3×2×60=360 simulation runs here. The hypotheses were: (1) when people help others, 

the evacuation time is longer than when people do not help (because the helpers will 

take more time to evacuate; although only a small effect is expected); (2) when pas-

sengers help others, the number of falls will increase (because the helpers next to the 

fallen passengers create more obstacles; although only a small effect is expected); (3) 

no difference is expected in response times for helping ‘on’ versus ‘off’ (because the 

decision to evacuate precedes helping). 

Table 5. Factors and Levels in the Simulation Experiment for Crowd Density and Helping. 

        Factor 

Crowd Density Helping 

Level 1: Low On 

Level 2: Medium Off 

Level 3: High  

 
Evacuation time. The results are shown in Figure 7. As expected, evacuation time 

increases as crowd density increases. However, unexpectedly, helping behaviour 

seems to reduce evacuation time for high crowd density environments slightly, but not 

for low to medium crowd density. This could be explained by those helping delaying 



their evacuation slightly and forming less congestion overall, like a phased evacua-

tion, as happened with the falls. Essentially, people will evacuate one after another 

(sequentially) which creates less congestion at the doors (see Figure 7, left). Again, 

this could be explained with the faster-is-slower-effect, mentioned in the explanation 

of falls, reducing the average evacuation time [17]. When analysing these effects 

statistically, though, only the main effect of crowd density is significant and not the 

effect of helping. A 2 × 3 independent ANOVA was performed on the response time 

with Helping (with or without) and Crowd Density (low, medium, and high) as be-

tween factors. The main effect of Crowd Density was significant, F(2, 354) = 22.87, p 

< .001. However, there was no main effect of helping, F(1, 354) = .119, n.s., and no 

interaction effect of Falls × Crowd Density, F(2, 354) = 1.37, n.s. Post hoc tests with 

Tukey HSD corrections show that only high Crowd Density differs significantly from 

low and medium Crowd Density, and low and medium Crowd Density do not differ 

significantly: high-low, p < .001; high-medium, p < .001; low-medium, n.s. 

Total number of falls. The number of falls naturally increases as the crowd densi-

ty increases. This increase seems similar for helping behaviour ‘on’ and ‘off’, but the 

difference is actually significant when tested statistically (see Figure 7, middle). A 2 × 

3 independent ANOVA was performed on the total Falls with Helping (with or with-

out) and Crowd Density (low, medium, and high) as between factors. The main ef-

fects of Crowd Density, F(2, 354) = 22.87, p < .001, and Helping were significant, 

F(1, 354) = 8.45, p < .01, as was the interaction effect of Helping × Crowd Density, 

F(2, 354) = 5.52, p < .01. Post hoc tests with Tukey HSD corrections show each level 

of Crowd Density differs significantly from each other: low-medium, p <.001; medi-

um-high, p < .001; low-high, p < .001. In conclusion, the number of falls increases 

both when crowd density increases and also without helping. 

Response time. As expected no differences are observed in the average response 

times for helping behaviour ‘on’ and ‘off’, only an effect of crowd density which 

statistical analyses confirm. A 2 × 3 independent ANOVA was performed on the Re-

sponse Time with Helping (with or without) and Crowd Density (low, medium and 

high) as between factors. The main effect of Crowd Density was significant, F(2, 354) 

= 5162.73, p < .001, while neither the main effect of Helping, F(1, 354) = .416, n.s., 

or the interaction effect of Helping × Crowd Density were significant, F(2, 354) = 

.798, n.s. Post hoc tests with Tukey HSD corrections show each level of Crowd Den-

sity differs significantly from each other: low-medium, p < .001; medium-high, p < 

.001; low-high, p < .001 (see Figure 7, right).  

 

 

Fig. 7. Effect of Helping Behaviour on Evacuation Time, Falls, and Response Time. 



3.5! Experimental Results: Social Contagion and Familiarity 

Table 6 shows the experimental design of the simulation experiment to determine 

the effect of social contagion and familiarity on evacuation time, falls, and response 

time, resulting in 3×3×2×60=1080 simulation runs here. The hypotheses were: (1) 

evacuation time will be faster with social contagion than without (because people will 

still find out from others there is a fire, even when not observed personally); (2) when 

crowd density increases, there will be more falls ; (3) when there is social contagion, 

there will be fewer falls (because without it, more people will find out the situation is 

dangerous through the fire alarm, which means more people will evacuate simultane-

ously, thereby falling more); (4) response time will be faster with social contagion 

than without (because people who do not observe the fire themselves are informed 

faster by others); (5) response time will be faster the more familiar people are with the 

environment (because taking the nearest exit in combination with social contagion 

will speed up the response time, spreading the ‘news’ faster than when people all take 

the same exit); and finally (6) the higher the crowd density, the slower the response 

time. 

 
Table 6. Factors and Levels in the Simulation Experiment for Social Contagion and Familiarity 

        Factor 

Crowd Density Familiarity Social Contagion 

Level 1: Low 0% On 

Level 2: Medium 50% Off 

Level 3: High 100%  

 
Evacuation time. The results are shown in Figure 8. As expected, with social con-

tagion there is a decrease in evacuation time compared to without, and the more fa-

miliar people are with the environment, the faster their evacuation time (see Figure 8, 

top row), which statistical analyses confirmed. The social contagion of mental and 

emotional states is a form of collective group decision making or collective intelli-

gence [17]. It is also related to herding, as individuals are ‘infected’ with other’s deci-

sions and follow them when their own intentions are not as strong as those of others 

around them. [16].  A 2 × 3 independent ANOVA was performed on Evacuation Time 

with Social Contagion (with or without) and Crowd Density (low, medium, and high) 

as between factors. The main effects of Crowd Density and Social Contagion and the 

interaction effect of Social Contagion × Crowd Density were significant: F(2, 354) = 

133.81, p < .001; F(1, 354) = 237.76, p < .001; F(2, 354) = 4.35, p < .05, respectively. 

Post hoc tests with Tukey HSD corrections show each level of Crowd Density differs 

significantly from each other: low-medium, p < .05; medium-high, p < .001; low-

high, p < .001. A 3 × 3 independent ANOVA was performed on the Evacuation Time 

with Familiarity (0%, 50%, or 100%) and Crowd Density (low, medium, and high) as 

between factors. The main effects of Crowd Density and Familiarity and the interac-

tion effect of Familiarity × Crowd Density were significant: F(2, 354) = 125.83; p < 

.001, F(1, 354) = 23.16, p < .001; F(2, 354) = 31.10, p < .001, respectively. Post hoc 

tests with Tukey HSD corrections show each level of Crowd Density differs signifi-

cantly from each other: low-medium, p < .05; medium-high, p < .001; low-high, p < 



.001. For Familiarity, only 0% familiarity differs significantly from 50% and 100%, 

but not 50% from 100%: 0%-50% p < .05; 50%-100% n.s.; 0%-100% p < .05. 

Total number of falls. As expected, the number of falls is lower with social con-

tagion than without. This can be explained by people starting to evacuate earlier, 

spreading the evacuation across the simulation time. Consequently, there are fewer 

collisions among passengers, which result in fewer falls. Familiarity shows the same 

effect: the more familiar the crowd members are with the environment, the more dis-

tributed among the exits they are, which consequently leads to fewer collisions and 

falls (see Figure 8, bottom row). Statistical analyses confirmed these interpretations. 

A 2 × 3 independent ANOVA was performed on the Total Falls with Social Conta-

gion (with or without) and Crowd Density (low, medium, and high) as between fac-

tors. The main effects of Crowd Density and Social Contagion and the interaction 

effect of Social Contagion × Crowd Density were significant: F(2, 354) = 732.98, p < 

.001; F(1, 354) = 11.88, p < .01; F(2, 354) = 3.42, p <.05. Post hoc tests with Tukey 

HSD corrections show each level of Crowd Density differs significantly from each 

other: low-medium, p < .001; medium-high, p < .001; low-high, p < .001. A 3 × 3 

independent ANOVA was performed on the Total Falls with Familiarity (0%, 50%, or 

100%) and Crowd Density (low, medium, and high) as between factors. The main 

effects of Crowd Density and Familiarity and the interaction effect of Familiarity × 

Crowd Density were significant: F(2, 354) = 17290.13; p < .001; F(1, 354) = 6227.45, 

p < .001; F(2, 354) = 3062.52, p < .001. Post hoc tests with Tukey HSD corrections 

show each level of Crowd Density and Familiarity differs significantly from each 

other: low-medium, p < .001; medium-high, p < .001; low-high, p < .001; 0%-50%, p 

< .001; 50%-100%, p < .001; 0%-100%, p < .001. 

Response time. As expected, response time increases as crowd density increases 

and with social contagion the increase is lower than without social contagion. Similar-

ly, the more familiar people are with their environment, the less the response time 

increases as crowd density increases. This is explained by familiarity distributing 

people over the available exits, which helps to convey the fear and belief of danger 

with social contagion to others who start to evacuate early (see Figure 8, middle row). 

Statistical analyses confirmed the two main effects of crowd density and social conta-

gion. A 2 × 3 independent ANOVA was performed on Response Time with Social 

Contagion (with or without) and Crowd Density (low, medium, and high) as between 

factors. The main effects of Crowd Density, F(2, 354) = 410.46, p < .001, and Social 

Contagion were significant, F(1, 354) = 4.46, p < .05, while the interaction effect of 

Social Contagion × Crowd Density was not significant, F(2, 354) = 1.16, n.s. Post hoc 

tests with Tukey HSD corrections show each level of Crowd Density differs signifi-

cantly from each other: low-medium, p < .001; medium-high, p < .001; low-high, p < 

.001. A 3 × 3 independent ANOVA was performed on Response Time with Familiari-

ty (0%, 50%, or 100%) and Crowd Density (low, medium, and high) as between fac-

tors. The main effects of Crowd Density and Familiarity and the interaction effect of 

Familiarity × Crowd Density were significant: F(2, 354) = 11785.94, p < .001; F(1, 

354) = 10311.63, p < .001; F(2, 354) = 2334.88, p < .001, respectively. Post hoc tests 

with Tukey HSD corrections show each level of Crowd Density and Familiarity dif-

fers significantly from each other: low-medium, p < .001; medium-high, p < .001; 

low-high, p < .001; 0%-50%, p < .001; 50%-100%, p < .001; 0%-100%, p < .001. 

 



 

Fig. 8. Effects of Social Contagion (left column) and Familiarity (right column) on Evacuation 

Time, Response Time, and Falls. 

3.6! Groups 

Table 7 shows the design of the simulation experiment to determine the effect of 

group size on evacuation time, falls, and response time, resulting in 3×4×60=720 

simulation runs. The hypotheses were: (1) the more people who travel alone, the fast-

er the evacuation time (because people will move faster by themselves); (2) the bigger 

the groups, the slower the evacuation time (although this is expected to be a small 



effect); (3) the more people who travel alone, the fewer falls (because groups form 

more congestion; although this is expected to be a small effect); (4) the larger the 

groups, the more falls (because of more congestion); (5) the more people who travel 

alone, the faster the response time (because people can evacuate faster); and (6) the 

bigger the groups, the slower the response time (although this is expected to be a 

small effect). 

 
Table 7. Factors and Levels in the Simulation Experiment for Groups 

        Factor 

Crowd Density Travelling Alone 

Level 1: Low 100% 

Level 2: Medium 0% (only groups of 2 adults) 

Level 3: High 0% (only groups of 3 adults) 

Level 4:  0% (only groups of 4 adults) 

 
Evacuation time. The results are shown in Figure 9 and 10. As expected, as crowd 

density increases, evacuation time becomes slower. Unexpectedly, though, it seems 

that people travelling alone and in groups of three are slower to evacuate than groups 

of two and four. Indeed, groups of four evacuate the fastest and people travelling 

alone are actually slowest (Figure 9). Statistical analysis confirms this interpretation. 

A 4 × 3 independent ANOVA was performed on Evacuation Time with Group Size 

(1, 2, 3, and 4) and Crowd Density (low, medium, and high) as between factors. The 

main effects of Crowd Density and Group Size, and the interaction effect of Group 

Size × Crowd Density were significant: F(2, 354) = 22643.44, p < .001; F(3, 354) = 

137.15, p < .001; F(6, 354) = 3.70, p < .001. Post hoc tests with Tukey HSD correc-

tions show that only high Crowd Density differs significantly from low and medium 

Crowd Density: high-low, p < .001; high-medium, p < .001; low-medium, n.s. For 

Group Size, these tests show that a lone person does not differ from groups of 3, and 

groups of 2 do not differ from groups of 4; however, all others differ significantly 

from each other: 1-2, p < .001; 1-3, n.s.; 1-4 p < .001; 2-3, p < .01; 2-4, n.s. In conclu-

sion, evacuation time increases when crowd density increases and decreases for 

groups of 4 and 2 versus groups of 3 or 1.   

This is unexpected and seems to not be an effect of speed, because all group sizes 

have the same number of falls. Therefore, it does not seem to be a faster-is-slower-

effect [17]. When inspecting the average speed during simulations, it was confirmed 

that they did not differ for group sizes. Also, the outcome measures did not differ 

significantly for different numbers of children and elderly, which could influence the 

average speeds of the groups. However, what could explain groups of four being fast-

er than people travelling alone is social contagion in combination with moving 

through space. With social contagion, or collective intelligence, groups can ‘infect’ 

each other faster with emotions and beliefs, compared to people travelling alone, 

which is beneficial for evacuation time. Moving through space is implemented with a 

maximum of 8 passengers per patch (square metre), meaning lone passengers and 

groups of 2 and 4 can always use a patch to its maximum capacity, but groups of 3 

can only fit a maximum of two groups (6 passengers) per patch at one time step. This 

means groups of 3 are a little disadvantaged, since groups of 1, 2, and 4 can always 



move around in space with maximum capacity. That could explain why groups of 

three and people alone are slowest and groups of 2 and 4 are fastest. We have tested 

this by running similar simulation experiments like this one, but then (1) without so-

cial contagion, and (2) with a maximum capacity of 6 people per square metre. The 

expectation is that (1) without contagion, groups of 3 will be slowest versus groups of 

1, 2 and 4, and (2) with a maximum capacity of 6 people per square metre, groups of 

4 will be slowest compared to people travelling alone and groups of 2 and 3. As ex-

pected, without social contagion, groups of 3 are slowest in evacuation time (see Fig-

ure 10). No effects of falls and response time were observed in this experiment. Un-

expectedly, groups of 3 are not the fastest with a maximum capacity of 6 per square 

metre, but again the slowest. This means that social contagion is only part of the ex-

planation for groups being slower to evacuate than people travelling alone. We cannot 

find more explanations for this in the literature because (1) the impact of groups on 

crowd dynamics is still largely unknown [24, 31], and (2) we have not modelled 

group formations, such as in [24], that could influence the crowd dynamics. We have 

chosen to model a group as moving through space as a ‘square’ group, with all mem-

bers moving from patch (square metre) to patch simultaneously. So, group formations 

are no explanation either. However, social contagion is part of the effect of groups of 

2 and 4 being faster than people travelling alone or in groups of 3. 

Total number of falls. As crowd density increases, the number of falls increase; 

although no significant differences were found between group sizes, as expected. 

Statistical analysis confirmed this interpretation of the graph. A 4 × 3 independent 

ANOVA was performed on Total Falls with Group Size (1, 2, 3, and 4) and Crowd 

Density (low, medium, and high) as between factors. The main effect of Crowd Den-

sity was significant, F(2, 354) = 24048.28, p < .001, but the main effect of Group 

Size, F(3, 354) = 1.39, n.s., and the interaction effect of Group Size × Crowd Density 

were not significant, F(6, 354) = 1.93, n.s. Post hoc tests with Tukey HSD corrections 

show that each level of Crowd Density differs significantly from each other: low-

medium, p < .001; medium-high, p < .001; low-high, p <.001.  

Response time. As crowd density increases, response time increases. Although no 

significant differences between group sizes were expected, statistical analysis showed 

that groups of 2 and 4 are faster in their response time than groups of 1 and 3. This 

seems plausible as it is similar with the evacuation time, which both can be explained 

by the social contagion effects. A 4 × 3 independent ANOVA was performed on Re-

sponse Time with Group Size (1, 2, 3, and 4) and Crowd Density (low, medium, and 

high) as between factors. The main effects of Crowd Density, F(2, 354) = 9634.55, p 

< .001, and Group Size were significant, F(3, 354) = 43.73, p <.001, and the interac-

tion effect of Group Size × Crowd Density was not, F(6, 354) = .467, n.s. Post hoc 

tests with Tukey HSD corrections show that each level of Crowd Density differs sig-

nificantly from each other: low-medium, p < .001; medium-high, p < .001; low-high, 

p < .001; and group size 1 and 3 do not differ significantly, while the other group 

sizes do: 1-2, p < .001; 1-3, n.s.; 1-4, p < .001; 2-3, p < .001; 2-4, p < .001; 3-4, p < 

.001. Taking all these results into account, it seems that social contagion is the biggest 

cause for the group effects.  

 



 

Fig. 9. Effects of Groups on Evacuation Time, Falls, and Response Time. 

 

Fig. 10. Effects of Groups on Evacuation Time with a Maximum Travel Capacity of Six People 

per m
2
 (left) and without Social Contagion (right). 

3.7! Age 

Table 8 shows the design of the simulation experiment, resulting in 3×2×60=360 

simulation runs here. The hypotheses were: (1) elderly people have slower evacuation 

times, compared to adults (because elderly people move slower); (2) there will be no 

differences in number of falls between adults and elderly people; (3) there will be no 

differences in response time between adults and elderly people. 

 
Table 8. Factors and Levels in the Simulation Experiment for Age 

        Factor 

Crowd Density Age 

Level 1: Low Travelling alone 100% adults 

Level 2: Medium Travelling alone 100% elderly 

Level 3: High  

 
Evacuation time. The results are shown in Figure 11. As crowd density increases, 

so does evacuation time. As expected, elderly people seem to be slower in evacuating 



than adults, most likely due to their slower movement. In this experiment, all passen-

gers are elderly or adults exclusively, so the exact same effects are there with the 

elderly as with adults. For instance, there is no faster-is-slower-effect [17] here for 

age, because that would require differences in speed within the same simulation run. 

So, in this case, faster speed does mean faster evacuation. Here, the faster-is-slower-

effect was present for the adults by themselves, but as a result of falls, again. Howev-

er, the elderly did not fall based on their slower speeds, which in turn prevented a 

faster-is-slower-effect for them based on falls (see Figure 11). Indeed, statistical anal-

ysis showed there was an effect of age. A 2 × 3 independent ANOVA was performed 

on Evacuation Time with Age (adult, elder) and Crowd Density (low, medium, and 

high) as between factors. Both the main effects of Crowd Density, F(2, 354) = 35.40, 

p < .001, and Age were significant, F(1, 354) = 3.20, p < .001, but the interaction 

effect of Age × Crowd Density was not significant, F(2, 354) = .359, n.s. Post hoc 

tests with Tukey HSD corrections show that each level of Crowd Density differs sig-

nificantly from each other level: low-medium, p <.001; medium-high, p <.001; low-

high, p <.001. 

Total number of falls. As expected, as crowd density increases, the number of 

falls increases. Unexpectedly and very interestingly, elderly people have no falls and 

the falls of the adults increase as crowd density increases. No falls for elderly people 

seems unrealistic in real life, however, because elderly people should be more prone 

to falling than adults. The explanation for this finding is based on how falls are im-

plemented in this model. Currently, they are based on the speed of the passengers and 

their age is not taken into account, so this could be improved in a future version on 

the IMPACT model. Discounting age, based on speed alone it makes sense that pas-

sengers who move slower have fewer falls (see Figure 11). Statistical analysis con-

firmed these interpretations of the graphs. A 2 × 3 independent ANOVA was per-

formed on Total Falls with Age (adult, elder) and Crowd Density (low, medium, and 

high) as between factors. The main effects of Crowd Density, F(2, 354) = 13245.73, p 

< .001, and Age were significant, F(1, 354) = 26056.94, p <.001, and the interaction 

effect of Age × Crowd Density was also significant, F(2, 354) = 13245.73, p < .001. 

Post hoc tests with Tukey HSD corrections show that each level of Crowd Density 

differs significantly from each other level: low-medium, p < .001; medium-high, p < 

.001; low-high, p < .001. 

Response time. As expected, as crowd density increases, response time becomes 

slower. Also, as expected, the response time does not differ significantly between the 

elderly and adults (see Figure 11). Statistical analysis confirmed this interpretation of 

the graph. A 2 × 3 independent ANOVA was performed on Response Time with Age 

(adult, elder) and Crowd Density (low, medium, and high) as between factors. The 

main effect of Crowd Density was significant, F(2, 354) = 5507.43, p < .001; howev-

er, the main effect of Age, F(1, 354) = 2.52, n.s., and the interaction effect of Age × 

Crowd Density were not significant, F(2,354) = .03, n.s.. Post hoc tests with Tukey 

HSD corrections show that each level of Crowd Density differs significantly from 

each other level: low-medium, p < .001; medium-high, p < .001; low-high, p < .001. 

 



 

Fig. 11. Effects of Age (speed) on Evacuation Time, Falls, and Response Time 

3.8! Compliance 

Table 9 shows the design of the simulation experiment to determine the effect of 

compliance on evacuation time, number of falls, and response time, resulting in 

3×2×60=360 simulation runs here. The hypotheses were: (1) evacuation time is faster 

for 100% compliance than 0% compliance; (2) more falls will happen with 100% 

compliance compared with 0% (because people will evacuate faster resulting in 

crowding and so more falls); (3) response time will be faster for 100% compliance 

compared to 0% (because people will decide to evacuate faster). This simulation ex-

periment was also run for adults and the elderly, both female and male. With the cur-

rent parameter settings, no significant differences between females and males or 

adults and the elderly were found, meaning that the difference in the current compli-

ance level settings for gender and age do not create differences in the actions (see 

Section 2.1 for these settings). Therefore, to find the effect of the compliance parame-

ter, this experiment was set up comparing a low with a high level. For a maximum 

effect of compliance, levels 1 and 0 were preferred, but the simulation does not run 

with compliance set to 0, since the passengers will not move then. Compliance set to 

0.001 or 0.01 resulted in one simulation run taking multiple days. With the value of 

0.1 there is still a large effect of compliance to be seen and the simulation runs were 

practically feasible to run, so this level was selected for the experiment. 

  
Table 9. Factors and Levels in the Simulation Experiment for Compliance 

        Factor 

 Crowd Density Compliance 

Level 1: Low compliance level 0.1 (only male adults) 

Level 2: Medium compliance level 1 (only male adults) 

Level 3: High  

 
Evacuation time. Results are shown in Figure 12. As expected, as crowd density 

increases, evacuation time increases, and high compliance results in faster evacuation 

time than low compliance. A 2 × 3 independent ANOVA was performed on Evacua-

tion Time with Compliance (low, high) and Crowd Density (low, medium, and high) 

as between factors. The main effects of Crowd Density and Compliance and the inter-

action effect of Compliance × Crowd Density were all significant: F(2, 354) = 33.75, 

p <.001; F(1, 354) = 3092.49, p <.001; F(2,354) = 6.65, p <.001, respectively. Post 



hoc tests with Tukey HSD corrections show that each level of Crowd Density differs 

significantly from each other level: low-medium, p < .01; medium-high, p < .001; 

low-high, p < .001. 

Total number of falls. As expected, more falls happen as crowd density increases 

and when there is high compliance versus low compliance. No falls happened in the 

low compliance simulation runs, though, which can be explained by the slower speed 

that is a result of low compliance. A 2 × 3 independent ANOVA was performed on 

Total Falls with Compliance (low, high) and Crowd Density (low, medium, and high) 

as between factors. The main effects of Crowd Density and Compliance and the inter-

action effect of Compliance × Crowd Density were all significant: F(2, 354) = 

13110.60, p < .001; F(1, 354) = 25825.15, p < .001; F(2,354) = 13110.60, p < .001, 

respectively. Post hoc tests with Tukey HSD corrections show that each level of 

Crowd Density differs significantly from each other level: low-medium, p < .001; 

medium-high, p < .001; low-high, p < .001. 

Response time. Response times for male adults are shown in Figure 12, which do 

not significant differ from female adults and the elderly, as expected, and show a 

similar pattern for a high compliance level. The response time for the low compliance 

level did not register in the simulations; that is why the response time for male adults 

with a compliance level of 0.89 are shown and analysed. An independent one-way 

ANOVA was performed on the Response Time of male adults with Crowd Density 

(low, medium, and high) as a between factor. The main effect of Crowd Density was 

significant, F(2, 717) = 397678.37, p < .001. Post hoc tests with Tukey HSD correc-

tions show that each level of Crowd Density differs significantly from each other 

level: low-medium, p < .001; medium-high, p < .001; low-high, p < .001. 

      

 

Fig. 12. Effects of Compliance on Evacuation Time, Falls, and Response Time. 

3.9! Environment 

Table 10 shows the design of the simulation experiment to determine the effect of 

room type on evacuation time, falls, and response time, resulting in 3×6×60=1080 

simulation runs here. The hypotheses were: (1) evacuation time increases faster in the 

rectangular room than the square room (because people take more time to reach the 

exits); (2) the number of falls is higher in the rectangular room (because people use 

more steps to reach the exits); (3) response time is slowest in the rectangular room 

(because in larger rooms there is less chance of observing the fire). 

 

 



Table 10. Factors and Levels in the Simulation Experiment for Environment 
 Factor 

Crowd Density Room type 

Level 1: Low Type 1 (square, 20 × 20 metres) 

Level 2: Medium Type 2 (rectangle 20 × 40 metres) 

Level 3: High  

 
Evacuation time. Results are shown in Figure 13. As expected, evacuation time 

increases as crowd density increases, although this only happened for high crowd 

density and not low and medium densities (see Figure 13, left). Statistical tests con-

firm this interpretation of the graph. A 2 × 3 independent ANOVA was performed on 

Evacuation Time with Room Type (square or rectangle) and Crowd Density (low, 

medium, and high) as between factors. The main effects of Crowd Density and Room 

Type and the interaction effect of Room Type × Crowd Density were all significant: 

F(2, 354) = 104.97, p < .001; F(1, 354) = 443.17, p < .001; F(2,354) = 35.07, p <.001, 

respectively. Post hoc tests with Tukey HSD corrections show that high Crowd Densi-

ty differs significantly from low and medium, but low and medium do not differ sig-

nificantly: low-medium, n.s.; medium-high, p < .001; low-high, p < .001. 

Total number of falls. As crowd density increases, so do the number of falls. The 

number of falls also increase faster in the larger room than in the smaller room. Note 

that the increase in falls is not due to more space in the rectangular room and more 

space to move (faster) towards the exits, as the crowd densities are kept the same 

relative to the total square metres of the room. Rather, a longer pathway (more steps 

towards the exit) increases the chance of falling (see Figure 13, middle). Statistical 

analysis confirms this interpretation of the graph. A 2 × 3 independent ANOVA was 

performed on Total Falls with Room Type (square or rectangle) and Crowd Density 

(low, medium, and high) as between factors. The main effects of Crowd Density and 

Room Type and the interaction effect of Room Type × Crowd Density were all signif-

icant: F(2, 354) = 2100.66, p < .001; F(1, 354) = 1524.03, p < .001; F(2,354) = 

893.53, p < .001. Post hoc tests with Tukey HSD corrections show that each level of 

Crowd Density differs significantly from each other level: low-medium, p < .001; 

medium-high, p < .001; low-high, p < .001. 

Response time. As expected, the response time is slower in the rectangular room 

than in the square room and also increases as crowd density increases (see Figure 13, 

right). Statistical analysis confirms this interpretation of the graph. A 2 × 3 independ-

ent ANOVA was performed on Response Time with Room Type (square or rectangle) 

and Crowd Density (low, medium, and high) as between factors. The main effects of 

Crowd Density and Room Type and the interaction effect of Room type × Crowd 

Density were all significant: F(2, 354) = 5648.72, p < .001; F(1, 354) = 11279.66, p < 

.001; F(2, 354) = 1003.42, p < .001, respectively. Post hoc tests with Tukey HSD 

corrections show that each level of Crowd Density differs significantly from each 

other level: low-medium, p < .001; medium-high, p < .001; low-high, p < .001. 

 



 

Fig. 13. Effects of Room Type on Evacuation Time, Falls, and Response Time. 

3.10! Comparing Results: Influence of Socio-Cultural, Cognitive, and 

Emotional elements 

In this section, the effects of the socio-cultural, cognitive, and emotional elements 

in the model will be compared to identify how much each element influences the total 

evacuation time. In this way, the added value of each element can be interpreted. Of 

course, this is in the case of the empty environment studied in the simulation experi-

ments, where only the human behaviour is studied during evacuation. In real life, the 

effects of the socio-cultural, cognitive, and emotional elements will be combined with 

environmental influences, such as obstacles, stairs, corridors, lanes, and pathways. 

Table 11, below, shows the effects of each model element (e.g. falling, helping, social 

contagion) on the total evacuation time in seconds and is expressed as a percentage of 

relative difference compared to the benchmark. The relative differences of each mod-

el element range from reducing the total evacuation time by 30% to increasing it by 

705%. Most notable are the decreases in evacuation time caused by social contagion 

of 20%, familiarity of between 6.6% and 7.5%, and travelling in groups of between 

2.4% and 30%. Compliance and environment type also have a very large effect on the 

evacuation time – increasing it by 184.2% and 705%, respectively – but these two 

effects are harder to compare in size with the others in the table, because the parame-

ter settings of compliance and the sizes of the environment types made the effect very 

large. The other effects are comparable, though, because the human behaviour all 

takes place in the same environment and the settings chosen are realistic. In conclu-

sion, the socio-cultural, cognitive, and emotional elements that can be compared – 

falling, helping, social contagion, familiarity with environment, group sizes, and age – 

have an effect on evacuation time between decreasing it by 30% to increasing it by 

3%.  

 

 

 

 

 

 

 

 



Table 11. Effects of Socio-Cultural, Cognitive, and Emotional Elements on Evacuation Time 
Model 

Element 

Variations Average Evac-

uation Time 

(seconds) 

Difference 

from bench-

mark (se-

conds) 

Relative 

difference 

from bench-

mark (per-

centage) 

Falls Off (benchmark) 324.31   

 On 293.51 -30.8 -9.5% 

Helping  

Behaviour 

Off (benchmark) 302.57   

 On 298.86 -3.71 -1.2% 

Social 

Contagion 

Off (benchmark) 396.12   

 On 317.27 -78.85 -20.0%** 

Familiarity 0% of passengers familiar with 

environment (benchmark) 

412.47   

 50% of passengers familiar with 

environment 

385.38 -27.09 -6.6%*** 

 100% of passengers familiar with 

environment 

381.52 -30.95 -7.5%*** 

Groups People travelling alone (bench-

mark) 

311.29   

 Groups of two 282.95 -28.37 -9.1%*** 

 Groups of three 303.87 -7.42 -2.4%*** 

 Groups of four 217.79 -93.5 -30.0%*** 

Age All adults (benchmark) 307.6   

 All elderly people 316.83 +9.23 +3.0%*** 

Compliance High compliance (1.0) (benchmark) 301.17   

 Low compliance (0.1) 856.03 +554.86 +184.2%*** 

Environ-

ment 

Small square room (20 × 20 me-

tres) (benchmark) 

313.07 

 

  

 Big rectangle room (20 × 40 me-

tres) 

530.86 

 

+217.79 +705.0%*** 

significant main effect: **p < .01, ***p < .001 

4! Conclusion and Discussion 

The aim of this research was to create and validate an evacuation simulation that 

includes socio-cultural, cognitive, and emotional factors in response to the need for 

more realistic crowd models that incorporate psychological and social factors. The 

development of the model drew on insights from social and cross-cultural psycholo-

gy, interviews with crisis management experts, and was based on scientific findings 

and literature. The model was validated against data from an evacuation drill simulat-

ed by the existing EXODUS evacuation model [13, 26]. Our IMPACT model was 

compared with this benchmark on multiple outcome measures and results showed 

that, on all measures, the IMPACT model was within or close to the prescribed 

boundaries, thereby establishing its validity. 

Next, multiple simulation experiments were run to answer research questions con-

cerning the effects of the socio-cultural, cognitive, and emotional elements in the 

model on evacuation time, total number of falls, and response time. Important find-

ings are that emergent effects, such as the faster-is-slower-effect [17], were found in 

our results in new forms: as effects of falling, helping, social contagion, and familiari-



ty with the environment. For instance, both falling behaviour and helping (in high 

crowd density) led to faster evacuation times. The explanation is that falling and help-

ing create a more phased evacuation – as the delays they cause effectively stagger the 

evacuation and reduce congestion – that results in a faster overall process. Moreover, 

as expected, social contagion also creates faster evacuation times, because infor-

mation about the need to evacuate spreads faster than without social contagion. It also 

unexpectedly led to less falls, which again can be explained by the faster-is-slower-

effect. Again, like with falls and helping, people are more phased in their evacuation, 

meaning less congestion at the bottlenecks (the exits) and therefore less falls. Fur-

thermore, the more people are familiar with the environment: (1) the faster the evacu-

ation time, (2) the fewer the falls, and (3) the faster the response time. These results 

are a combination of a phased evacuation (meaning less congestion and fewer falls, 

and therefore a faster-is-slower-effect resulting in faster evacuation time), less con-

gestion (more people spread through the environment going to the nearest exits in-

stead of all taking the same exit, meaning fewer falls), and social contagion (the deci-

sion to evacuate can spread faster, meaning faster response times and evacuation 

times). Groups also showed an interesting effect. The current model suggests it is 

actually faster to evacuate in groups than alone. This was not based on speed, and 

therefore not a faster-is-slower-effect, but partly based on social contagion (collective 

intelligence and herding). The impact of groups on crowd dynamics is still largely 

unknown [24] and we have not modelled group formations, such as in [24], that could 

influence the crowd dynamics. Rather, we had chosen to model a group as moving 

through space as a ‘square’ group, with all members moving from patch (square me-

tre) to patch simultaneously. The effect of group formations would therefore need 

further research with the current model.  

The faster-is-slower-effect was not found when comparing age groups, however, 

as the elderly evacuated more slowly than adults although moving more slowly. The 

reason for the faster-is-slower-effect not being present here for age is that it would 

require differences in speed within the same simulation run. In this model, however, 

all passengers within a simulation were either exclusively fast (adults) or slow (elder-

ly people), which meant that faster speed means faster evacuation here. For adults by 

themselves the faster-is-slower-effect was present, but then as a result of falls. The 

elderly did not fall due to their slower speeds, which in turn prevented a faster-is-

slower-effect when looking at falls instead of speed. The elderly did not fall once in 

the simulation which is not realistic in real life, since elderly people are more prone to 

falling. The current implementation of falling is based on speed alone and therefore 

needs to be improved to also take age into account. With a high level of compliance, 

people evacuate faster than with a low level of compliance, as expected. The current 

settings of compliance levels do not make enough differentiation between different 

ages and genders to have an effect. The simulation experiment showed that the com-

pliance parameter can have an effect, but not with the current model settings. It needs 

to be decided if this parameter can be omitted or if new parameter settings for differ-

ent ages and genders can be calculated from new data. Finally, in the smaller square 

room (20 × 20 metres), evacuation was faster than in the larger rectangular room (20 

× 40 metres). Also, in the smaller square room there were fewer falls and a faster 

average response time than expected. Essentially, taking more steps towards the exit 

means more chance of falling.  



Comparing all simulation results together, the socio-cultural, cognitive, and emo-

tional elements have an effect from reducing evacuation time by 30% through to in-

creasing it by 3% when the following model elements are considered: falling, helping, 

social contagion, familiarity with environment, group sizes, and age. However, the 

parameter settings of compliance and the sizes of the environment types made these 

effects very large (increasing evacuation time up to 705%) and are therefore left out 

in this comparison. Overall, this demonstrates that including socio-cultural, cognitive, 

and emotional elements in evacuation models is both feasible and vital, as they can 

influence evacuation time by up to 30%. Of course, this is only based on our experi-

ments in an empty square room, where there is no interaction with environmental 

features such as obstacles, corridors, counterflows, stairs, and others. Therefore, this 

(maximum) 30% effect on evacuation time should be seen as a ‘pure’ effect of the 

socio-cultural, cognitive, and emotional elements in the model, without these addi-

tional environmental influences.  

The strengths of this research are the inclusion of psychological and socio-cultural 

aspects in the crowd simulation model, based on research literature and support from 

stakeholders. Furthermore, the statistical analyses of the experimental results 

strengthen the interpretations. The current weaknesses of this work are that not every 

socio-cultural, cognitive, and emotional parameter that was identified during the de-

velopment of the model is yet implemented to test, such as passengers’ disabilities. 

Conversely, though, the more parameters in the model, the more complex it becomes, 

and the more difficult it is to analyse and interpret all the results, so there are also 

benefits to this. Furthermore, the results of the simulations cannot be taken for granted 

and they will naturally remain estimations. However, because the simulations are 

based on sufficient background literature, and research and interaction with stake-

holders, we believe them to be sound estimations. Moreover, the work limits itself to 

making predictions about the influence of human behaviour on the evacuation pro-

cess. All the socio-cultural, emotional, and cognitive effects were tested in an empty 

room with four exits. In real life, these effects would be combined with the influences 

of the environment itself, such as corridors, number of exits, stairs, and obstacles. 

This research could therefore be extended by investigating the combined effect of 

these elements with the environment, like in [42]. Also, a very important phenomenon 

– counterflow – was not modelled here. In the current model, all passengers can al-

ways take their own pathway towards an exit and do not have to cross or overtake 

others in the simulation. Therefore, the effects of counterflows are not modelled. Al-

so, it was assumed that when people fall they can stand up again after a while. In real-

ity, people could be trampled on or injure themselves and therefore not be able to 

stand up again. Consequently, the way we modelled falling behaviour here is just a 

first step towards studying this effect. However, it is difficult to model, since there is 

no research conducted yet (to the knowledge of the authors) that indicates what the 

chances of falling are in certain crowd densities and environments, and also how long 

it takes to stand back up. Future work consists of developing the model further to 

simulate realistic transport hub environments and extending the pathfinding behaviour 

with more heuristics.  

To conclude, we reiterate three points that summarise our findings and implica-

tions: (1) our model is a realistic evacuation simulation, validated in comparison with 

an established model and demonstrating well-known emergent effects, such as the 



faster-is-slower-effect; (2) we would recommend that evacuation simulation model-

lers include socio-cultural, emotional, and cognitive elements in future models, based 

on the substantial effect sizes found here (reducing evacuation time by up to 30%), 

especially social contagion; (3) cultural and social diversity can be beneficial to evac-

uation as they create more phased evacuations, which create an overall benefit from 

the faster-is-slower-effect. Further implications are that transport operators, emergen-

cy managers, and prevention professionals can use these kinds of agent-based models 

to predict outcomes and inform decision making when designing systems [5]. These 

models could also be used to support periodic safety and security risk assessments and 

mandatory risk assessments when environments or procedures change, and/or when 

new communication processes or technologies are implemented. Also, policy makers 

could use these models to support the identification of mandatory regulations and 

standards with respect to communication for emergency prevention and management. 

In conclusion, these are promising developments and the incorporation of further 

psychological insights into crowd simulations will help enhance the realism of these 

models and the accuracy with which they can predict and prevent crowd disasters. 
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