Dear Author

Here are the proofs of your article.

- You can submit your corrections online, via e-mail or by fax.
- For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and email the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.
- Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- Check the questions that may have arisen during copy editing and insert your answers/corrections.
- Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style.
- Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections within 48 hours, we will send you a reminder.
- Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.
- The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL:

http://dx.doi.org/10.1007/s00247-017-3945-3

If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information, go to:

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us, if you would like to have these documents returned.
Metadata of the article that will be visualized in OnlineFirst

<table>
<thead>
<tr>
<th>Article Title</th>
<th>Bowing fracture of the inferior angle of the scapula, a difficult diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article Sub-Title</td>
<td></td>
</tr>
<tr>
<td>Article Copyright Year</td>
<td>Springer-Verlag GmbH Germany 2017 (This will be the copyright line in the final PDF)</td>
</tr>
<tr>
<td>Journal Name</td>
<td>Pediatric Radiology</td>
</tr>
<tr>
<td>Author</td>
<td>Miller Christopher</td>
</tr>
<tr>
<td>Division</td>
<td>Clarendon Wing Radiology Department</td>
</tr>
<tr>
<td>Organization</td>
<td>Leeds Children’s Hospital, Leeds Teaching Hospitals NHS Trust, Leeds Children’s Hospital at The Leeds General Infirmary</td>
</tr>
<tr>
<td>Address</td>
<td>Leeds LS2 9NS, UK</td>
</tr>
<tr>
<td>Author</td>
<td>Grainger Andrew</td>
</tr>
<tr>
<td>Division</td>
<td>Department of Radiology</td>
</tr>
<tr>
<td>Organization</td>
<td>Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust</td>
</tr>
<tr>
<td>Address</td>
<td>Leeds, UK</td>
</tr>
<tr>
<td>Author</td>
<td>Phillips Robert</td>
</tr>
<tr>
<td>Division</td>
<td>Department of Paediatric Oncology</td>
</tr>
<tr>
<td>Organization</td>
<td>Leeds Children’s Hospital, Leeds Teaching Hospitals NHS Trust</td>
</tr>
<tr>
<td>Address</td>
<td>Leeds, UK</td>
</tr>
<tr>
<td>Author</td>
<td>Sabouni Mohamed</td>
</tr>
<tr>
<td>Division</td>
<td>Department of Paediatric Orthopaedic Surgery</td>
</tr>
<tr>
<td>Organization</td>
<td>Leeds Children’s Hospital, Leeds Teaching Hospitals NHS Trust</td>
</tr>
<tr>
<td>Address</td>
<td>Leeds, UK</td>
</tr>
<tr>
<td>Author</td>
<td>Kraft</td>
</tr>
</tbody>
</table>
A 4-year-old boy presented with swelling over the inferior tip of the scapula and an unclear history. Initial radiographic findings were concerning for an aggressive lesion. This case highlights how a multimodality imaging approach was used to relieve uncertainty by diagnosing a paediatric bowing type fracture of the scapular tip.
Bowing fracture of the inferior angle of the scapula, a difficult diagnosis

Christopher Miller¹ · Andrew Grainger² · Robert Phillips³ · Mohamed Sabouni⁴ · Jeannette K. Kraft¹

Received: 8 April 2017 / Revised: 25 June 2017 / Accepted: 10 July 2017

© Springer-Verlag GmbH Germany 2017

Abstract A 4-year-old boy presented with swelling over the inferior tip of the scapula and an unclear history. Initial radiographic findings were concerning for an aggressive lesion. This case highlights how a multimodality imaging approach was used to relieve uncertainty by diagnosing a paediatric bowing type fracture of the scapular tip.

Keywords Child · Fracture · Magnetic resonance imaging · Radiography · Scapula · Ultrasound

Introduction Scapula fractures occur infrequently in children and are usually the result of major trauma with multiple injuries. This is because the scapula is well protected by surrounding musculature. Therefore, fractures usually involve the glenoid, coracoid process and acromion. Fractures of the inferior angle of the scapula are very rare in children with only a few case reports in the literature [1–4]. They usually represent avulsion fractures due to the action of serratus anterior or latissimus dorsi muscles [1].

Case report

A 4-year-old boy presented to the emergency department at an outside institution with swelling over the left scapula noticed by his mother. Earlier that day, he had fallen down stairs and landed on his back without apparent initial sequelae. It was uncertain if the swelling predated the injury. Physical examination revealed a painless lump over the left scapula, with full range of movement at the left shoulder joint. The patient was otherwise well with no significant medical or family history.

Radiographs performed in the emergency department demonstrated an irregular bony mass projecting towards the chest wall from the inferior angle of the scapula (Fig. 1). Routine blood tests including inflammatory markers were normal except for low vitamin D values of 12.7 nmol/L (<30 nmol/L suggests vitamin D deficiency). Blood cultures were negative.

The boy was referred to the paediatric oncology department at our institution as the plain film findings were suspicious for an aggressive bone lesion. A US scan performed 5 days after the initial presentation demonstrated a curved inferior scapular border with an angled cartilaginous tip of the scapula. Associated was an ill-defined mass-like area with increased vascularity and surrounding soft-tissue oedema (Fig. 2). Concerns regarding malignancy triggered further investigations. An MR scan performed 10 days after the initial presentation showed no soft-tissue mass but extensive muscle and soft-tissue oedema surrounding a bony ridge at the inferior angle of the scapula with bone marrow oedema. Post gadolinium marked enhancement was seen in the bone and surrounding tissues (Fig. 3). A CT scan demonstrated a curved scapular tip with surrounding periosteal reaction and early...
callus formation (Fig. 4). When compared with the normal right scapula, it was apparent that the inferior tip of the scapula had folded inwards in keeping with a bowing or plastic deformation fracture. The boy was managed conservatively as he was pain free. At follow-up 3 months later, a healing fracture with hard callus formation and a well-rounded inferior scapula tip was demonstrated on a radiograph. Clinical examination revealed normal range of shoulder movement.

Discussion

In contrast to the common types of scapula fractures, which usually require high force, inferior angle fractures can be sustained in isolation and with lower levels of trauma. Fractures of the inferior angle of the scapula are very rare. It should be considered that fractures in such an unusual location may be related to non-accidental injury, especially if there is no history of trauma or, as in our case, the causality is not initially apparent. We identified three previously reported cases in children [1–4]. These papers describe the mechanism of injury as avulsion due to the strong action of periscapular muscles such as serratus anterior or latissimus dorsi. In our case, the mechanism of injury is likely direct trauma with a blow to the lower aspect of the scapula that occurred on the day of presentation to the emergency department. Impact on the edge of a step as the boy fell must have caused inwards folding of the scapular tip in a paediatric-type plastic deformation pattern. The diagnostic difficulty arose from the plain radiographic appearances of an aggressive lesion, which is probably related to the radiographic projection and difficulty in depicting the blade of the scapula in a true lateral projection as can be achieved with CT. Initially, the preceding traumatic event was not given enough consideration to suggest an unusual fracture, leading to further investigations and referral to oncology clinic. Therefore, sonography was performed several days after presentation when the injury had started to heal with increased vascularity and granulation tissue suggesting a more aggressive process. As demonstrated in a case report by Szopinski, Adamczyk and Drwiega [2], the cartilaginous part

Fig. 1 Lateral radiograph of a 4-year-old boy with scapular bowing fracture. The inferior tip of the scapula appears mass-like with bony irregularity (arrow).

Fig. 2 Sonograms of a 4-year-old boy with scapular bowing fracture. a Long section through the inferior tip of the scapula shows a curved scapular edge (short arrows) with angulation just above the cartilaginous tip (long arrow). b Transverse section demonstrates a mass-like area (arrow) with increase in vascularity on colour Doppler related to healing of the fracture. c Long section through the inferior tip of the right scapula is shown for comparison.
of the scapular tip, which ossifies around puberty, is well-demonstrated with US. Angulation of it in our case probably suggests associated detachment at the bone cartilage interface (Fig. 2). This could be related to direct trauma or an avulsion type component related to the action of the serratus anterior muscle on the inferior aspect of the scapula. Avulsion injuries of the tip of the scapula are rare but have been previously described [1–4]. However, the case presented here is not a simple avulsion injury. Bowing of the scapula was not described in any of the previously published cases we identified and detachment or dysfunction of the serratus anterior muscle would lead to winging of the scapula, which was not observed in our case [1, 5]. Another two cases previously described paediatric-type greenstick fractures in children [6, 7]. Similar to our case, both cases occurred after low-energy trauma. However, these greenstick fractures were associated with significant scapular winging.

In our case, the fracture was stable against the chest wall, which probably explains why the child presented with a painless lump. It is likely that the fracture was initially painful, which was not communicated by the young child. Once a fracture is stabilised, it usually becomes pain free.

MRI is not commonly used to investigate fractures in children. Therefore, an unusual healing fracture in an unusual location is difficult to diagnose by MRI, especially in a child referred from oncology clinic. The marked muscle oedema and enhancement together with early callus formation suggested a more aggressive or inflammatory lesion (Fig. 3). CT, however, provides superior bone detail suitable to demonstrate periosteal reaction and callus formation. CT is usually reserved for complex fractures and preoperative planning, but its multiplanar and surface-rendered 3-D imaging capabilities finally revealed the true nature of the lesion (Fig. 4). A previous case report details a similar situation where a suspicious lesion was seen on plain film and MRI, with a bone biopsy only avoided when a fracture line was identified on the chest CT performed for staging purposes [8].

In contrast to a reported case of avulsion of the cartilaginous tip of the inferior angle of the scapula that was surgically treated, our patient was conservatively managed with no ill effects to his shoulder and scapular function [2]. Chang et al. [1] recently reviewed the literature and identified 10 cases of inferior angle fractures. The review
included 2 children (a 13- and a 17-year-old) who both had undisplaced fractures successfully managed conservatively. The paper suggests that displaced fractures, however, should be surgically treated to avoid painful non-union [1]. This case illustrates how multimodality imaging can be utilised to reach a diagnosis when plain films reveal unusual appearances and the history is uncertain. Whilst in hindsight US and MRI could have been avoided, neither of these carries a radiation burden. It was important to recognise this rare fracture involving the inferior angle of the scapula and exclude sinister pathology.

Compliance with ethical standards

Conflicts of interest None.

References

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES.

Q1. Please check the exact presentation of author names including any initial(s) keeping in mind that this will remain the spelling/format used in any future citation of this paper.
Q2. Please check if the affiliations are presented/captured correctly.