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Ramsey interference in a multilevel quantum system
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We report Ramsey interference in the excitonic population of a negatively charged quantum dot measured in
resonant fluorescence. Our experiments show that the decay time of the Ramsey interference is limited by the
spectral width of the transition. Applying a vertical magnetic field induces Zeeman split transitions that can be
addressed by changing the laser detuning to reveal two-, three-, and four-level system behavior. We show that
under finite field the phase-sensitive control of two optical pulses from a single laser can be used to prepare both
population and spin states simultaneously. We also demonstrate the coherent optical manipulation of a trapped
spin in a quantum dot in a Faraday geometry magnetic field.
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I. INTRODUCTION

Ramsey interferometry has found use in cesium atomic
clocks and in investigations of the quantum nature of the
electromagnetic field [1,2]. Applying this technique to solid
state systems promises new applications and insights [3–5]
including accurate coherence time measurements of solid state
quantum systems [6], the implementation of simple quantum
algorithms [7], and magnetometers with nanoscale spatial
resolution [8].

Prior measurements of Ramsey interference (RI) between
exciton population levels in quantum dots (QDs) have used
one of two techniques. In some works [3,9,10] the laser is
resonant with a transition and measurement of the population is
made in photocurrent, which necessitates the destruction of the
exciton, shortening its lifetime. Alternatively, optical readout
of the population has been made when excitation occurs via
a phonon-assisted transition [9] or a two-photon transition [4]
and thus the laser can be removed by spectral filtering.

Here we demonstrate a direct measurement of RI in the
resonant fluorescence (RF) of a QD. The measurements are
performed on the negative trion transition and dependent
on the external magnetic field and laser energy, we observe
two-, three-, and four-level system behavior. This leads to
a rich variety of interferograms with exponential decays,
beats, and oscillations which reveal information about the
coherence of the exciton and the trapped charge. Our results
show how controlling the time delay between subsequent
pulses from a single laser allows us to prepare a population
superposition simultaneously with a spin state superposition.
We believe that these results will open new possibilities to
control and measure the dynamics of spin qubits in mesoscopic
semiconductor systems. As a metrology technique RI gives
unparalleled precision in measurement of the emitter’s local
environment [8,11].

Ramsey interference (RI) fringes are the result of the oscil-
lation in the population of a state as a function of the time delay
between two π

2 pulses. The first pulse creates a superposition
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between the ground and excited state—interpreted as a π
2

rotation of the Bloch vector about the x axis of the Bloch sphere
[Fig. 1(a)]. The system then undergoes free evolution—the
Bloch vector precesses about the equator of the Bloch sphere
[Fig. 1(b)] at a frequency determined by the energy difference
between the ground and excited states. The second π

2 pulse

FIG. 1. (a) A π

2 pulse creates a coherent superposition of the
excited and ground states; the Bloch vector is rotated by π

2 about the
x axis. (b) The system undergoes free evolution; the Bloch vector
precesses about the z axis. (c) A second π

2 pulse maps the system
into the excited or ground state dependent on the time delay between
the pulses; the Bloch vector is rotated by π

2 about the x axis. (d) An
illustration of the energy levels of the negatively charged QD at zero
magnetic field. (Bloch spheres were produced with [12].)
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FIG. 2. (a) A pulsed Hanbury-Brown and Twiss g(2)(τ ) measurement. (b) The rotation of the Bloch vector about the x axis. (c) Rabi
oscillations. (d) An illustration of our experimental setup for performing RI. (e) (Red) Interference visibility of input laser pulses. (Black)
The visibility of the Ramsey fringes as a function of pulse separation. (f) Emission intensity as a function of fine time delay at a short pulse
separation (50 ps). (g) Emission intensity as a function of fine time delay at a longer pulse separation (1000 ps).

then maps the system to the ground or excited state dependent
on the time delay of the two pulses. Again, this is interpreted
as a rotation of the Bloch vector about the x axis [Fig. 1(c)]. At
zero magnetic field the energy levels of a negatively charged
QD are spin independent, so the dot behaves as a two-level
system [Fig. 1(d)].

II. EXPERIMENT

The InGaAs dot used was embedded in the undoped region
of an LED planar microcavity cooled to 5 K. The device was
held below the threshold voltage so no electroluminescence
was seen, but the dot was loaded with an electron. Excitation
was performed using 57 ps resonant laser pulses (generated
by filtering 3 ps pulses from a mode locked Ti:sapphire
laser with a grating) with an 80 MHz repetition rate. The
pulses are short relative to the exciton lifetime of 959 ± 2 ps.
Cross-polarization filtering (with an extinction ratio of 107)
was used to separate the linearly polarized excitation light from

the circularly polarized emitted light. The emitted light was
not spectrally or temporally filtered ensuring that the spectral
density function of the emitted photons remained intact. This
prevents an artificial increase in the decay time of the Ramsey
fringe visibility.

III. RESULTS

To determine that we are exciting a single quantum
emitter, we perform a Hanbury-Brown and Twiss measurement
and record g(2)(0) = 0.06 [Fig. 2(a)]. The measurement is
performed using 0.7π pulses. The peak at τ = 0 is less
than 0.5, which indicates that the detected light is primarily
composed of single photons.

Next, we demonstrate that we can coherently manipulate
the excitonic population, which we interpret as rotating the
Bloch vector about the x axis [Fig. 2(b)]. We do this by
recording the emitted light intensity as a function of the
square root of pulse power and observing Rabi oscillations
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with some damping [13,14] [Fig. 2(c)]. The red line shown
serves only as a guide to the eye. Power dependent damping
of Rabi oscillations has been observed previously in quantum
dots and possible mechanisms are the subject of theoretical
investigations [15,16]. However, as we are primarily concerned
with π

2 pulses, damping at higher powers is of little relevance
to this work.

A. Two-level system

We use the setup illustrated in Fig. 2(d) to apply the
Ramsey pulse sequence and record the emitted light intensity
as a function of pulse separation. Scanning the position of
the movable mirror of the Michelson interferometer allows
us to control the pulse separation and to record the emitted
light intensity after polarization filtering. Measurements are
recorded using a single mode fiber coupled silicon avalanche
photodiode. We observe a sinusoidal variation in the emission
intensity [Figs. 2(f) and 2(g)] from which we extract the
interference visibility at each pulse separation time [Fig. 2(e)
in black].

The visibility decays exponentially with a decay time of
510 ± 10 ps. The decay time is close to the coherence time
inferred from a linewidth measurement taken using a Fabry-
Perot Etalon [605 ± (24/21)] ps, as expected from the Wiener-
Khinchin theorem [17]. Figure 2(e) also shows the interference
visibility between the laser excitation pulses (red). Due to this
effect, oscillations shown in the gray region cannot be ascribed
to RI. Outside of this region the low noise floor indicates that
the oscillations are a result of RI.

B. Four-level system

Applying a magnetic field in the Faraday geometry removes
the degeneracy between the spin-up and spin-down states
resulting in four levels with distinct energies [Fig. 3(a)]. There
are now two transitions allowed by the selection rules with an
energy difference consistent with a combined electron and hole
g factor of |ge + gh| = 2.88 ± 0.03. Therefore, the diagonal
transitions are suppressed relative to the vertical transitions and
provide no noticeable contribution to the results at this laser
energy. We set the laser energy between the two transition
energies in order to excite both transitions equally [Fig. 3(c)].

Here we observe RI with the same decay time as at zero field
[illustrated as a gray line in Fig. 3(b)], but with a beating pattern
in the interference fringes [Fig. 3(b)]. The beat frequency
corresponds to the energy difference between the allowed
transitions. These results are explained by considering two
independent two-level systems and can be represented as a
Bloch sphere with two Bloch vectors. The two vectors precess
about the z axis at different rates and move in and out of phase
with each other. When they are in phase we see a peak in
visibility and when they are out of phase we see a minimum.

C. Three-level system

Setting the laser wavelength degenerate with one of the
observed transitions in Fig. 3(c), we repeat the RI measure-
ment. We again observe a slow beating pattern with high
visibility, visible up until around 500 ps. However, this time
we also observe a slow oscillation in the average intensity

FIG. 3. (a) An illustration of the allowed transitions and energy
levels in a Faraday geometry magnetic field. (b) A beating in
the Ramsey fringe visibility at 125 mT magnetic field. The gray
exponential decay is a fit to the decay envelope of the two-level
system as in Fig. 2(e). (c) Measured intensity and a function of laser
detuning.

of the emitted light, which is most visible after 500 ps. Both
the beating pattern and the slow oscillation have a frequency
determined by the ground-state electron splitting. Here we
discuss the mechanisms for both features.

The beat frequency corresponds to the energy of the electron
Zeeman splitting. A field-dependent measurement allows us to
determine the electron g factor (|ge| = 0.58 ± 0.08)—in good
agreement with |ge| = 0.60 ± 0.05 made using the standard
spectral method [18].

It is surprising that the ground state splitting can cause
high visibility beats in the interferogram [Fig. 4(b)]. The
graph appears to be a solid block of color due to the fast
oscillations in X− intensity with pulse separation. The same
is true of the simulated graphs in Figs. 4(c)–4(f). Although in
an ideal dot the diagonal transition in Fig. 4(a) is forbidden,
heavy-light hole mixing results in a weakly allowed diagonal
transition [19–21]. The ground state splitting is rather small so
the laser spectrum overlaps with both transitions, as illustrated
in Fig. 4(a).

When considering a system where there is one vertical
transition and one weakly allowed diagonal transition, we
need to take the expected electron spin state into account.
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FIG. 4. (a) A sketch of the three-level system considered in the model. (b) The measured emission intensity of the three-level system as a
function of pulse separation at 500 mT. (c) The expectation value of the ground state electron spin in the long time limit as a function of pulse
separation. (d) A full simulation of the expected emission intensity as a function of pulse separation. (e) The same simulation as (d), but here
the effect of the pulse separation-dependent spin preparation is neglected. (f) The same simulation as (d) but here the coherence terms between
the two electron ground states are rapidly destroyed.

For example, the system is more likely to be excited when the
electron is in the |↑〉 state due to the stronger coupling of the
vertical transition to laser field. Therefore, in order to model
the three-level system we must calculate the expected initial
state of the electron (see Sec. IV).

We find that the expected initial state of the electron is
dependent on the pulse separation [Fig. 4(c)]. This dependence
can be intuitively understood by considering weak pulses using
a model with two Bloch vectors (note that this explanation
neglects any coupling between the two low energy states via
the excited state). After the first pulse, the Bloch vectors
for the two transitions precess about the z axis at different
rates. When they are completely out of phase the second
pulse can then destructively interfere with one transition and
constructively interfere with the other. The result is as if
we were preferentially driving the constructively interfering
transition and only weakly driving the destructively interfering
one. After many two-pulse repetitions, we see spin state prepa-
ration as one spin state is being preferentially driven into the
excited state. This explains why the nodes in fringe visibility
[Fig. 4(d)] correspond to antinodes in the spin-expectation
value graph [Fig. 4(c)]. Including the spin preparation effect
in the simulations allows us to recover a beat visibility that
appears similar to the measured result [Fig. 4(d)]. In contrast,
Fig. 4(e) is the result of ignoring the spin preparation—note
the considerably lower beat visibility. We conclude that this
pulse separation-dependent spin preparation is an important

effect in this three-level system and may be of use in other
lambda systems.

Next we turn our attention to the slow oscillation in the
average emission rate visible in the interferogram, a feature
which is particularly noticeable at 600–1400 ps [Fig. 4(b)].
This behavior is not seen in the two- or four-level systems. The
oscillation frequency corresponds to the Larmor frequency
of the electron. We determine that not only is the expected
population of the electron spin state important for determining
the emission intensity, the coherence matters too. The first
pulse creates an impure coherent superposition of the electron
spin state by coupling the two spin states via the excited
state. The mechanism by which this superposition is generated
(given in Sec. IV) is similar to that presented in [22], but
here we use a Faraday geometry magnetic field rather than
a Voigt geometry field. Our simulations predict the observed
slow oscillation and show that the phase of the electron spin
before the second pulse affects the emission intensity. To
emphasize this point we destroy the electron coherence terms
in the model and see that this removes the slow oscillatory
behavior [Fig. 4(f)]. The model predicts that the visibility of
these oscillations will be higher at higher pulse powers and this
is observed in our measurements. To the best of our knowledge,
this is the first demonstration of an optically induced coherent
rotation of an electron spin state in a quantum dot in a Faraday
geometry magnetic field. The coherent control of a trapped
charge in a QD with Faraday geometry selection rules is a
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key capability for one of the proposed methods for generating
photonic cluster states [23].

The simulations also indicate that the decay of these
oscillations at long times is only dependent on the decay and
dephasing times of the electron spin.

IV. THE MODEL

The most interesting behavior observed in our work was
in the “three-level” regime. In order to better understand our
results we constructed a simulation in MATLAB.

We use the Lindblad master equation equation to model the
evolution of the system:

ρ̇(t) = − i

�
[H,ρ(t)] +

∑
n

γnLn(ρ), (1)

where the − i
�

[H,ρ(t)] term describes the unitary evolution
of density matrix ρ under the Hamiltonian H according to
the Liouville–Von Neumann equation and the

∑
n γnLn(ρ)

represents the nonunitary terms due to decays and environ-
mental interactions. The Ln(ρ) are the decay and dephasing
superoperators and the γn give the decay and dephasing rates.

A. Operator definitions

1. Free evolution

A pure state of the three-level system is defined as

|ψ〉 = α |↑〉 + β |↓〉 + δ |↑↓⇑〉 , (2)

and we define the density operator so that

ρ11 = |α|2, ρ22 = |β|2, ρ33 = |δ|2. (3)

The free evolution of the system is governed by the
Hamiltonian

HEvolution =

⎛
⎜⎝

E↑ 0 0

0 E↓ 0

0 0 E↑↓⇑

⎞
⎟⎠, (4)

where E↑ is the energy of the electron spin-up state, E↓ is the
energy of the electron spin-down state, and E↑↓⇑ is the energy
of the excited state with a hole spin of + 3

2 . The |↑↓⇓〉 state
is not considered—when using the laser detuning used in the
three-level case we assume the system is not driven into this
state due to the minimal overlap between the transitions to this
state and the laser energy.

2. Excitation

The excitation and deexcitation operators between the two
transitions are defined as

σ+
↑,↓ =

⎛
⎜⎝

0 0 0

1 0 0

0 0 0

⎞
⎟⎠, σ+

↑,↑↓⇑ =

⎛
⎜⎝

0 0 0

0 0 0

1 0 0

⎞
⎟⎠,

σ+
↓,↑↓⇑ =

⎛
⎜⎝

0 0 0

0 0 0

0 1 0

⎞
⎟⎠, σ− = σ+†. (5)

Making use of these operators to describe the effect of the
laser pulse on the system we define the Hamiltonian:

HPulse = F↑,↑↓⇑(σ+
↑,↑↓⇑ + σ−

↑,↑↓⇑) + F↓,↑↓⇑(σ+
↓,↑↓⇑ + σ−

↓,↑↓⇑),

(6)

where F↑,↑↓⇑ and F↓,↑↓⇑ determine the strength of the
interaction between the laser field and the transition (i.e., they
account for both the laser power and the coupling strength
between the transitions and the laser field).

3. Decay and dephasing

In order to account for radiative decay, the decay superop-
erators between states are defined as

Ldecay(ρ(t)) = 1
2 [2σ−ρ(t)σ+ − ρ(t)σ+σ− − σ+σ−ρ(t)]. (7)

Note that it is assumed that there is no decay between the
electron spin states over the time scales investigated. (The
device is held at a bias in the center of the charge plateau to
maximize the electron spin lifetime.)

Next, in order to account for the dephasing due to environ-
mental interactions, we define the pure dephasing operators as

Ldeph(ρ(t)) = −[Iaρ(t)Ib + Ibρ(t)Ia], (8)

where the elements of the matrix Ia are Ia,nm = δn,mδn,a .
a and b indicate the states between which the coherences are
destroyed. For example, for a = 1, b = 3, the superoperator
destroys the coherence terms between the |↑〉 and |↑↓⇑〉 states.
Removing the effect of the electron spin coherence on the result
[as in Fig. 4(f)] is done by setting the electron dephasing γ

to a high value so that the coherences are destroyed almost
immediately.

B. Simulating free evolution and the Ramsey pulses

1. Free evolution

For time-independent Liouvillians, Eq. (1) can be integrated
to get

ρ(t) = eLt ρ(0), (9)

where the Hamiltonian and all the relevant superoperators have
been absorbed by L.

A matrix representation of L is found by combining
superoperators which perform left or right multiplication. The
left and right superoperators are defined as

L(M)ρ =Mρ −→ (M ⊗ 1)ρ̃,

R(M)ρ =ρM −→ (1 ⊗ MT )ρ̃,
(10)

where ρ̃ is the flattened density matrix defined by the mapping

ρ =
∑

i

pi |ψi〉 〈ψi | −→
∑

i

pi |ψi〉 ⊗ |ψi〉∗ = ρ̃. (11)

2. The pulse operator

To simulate the effect of a resonant laser pulse, the pulse
operator is defined using the pulse Hamiltonian as

P = exp

[
− iπ

2

(
HPulse ⊗ 1 − 1 ⊗ HT

Pulse

)]
. (12)
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Note that P is dependent on the field-oscillator couplings
F↑,↑↓⇑ and F↓,↑↓⇑. It is assumed that the length of the pulse
is short in relation to all the relevant dephasing and decay
times, so no decay or dephasing terms are included in the
pulse operator.

3. The Ramsey pulse sequence

To simulate the effect the Ramsey pulse sequence with
pulses separated by time t on the system, the operator
Pet

∑
i Li P is applied. This operator represents a pulse followed

by free evolution for a time t followed by a second pulse. The
flattened density operator of the system after the Ramsey pulse
sequence for an initial flattened density matrix of ρ̃(0) is given
by

ρ̃(t) = Pet
∑

i Li P ρ̃(0), (13)

where
∑

i Li represents a sum over all of the dephasing and
decay operators as well as the superoperator that governs the
free evolution under the system Hamiltonian.

C. Determining the expected initial state ρ̃(0)

It might seem that this is sufficient to simulate the
experiment, however Eq. (13) is dependent on the state of
the system before the pulse sequence ρ̃(0), which has not
yet been determined. In order to simulate the results of the
experiment, ρ̃(0) should be the expected state of the system
before the Ramsey pulse sequence is applied. As the measured
result used many millions of Ramsey pulse sequences per
data point, it is reasonable to assume that the majority of the
measurement takes place after the system has already been hit
by many pulses. Given this, this subsection will focus on how
the value of ρ̃(0) is determined.

For a given pulse separation, ρ̃(0) is defined as

ρ̃(0) = lim
n→∞

[
eT

∑
i Li P et

∑
i Li P

]n
ρ̃s ≡ lim

n→∞ Snρ̃s, (14)

where ρ̃s is any state and T is the remaining time between
the two-pulse sequences (in our case 12.5 ns −t). In other
words, ρ̃(0) is the expected state that the system tends to
as it is hit by many Ramsey pulse sequences. Note that the
electron spin is only allowed to dephase and not to decay. For
the parameters used, there no electron spin coherences for the
expected initial state ρ̃(0) (the relevant elements of the density
matrix have a magnitude of the order of 10−11).

In the simulations performed for this work an unexcited
state with the electron in a maximally mixed state was used
for ρ̃s , but as would be expected intuitively, ρ̃(0) is found to
be independent of the choice of ρ̃s whenever both F↑,↑↓⇑ and
F↓,↑↓⇑ are nonzero and the γ values are set appropriately.

In order to determine the existence and the value of ρ̃(0), it
is necessary to find limn→∞ Sn. This is done by diagonalizing
S to get

S = RDR−1, (15)

where D is a diagonal matrix of eigenvalues λl , R is a
matrix of eigenvectors of S, and R−1 is the inverse of R. This
means that Sn can be written as

Sn = (RDR−1)n = RDnR−1. (16)

To make physical sense, the elements of Dn should not
diverge as n → ∞, therefore it is expected that ∀ l : |λl| � 1.
Similar physical arguments also suggest that Dn should not
converge as n → ∞, so it is also expected that ∃ l : |λl| = 1.

As ∀ |λl| < 1 : limn→∞ λn
l = 0, all the elements for which

|Dlm| < 1 are set to 0, leaving a diagonal matrix D′ with
elements that have absolute values of 0 or 1. Therefore, all
of the remaining diagonal elements are either D′

ll = 0 or
D′

ll = eiφ . If any nonzero D′
ll �= 1 then limn→∞ D′n cannot

be determined as the element will simply precess about the
Argand plane as n increases and so there may not be a ρs

independent ρ(0). This is found to be the case when there are
no decay or dephasing terms included in the simulation. For all
of the matrices considered in this work, all nonzero values of
D′

ll were 1, meaning that D and S are semiconvergent matrices.
Therefore,

lim
n→∞ Dn = lim

n→∞ D′n = D′. (17)

So

lim
n→∞ Sn = RD′R−1. (18)

This means that the operator RD′R−1 acting on any state
gives the expected state of the system after many Ramsey pulse
sequences and so the expected initial state is given by

ρ̃(0) = RD′R−1ρ̃. (19)

Once ρ̃(0) has been found for a given pulse separation, the
Ramsey pulse sequence operator can be applied to determine
the effect of the Ramsey pulse sequence and to extract the
probability of the system being in an excited state [with the
mapping used here this is given by the term ρ̃(t)9], which is
proportional to the expected intensity of the emitted light.

When we neglect this spin pulse separation-dependent
effect we perform the same process but only include one
laser pulse per cycle rather than the two Ramsey pulses.
This removes the pulse separation dependence of the expected
initial state.

D. The generation of a superposition of electron spin states

We claim that the coherent superposition of the electron
spin states is a result of the coupling of the two low energy
electron states via the excited state. We also claim that this
effect is more visible at higher powers. Here we briefly explain
the mechanism.

Unitary evolution under the pulse operator can be described
by the operator

e− iHPulse t

� =
∞∑

k=0

1

k!

(
−i

HPulset

�

)k

, (20)

where t is the length of the pulse. To second order this is

e− iHPulse t

� ≈ −i
HPulset

�
− 1

2

H2
Pulset

2

�2
. (21)

Therefore, for short times or for low pulse powers, the first
order term will have the biggest effect and the second order
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FIG. 5. (a) Experimental measurement of Ramsey fringes at half
the laser field amplitude used in Fig. 4. (b) Experimental measurement
of Ramsey fringes at twice the laser field amplitude used in Fig. 4.
(c) A simulation of (a). (d) A simulation of (b).

term will be small. HPulse is given by

HPulse =
⎛
⎝ 0 0 F↑,↑↓⇑

0 0 F↓,↑↓⇑
F↑,↑↓⇑ F↓,↑↓⇑ 0

⎞
⎠, (22)

so for low pulse powers there should be very little coupling
between the |↑〉 and |↓〉 states. In other words, low pulse
powers should not prepare a coherent superposition of the
trapped electron spin state. (The elements HPulse,12 and
HPulse,21 are 0.)

The second order term is proportion proportional to

H2
Pulse =

⎛
⎜⎝

F 2
↑,↑↓⇑ F↑,↑↓⇑F↓,↑↓⇑ 0

F↑,↑↓⇑F↓,↑↓⇑ F 2
↓,↑↓⇑ 0

0 0 F 2
↑,↑↓⇑ + F 2

↓,↑↓⇑

⎞
⎟⎠,

(23)

which does couple between the |↑〉 and |↓〉 states (elements
HPulse,12 and HPulse,21 are nonzero) and can prepare a coherent
superposition. It is therefore expected that the slow oscillation
should be more visible with higher pulse powers when the
second order term has a greater effect.

Figure 5 shows the interference fringes recorded at half
the laser field amplitude and twice the laser field amplitude
used in Sec. III C. Simulations of these measurements are also
presented.

Although these simulations reproduce many of the features
seen in the power dependent measurements, they do not
resemble the measured data as closely as the simulations
shown earlier. The beating pattern is visible for both high and
low powers in the measured and simulated results, whereas
the slow oscillation dominates at higher powers. This is in
agreement with what is expected from considering the first
and second order terms of the pulse operator.

E. Model parameters

The purpose of the model is to reproduce the rich variety
of beats and oscillations observed in the measured data for
realistic input parameters.

Some of the parameters of the model were set by an external
factor (such as the magnetic field) and some could be easily
measured (such as the transition energy). For the remaining
parameters we used realistic estimates based on prior work.

1. Parameters with values extracted from measurements
and external factors

The energy separation of the two electron spin states
was calculated using the applied magnetic field (0.5 T), the
measured electron g factor (0.58), and the Bohr magneton
(E = Bg μB).

The energy of the excited state was found using a spectrom-
eter to record the wavelength of the emitted photon allowing
us to calculate the transition energy.

The γ decay values are extracted from exciton lifetime
measurement (959 ps). However, as there are two possible
decay routes, the γ values are set such that the difference in
decay rates is equal to the difference in transition strengths (the
difference in transition strengths is estimated based on prior
research).

The γ dephasing values for the exciton are set so that
coherence time of the exciton matches the coherence time
inferred from the linewidth measurement (600 ps).

2. Parameters with estimated values based on prior work

We do not have a measurement for the coherence time of the
electron spin, but prior work indicates that the coherence time
of the electron spin is considerably longer than the coherence
time of the exciton, so we set the electron spin coherence time
to be 5000 ps, roughly 10 times the coherence time of the
exciton.

The forbidden transitions are allowed by heavy-light hole
mixing, so we set the transition strength ratio between the
allowed and forbidden transitions to be 5:1, in accordance
with prior work [24]. However, this does not determine how
strongly we are driving each of the transitions. Sweeping
the laser energy across the transitions, we see two peaks in
emitted intensity that each correspond to a pair of transitions
(one allowed and one forbidden). For the three-level system
experiments, the laser energy was set to one of the peaks.
Clearly there is some uncertainty about the correct values of
F↑,↑↓⇑ and F↓,↑↓⇑ for our system. In the simulations shown
in Sec. III C we used F↑,↑↓⇑ = 0.355, F↓,↑↓⇑ = 0.085 based
on the results of brightness as a function of laser power and
detuning simulation and on the similarity between the Ramsey
interference simulation and the measured results for these
parameters.

V. CONCLUSION

Our study of RI in the three-level system demonstrates that
we can prepare a spin by controlling the time delay between
successive pulses. This shows that it is possible to use a
single pulsed laser for both spin state preparation and exciton
creation, in contrast to work such as [25] which makes use
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of multiple lasers to address the spin and exciton populations
separately. Measurements of the decay of the slow oscillation
visible in Fig. 4(b) at longer delay times than are possible with
our setup should allow direct measurement of the electron
spin coherence time. The results also show that it is possible
to manipulate the state of the system by coherently driving
the forbidden diagonal transitions of a QD in the Faraday
geometry with a resonant laser pulse. Finally, we note that
the ability to prepare and coherently manipulate an electron
spin state, along with improvements in collection efficiency
(e.g. [26]) are key capabilities required to generate electron
spin-photon frequency entanglement [27].

VI. DATA ACCESS

All experimental data used in this paper is publicly
available and can be found at https://www.repository.
cam.ac.uk/handle/1810/253343
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