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We report time-of-flight measurements on electrons traveling in quantum Hall edge states. Hot-electron
wave packets are emitted one per cycle into edge states formed along a depleted sample boundary. The
electron arrival time is detected by driving a detector barrier with a square wave that acts as a shutter. By
adding an extra path using a deflection barrier, we measure a delay in the arrival time, from which the edge-
state velocity v is deduced. We find that v follows 1=B dependence, in good agreement with the ~E × ~B drift.
The edge potential is estimated from the energy dependence of v using a harmonic approximation.
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Electronic analogues of photonic quantum-optics experi-
ments, so-called “electron quantum optics,” can be per-
formed using the beams of single-electron wave packets.
The demonstration of entanglement and multiparticle inter-
ference with such wave packets would set the stage for
quantum-technology applications such as quantum informa-
tion processing [1]. Various theoretical proposals [2–7] and
experimental realizations [8–17] employ quantumHall edge
states [18] as electron waveguides. The group velocity and
dispersion relation of edge states are important parameters
for understanding and controlling electron wave packet
propagation. For edge magnetoplasmons, the velocity can
be deduced by time-of-flight measurements with gate pulses
[19–22]. Such direct velocity measurements have been
difficult with electron wave packets because gate pulses
would also affect the background Fermi sea. Previous
experiments [14,23,24] use other types of electron-transport
data to estimate the electron velocity. Furthermore, electron-
electron interactions can cause the formation of multiple
collective modes traveling at different velocities, leading to
decoherence [14,17,25]. In order to perform the measure-
ments of bare group velocity by time-resolved methods,
we need a robust edge-state waveguide system where the
interactions between the transmitted electrons and other
electrons in the background can be suppressed.
In this Letter, we demonstrate an experimental method for

probing the bare edge-statevelocity of electrons traveling in a
depleted edge of a two-dimensional system. Electrons are
emitted from a tunable-barrier single-electron pump [26–28]
approximately 100 meV above the Fermi energy [13,29].
These electrons are injected into an edge where the back-
ground two-dimensional electron gas (2DEG) is depleted to
avoid the influence of electron-electron interactions. The

arrival time of these wave packets is detected by an energy-
selective detector barrier with a picosecond resolution
[13,16]. The travel length between the source and detector
is switched by a deflection barrier. The time of flight of the
extra path is measured as a delay in the arrival time at the
detector [30]. The edge-state velocity is calculated from
the length of the extra path and the time of flight. We find
that the edge-state velocity is inversely proportional to the
applied magnetic field in good agreement with the ~E × ~B
drift velocity, where ~E is the electric field and ~B is the
magnetic field. We probe the dispersion of the edge states by
controlling the electron emission energy. From the energy
dependence of the velocity, we deduce the edge potential
profile and obtain the spatial positions of the edge states.
The measurements presented in this work are performed

on two samples, A and B, with slightly different device
parameters. Figure 1(a) shows a scanning electron micro-
graph of a device with the same gate design as sample B.
Both samples aremade fromGaAs/AlGaAs heterostructures
with a 2DEG 90 nm below the surface, but the 2DEG carrier
density is slightly different (1.8 × 1015 m−2 for sample A
and 1.6 × 1015 m−2 for sample B). The active part of the
device is defined by shallow chemical etching and Ti=Au
metal deposition using electron-beam lithography. The
device comprises five surface gates: the pump entrance gate
(G1), pumpexit gate (G2), detector gate (G3), deflection gate
(G4), and depletion gate (G5).L1 is the path length along the
deflection gate and is the same for both samples (1.5 μm).L2

is the path length along the loop section defined by shallow
etching, and is 2 μm for sample A and 5 μm for sample B.
The measurements are performed at 300 mK.
Figure 1(a) also shows the measurement circuit. The rf

sine signal Vrf
G1 (peak-to-peak amplitude ∼1 V) applied to
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G1 pumps electrons over the barrier formed by the dc
voltage VG2 applied on G2 [27]. The rf signal is repeated
periodically at a frequency f ¼ 240 MHz, producing
the pump current IP. When the device pumps exactly
one electron per cycle, IP ¼ ef ≈ 38 pA, where e is the
elementary charge (see the Supplemental Material for
pump tuning [31]). In a magnetic field B applied
perpendicular to the plane of the 2DEG [in the direction
indicated in Fig. 1(a)], the electrons emitted from the pump
follow the sample boundary and enter the region where the
background 2DEG is depleted by the negative voltage VG5
on G5 (at least 100 mV past the typical depletion voltage
of ∼ − 0.2 V). The bottom of the lowest Landau level is
raised above the Fermi energy EF but is kept lower than
the electron emission energy, as shown in Fig. 1(b). The
electrons travel along the edge approximately 500 nm
(roughly equal to the extent that G5 covers from the edge
defined by shallow etching) away from the nearest 2DEG
[as indicated by the red dot in Fig. 1(b)].
Depending on the voltage VG4 applied to G4, the

electron wave packets reach the detector (G3) through
either the shorter route [solid red line in Fig. 1(a)] or the
longer route (dashed line). In both cases, the majority of
electrons reach the detector without measurable energy loss
for the magnetic field considered here. Electrons that lose
energy through LO-phonon emission [13,35] are reflected
by the detector barrier and do not contribute to the detector
current. The longer route adds an extra length 2L1 þ L2

to the electron path, causing a delay in the arrival time at
the detector. The arrival time is detected using a time-
dependent signal [13,16]. A square wave Vrf

G3 with a peak-
to-peak amplitude of ∼20 mV is applied to G3 [16] in
addition to a dc voltage Vdc

G3. The detector current ID is
monitored as Vdc

G3 is swept and the relative delay time td
between Vrf

G1 and Vrf
G3 [see Fig. 1(c)] is varied with a

picosecond resolution [16] (see the Supplemental Material
for more information [31]).
Figures 2(a)–2(c) show the behavior of the detector

current for three values of VG4 taken at B ¼ 14 T with
sample A. Here, dID=dVdc

G3 is plotted in color scale as a
function of Vdc

G3 and td. The pump current is set at the
quantized value for one electron emission per cycle
(i.e., IP ≈ ef). When the detector barrier is sufficiently low
(i.e., Vdc

G3 is less negative) but is kept above EF, all emitted
electrons that do not suffer energy loss during the travel
enter the detector contact and contribute to ID. Therefore,
ID ≈ IP as the LO-phonon emission is negligible at
B ¼ 14 T in these samples. When the detector barrier is
sufficiently high, all electrons are blocked, and ID ¼ 0.
When the detector barrier is matched to the energy of
incoming electrons, a peak in dID=dVdc

G3 appears [13,16].
The peak position (or the detector threshold) in Vdc

G3
depends on td because a square wave is applied to the
detector gate and the sum Vdc

G3 þ Vrf
G3 determines the

detector barrier height. When td is small (large), electrons
arrive when the square wave is negative (positive), and,
hence, it shifts the detector threshold to more positive
(negative) in Vdc

G3. The transition of the detector threshold

rf

rf

dc

rf

rf

dc

FIG. 1. (a) A scanning electron micrograph of a device and
schematics of the measurement circuit. (b) Schematics of the
lowest Landau level at the sample edge. Electrons travel in high
energy states indicated by a red dot. The dashed box represents a
region where a harmonic approximation is used to deduce the
edge potential profile shown in Fig. 3(d). (c) Sine-wave signal
Vrf
G1 applied to G1 and square-wave signal Vrf

G3 applied to G3.
Their relative phase delay td is controlled at a picosecond
resolution using the internal skew control of the arbitrary wave-
form generator.

FIG. 2. (a)–(c) dID=dVdc
G3 plotted in color scale as a function

of Vdc
G3 and td for three values of VG4. Red crosses are placed at

the center of the transition in the detector threshold, which
indicates the peak in the electron arrival time. The data are taken
from sample A. (d) dID=dtd plotted as a function of td for two
values of VG4: −0.48 V (solid line) and −0.51 V (dashed line).
(e) Peak arrival time plotted as a function of VG4, taken from
sample A. (f) Peak arrival time taken from sample B. The solid
line is fit to −1=VG4.
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in Vdc
G3 from more positive to more negative occurs at td,

where the square-wave transition coincides with the elec-
tron arrival at the detector. As VG4 is made more negative,
the detector transition shows splitting [Fig. 2(b)] and finally
settles to larger td [Fig. 2(c)]. The splitting happens as G4
splits the wave packets into the shorter and longer routes,
and, hence, two sets of electron wave packets arrive at
the detector with a time delay. The shift of the detector
transition to larger td occurs because the longer route
causes a delay in the arrival time.
In Fig. 2(d), dID=dtd is plotted as td is swept through the

center point of the detector transition marked by red crosses
for the cases of VG4 ¼ −0.48 V (solid line) in Fig. 2(a)
and −0.51 V (dashed line) in Fig. 2(c). These two curves
represent the arrival-time distributions for the shorter and
longer routes, and, hence, the time difference τd between the
two peaks is the time of flight of the extra path (2L1 þ L2)
taken by the longer route. The edge-state velocity in the
extra path can be calculated as v ¼ ð2L1 þ L2Þ=τd. In this
example, v ¼ 5 μm=95 ps ¼ 5.3 × 104 m=s.
The uncertainty in these velocity estimates arises

from the uncertainties in 2L1 þ L2 and τd. The value of
2L1 þ L2 is likely to be accurate only to �10%, as we can
only estimate it from the device geometry. This gives the
same systematic error to all velocity estimates within the
same sample, and, hence, it does not affect the discussions
in the later sections qualitatively. The uncertainty in τd is
more problematic. This is because the arrival time does not
necessarily switch between just two values as the edge-state
path is switched. As plotted in Fig. 2(e), the arrival time
initially changes slowly towards larger td as VG4 is made
more negative. Then it starts to move through a series
of small steps until it makes a final large step. After that,
the arrival time moves gradually back to smaller td. This
behavior can be interpreted as follows. The series of
changes for −0.51 < VG4 < −0.48 V occurs as the path
length and the velocity of the edge state under G4 is altered
in a complicated manner due to disorder potential. This
lasts until the edge state is finally pushed out of the region
under G4 at VG4 ∼ −0.51 V, and is switched to the longer
route (see the Supplemental Material for more details on
this effect [31]). Then the arrival time continues to change
as VG4 is made more negative, because the velocity along
G4 keeps increasing as the edge potential along G4 is
made steeper (due to the ~E × ~B drift as discussed later). For
the measurements with sample A, we take τd to be the
difference in arrival time before and after rapid changes,
as indicated in Fig. 2(e). A typical uncertainty in the τd
estimate by this method is �5 ps.
A more rigorous velocity estimate can be introduced by

excluding the contribution from the electron paths along
G4. Figure 2(f) shows the time-of-flight data taken from
sample B plotted in the same manner with Fig. 2(e). With
sample B, the arrival time changes more rapidly as VG4 is
made more negative after the electron path is switched

to the longer route. As in the case with sample A, this is
considered to result from a rapid change in the velocity
along G4, and is the main source of the uncertainty in
velocity estimates. In order to reduce the uncertainty, we
break up the time of flight into two parts, τd1 along G4
(length 2L1) and τd2 along the loop (length L2), i.e.,
τd ¼ τd1 þ τd2 ¼ 2L1=v1 þ L2=v2, where v1ð2Þ is the
velocity along the path L1ð2Þ. From this, one can see
τd → τd2 ¼ L2=v2 in the limit v1=v2 ≫ 2L1=L2. Once
the electron path is deflected, v1 increases as VG4 is made
more negative, whereas v2 is unaffected. Therefore, in the
limit of large negative VG4, the time of flight settles to τd2.
It is not trivial to know exactly how v1 changes with VG4,
but a linear relation (v1 ∝ −VG4) fits well to the exper-
imental data [solid line in Fig. 2(f)]. As shown in Fig. 2(f),
τd2 can be estimated as the difference between the saturated
values of arrival time at the positive and negative ends
of VG4. The velocity around the loop is calculated as
v2 ¼ L2=τd2. We find that the uncertainty is reduced
approximately by a factor of 3 using this method. We note
that we cannot apply this method to sample A as L2 is too
small to observe the saturation in the arrival time at the
negative end in VG4.
Now, we investigate the magnetic-field and emission-

energy dependence of the velocity to see if the depleted
edge-state system is consistent with an interaction-free
quantum Hall edge-state model. Figure 3(a) shows the

FIG. 3. (a) Edge-state velocity v measured as a function of B.
Circle (triangle) data points are taken with sample A (B). The
solid curves are fits to 1=B. Inset: v plotted against 1=B.
(b) Electron emission-energy spectrum measured at B ¼ 14 T.
(c) v2 plotted as a function of relative emission energy ΔE. Solid
lines are fits to a linear relation. (d) Edge-confinement potential
−ϕ (solid lines) estimated from the velocity measurements. The
spatial positions of the edge states corresponding to the velocity
measurements are indicated by symbols.

PRL 116, 126803 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

25 MARCH 2016

126803-3



magnetic field dependence of the measured edge-state
velocity for both samples [v (the velocity along the whole
extra path, 2L1 þ L2) is plotted for sample A and v2 (the
velocity along the loop section L2 only) for sample B].
Clear 1=B dependence is observed for both samples down
to B ¼ 5 T. This is in good agreement with the ~E × ~B drift
velocity, where v¼ j~E× ~Bj=B2 ∝ 1=B, and ~E is the electric
field due to the edge potential.
In order to estimate the edge-confinement potential

and the spatial position of edge states, we consider the
dispersion relation in a quasi-one-dimensional channel with
a harmonic approximation [37]. For the lowest branch of
the magnetoelectric subband [38],

EðkxÞ ¼ ϵ0 þ
1

2
ℏΩþ ℏ2k2x

2m�
ω2
y

ω2
y þ ω2

c
; ð1Þ

where kx is the wave number in the edge-state transport
direction (in the x direction), ϵ0 is the lowest two-
dimensional subband energy, ℏωy is the transverse
confinement energy (in the y direction), ℏωc is the
cyclotron energy, and m� is the electron effective mass.
From the dispersion relation and the group velocity
v ¼ ð1=ℏÞðdE=dkÞ, one can deduce

1

2
m�v2 ≈

ω2
y

ω2
c

�
E − ϵ0 −

1

2
ℏωc

�
; ð2Þ

in the limit of large magnetic field (ωc ≫ ωy). From this,
ωy can be deduced by plotting v2 against E.
The emission energy from our single-electron source

can be tuned over a wide range [13]. This can be used to
probe the energy dependence of the edge-state velocity.
Figure 3(b) shows the emission energy spectrum mea-
sured as VG2 is varied and with a static detector barrier
(Vrf

G3 ¼ 0) with electrons traveling along the longer route
(VG4 ¼ −0.7 V) at B ¼ 14 T. The conversion to relative
emission energy ΔE [shown on the right-hand vertical axis
in Fig. 3(b) with the highest energy point used in this work
set as zero] is made by calibrating Vdc

G3 against LO-phonon
emission peaks [13] (not visible in this particular data set),
assuming the LO-phonon energy of 36 meV [39] (see the
Supplemental Material for more details on this procedure
[31]). The electron emission energy decreases linearly as
VG2 is made more positive.
Figure 3(c) plots v2 measured as a function of relative

emission energy ΔE at B ¼ 14 T for both samples. As
expected, they fit well to straight lines. From these, we
deduce ℏωy ¼ 2.7 and 1.8 meV, and the bottom of the
confinement potential at ΔE ¼ −47 and −61 meV, for
samples A and B, respectively. We can then reconstruct the
edge-confinement potential ϕ ¼ −m�ω2

yy2=2e as shown in
Fig. 3(d). Here, we set the potential at the bottom of the
parabola as zero. From each data point in Fig. 3(c), we can
deduce the potential energy −eϕ at the position of the

guiding center by subtracting the kinetic energy 1
2
m�v2

from the total (relative) energy ΔE. We can then visualize
the spatial position of the edge states as plotted in Fig. 3(d).
In summary, we have shown the measurements of the

time-of-flight of electron wave packets traveling through
edge states. The electrons travel in the region where the
background 2DEG is depleted and electron-electron inter-
action is minimized. We find that the electron velocity is
in good agreement with the expected ~E × ~B drift. From
the energy dependence, we deduce the edge-confinement
potential. Our technique provides a way of characterizing
the edge-state transport of single-electron wave packets
with picosecond resolutions. The method that we have
developed to transport electron wave packets in depleted
edges could provide an ideal electron waveguide system
where decoherence due to interactions can be avoided for
electron quantum-optics experiments.
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