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We show experimentally how quantum interference can be produced using an integrated quantum
system comprising an arch-shaped short quantum wire (or quantum point contact, QPC) of 1D electrons
and a reflector forming an electronic cavity. On tuning the coupling between the QPC and the electronic
cavity, fine oscillations are observed when the arch QPC is operated in the quasi-1D regime. These
oscillations correspond to interference between the 1D states and a state which is similar to the Fabry-Perot
state and suppressed by a small transverse magnetic field of �60 mT. Tuning the reflector, we find a peak
in resistance which follows the behavior expected for a Fano resonance. We suggest that this is an
interesting example of a Fano resonance in an open system which corresponds to interference at or near the
Ohmic contacts due to a directly propagating, reflected discrete path and the continuum states of the cavity
corresponding to multiple scattering. Remarkably, the Fano factor shows an oscillatory behavior taking
peaks for each fine oscillation, thus, confirming coupling between the discrete and continuum states. The
results indicate that such a simple quantum device can be used as building blocks to create more complex
integrated quantum circuits for possible applications ranging from quantum-information processing to
realizing the fundamentals of complex quantum systems.
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I. INTRODUCTION

Quantum interference, one of the most remarkable
effects of quantum mechanics, arising from the wave nature
of particles has led to some celebrated results in mesoscopic
systems, including weak localization in two-dimensional
(2D) systems [1,2], Aharonov-Bohm oscillations in ring
structures [3,4], sharp peaks in magnetoresistance in
chaotic cavities [5,6], etc. Among its various applications,
quantum interference has been used successfully as a tool
to investigate properties of particles such as monitoring
correlation and entanglement as demonstrated in Mach-
Zehnder interferometery [7,8], Aharonov-Bohm interfer-
ometery [9,10], Hanbury Brown–Twiss interferometery
[11,12], and the electronic analogue of the Hong-Ou-
Mandel device [13,14]. Among all the striking phenomena,
it is particularly interesting to note that quantum interfer-
ence is extremely suitable for studying coupling between
different quantum systems [15–17], which is crucial for the
design of integrated quantum circuits.

A notable quantum-mechanical system is a ballistic
quantum wire called a quantum point contact (QPC)
when it is short, and it is defined using a pair of split
gates [18–20] on a semiconductor heterostructure. Soon
after the first observation of quantized conductance in a
quasi-one-dimensional (1D) quantum wire [19,20], a num-
ber of interesting observations have been made such as
the “0.7 structure” [21], incipient Wigner lattice [22,23],
coherent electron focusing [24–26], etc. Experiments of
coupling between a QPC, which provides a stream of
collimated 1D electrons, and a waveguide [15] and that
between a quantum dot and cavity [16] have been per-
formed, where a pronounced modulation of conductance of
the system and changing of Coulomb peaks were observed.
Knowledge of the resonant interference effects arising from
the coupling of two quantum states is of fundamental
significance for the development of technology for quan-
tum-information processing. Moreover, the Fano reso-
nance, which arises from the quantum interference
between discrete (bound) and continuum states of a
neighboring medium resulting in an asymmetry in the
resonance structure [27,28], is one of the definite methods
for confirming quantum interference, particularly in sys-
tems with smaller length scales, and tunable electron path.
We present a system as shown in Fig. 1 realized using an
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integrated quantum circuit having three components:
a source of 1D electrons (emitted by a QPC), a continuum
state (an electronic cavity of 2D electrons), and a reflector
(a potential barrier to reflect the collimated electrons). Such
an ensemble allows a beam of 1D electrons to interfere with
the continuum states of the cavity after being reflected by
the potential barrier. This system was used in our previous
work [29] where we showed that a Fano resonance could be
observed at the 1D-2D transition regime of a QPC. In the
present work, we give evidence that a bound, localized state
can be established within the continuum (2D), and there is a
coupling between the bound state and the 1D states from
which it is drawn. Moreover, we show that the coupling
between the 1D-2D states enables the Fano resonance,
which can be tuned both electrostatically and magnetically.
The paper is organized in the followingmanner: Section II

covers the experimental setup, device design, and wafer
details. Section III covers details of comprehensive

experimental results. This section is further divided into
four subsections discussing coupling between the 1D-2D
electrons, Fano resonance, effect of perpendicular magnetic
field, and temperature dependence.

II. EXPERIMENT

The samples consist of a pair of arch-shaped gates with a
QPC forming in the center of the arch and a reflector
inclined at 75° to the current flow direction such that the
center of the QPC and the reflector are aligned as shown in
Fig. 1(a). The opening angle of the arch is 45°, and the
radius is 1.5 μm. Both the length and width of the QPC
embedded in the arch are 200 nm, the width of the reflector
is 300 nm [29]. The angle of the inclined reflector is crucial
because it allows reflected electrons to propagate ballis-
tically to Ohmic contact 3, while multiple scattering of
others set up a continuum of cavity states (considering the
normal 30° spread of the collimated 1D electrons [31]).
A direct scattering of a beam of electrons from the reflector
at or near the entrance of the QPC establishes the bound
defined state. The scattering of electrons out of this state
interfering with cavity states establish a Fano resonance.
The devices are fabricated on a high-mobility two-

dimensional electron gas formed at the interface of a
GaAs=Al0.33Ga0.67As heterostructure. The electron density
(mobility) measured at 1.5 K is 1.80 × 1011 cm−2
(2.1 × 106 cm2 V−1 s−1); therefore, both mean free path
and phase coherence length are over 10 μm, which is much
larger than the distance between the QPC and reflector
(1.5 μm). All the measurements are performed with the
standard lock-in technique in a cryo-free dilution refriger-
ator with a lattice temperature of 20 mK. For the four-
terminal resistance measurement, a 10 nA at 77 Hz ac
current is applied, while an ac voltage of 10 μV at 77 Hz is
used for the two-terminal conductance measurement.
Figure 1(b) shows the conductance trace of the QPC with
well-defined conductance plateaus. On the other hand, the
conductance of the reflector (inset) drops around −0.2 V,
which indicates a sharp change in the transmission prob-
ability; here, Va and Vr are the voltages applied on the arch
gates forming the QPC and reflector, respectively.

III. RESULTS AND DISCUSSION

When the arch QPC and reflector are operated together,
collimated ballistic 1D electrons [31] injected from the
QPC are reflected by the potential barrier created by the
reflector and cause a voltage drop V34 between Ohmics 3
and 4, such that

V34 ∝ n × r; ð1Þ

where n is the population of injected electrons, and r is the
reflection probability [29].

FIG. 1. Schematic of device and experiment setup. (a) The
yellow square blocks at the edge of mesa marked 1–6 are Ohmic
contacts, whereas the golden metallic patterns within the mesa
form a pair of arch-shaped gates and a reflector. The red dotted
lines show the possible boundary of cavity formed between the
QPC and the reflector. Excitation current is fed to Ohmic 1, while
2 is grounded; Ohmics 3 and 4 are voltage probes. (b) Differential
conductance measurement of the QPC (main plot) and reflector
(inset). The series resistance is not removed. It should be noticed
that the standard two-terminal measurement is performed with
Ohmics 1 and 5 [30]. The red dashed line in the inset corresponds
to Vr ¼ −0.27 V.
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Figure 2 shows the four-terminal resistance measured
between Ohmics 3 and 4 as a function of arch QPC voltage
for various reflector voltages Vr. We find that when
−0.29 V ≤ Vr ≤ −0.27 V, a pronounced double-peak
structure is observed when arch QPC voltage Va is around
−0.2 V, the left peak at Va ¼ −0.24 V is referred to as
peak I, and the right peak at −0.21 V as peak II [Fig. 2(a)].
When making Vr less negative, peak II weakens gradually,
while peak I remains robust. Interestingly, the position of
the double-peak structure coincides with the 1D-2D tran-
sition regime of the QPC. In addition, fine oscillations
highlighted by the vertical dashed lines occur when the arch
QPC forms a quasi-1D channel. When Vr > −0.27 V, both
the double-peak structure and fine oscillations weaken and
eventually smear out in this regime [Fig. 2(b)].
It is interesting to note that the fine oscillations almost

align with conductance plateaus in a similar manner to that
reported in tunnelling spectroscopy of a waveguide [15,32].
However, unlike the results in waveguide experiments
[15,32] where each subband contributes to a sharp peak,
conductance plateaus at −0.6 and −0.5 V correlate to a
broad structure or oscillation in our work. The double-peak
structure in the 1D-2D transition regime has no analogue in
the waveguide structure [32–34]. The correlation between
fine oscillations and 1D density of states cannot explain the
strong sensitivity of the additional structures on tuning the
reflector voltage.
We can visualize our system as consisting of a dynamic

electronic cavity [16], which is defined by the arch gate and
the reflector (the reflector is required to define the focal
point of the cavity). The multiple reflection of emitted 1D
electrons between the reflector and the arch gates give rise
to a continuum of localized states. When the electrons
under the gates are depleted and, thus, the cavity is
switched on, the 1D states couple to the cavity states
and, thus, give rise to the observed nontrivial features.
The framework above can be verified by changing the

coupling between the 1D and cavity states. A strong

coupling results in the appearance of fine oscillations,
while at weak coupling, they smear out.

A. Coupling between 1D-2D electrons

To tune the coupling between the 1D and 2D cavity states,
we fix the arch QPC voltage at −0.65, −0.43, −0.36 V
[these three voltages are the center of fine oscillations, as
indicated by the vertical lines in Fig. 2(a)],−0.24 V (peak I),
−0.21 V (peak II), and 0 Vand sweep the reflector voltage.
The result shown in Fig. 3(a) is a direct measurement of
strength of the coupling effect. When the arch QPC voltage
is fixed, the population of injected electrons n in Eq. (1) is
constant, so the measured resistance depends on the reflec-
tion probability r only. r increases monotonically when Vr
becomes more negative; therefore, resistance R should
follow a similar monotonic change. The bottom two traces
in Fig. 3(a) are for arch QPC voltages Va of 0 and −0.21 V,
respectively (cavity is off). The resistance is initially almost
constant when the reflector voltage Vr > −0.25 V. A sharp
rise in resistance occurs as Vr is made more negative, so
the reflection probability r increases rapidly and eventually
saturates when r becomes unity. When the arch QPC
becomes more negative (top four traces, the cavity turns
on), R initially keeps on increasing and then decreases until
it saturates and thereby produces a pronounced peak in the

FIG. 2. R as a function of arch QPC voltage for various Vr.
(a) When −0.29 V ≤ Vr ≤ −0.27 V, a pronounced double-
peak structure and fine oscillations are observed. (b) When
Vr > −0.27 V, all the features gradually smear out. Data are
offset vertically by 20 Ω for clarity.

FIG. 3. R as a function of Vr. (a) The arch-gate voltage is fixed
at −0.65, −0.43, −0.36, −0.24, −0.21, and 0 V while sweeping
Vr. Data are offset vertically for clarity. The right axis displays
the reflector conductance as a function of Vr as indicated by a red
arrow. (b) Upper plots show the theoretical fitting (solid line) of
ΔRðVr; VaÞ ¼ RðVr; VaÞ − RðVr; 0Þ, where Va ¼ −0.65 and
−0.50 V, respectively; ΔR follows a well-defined Fano line
shape. The lower plot shows Fano factor q as a function of Va.
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plot. It is necessary to emphasize that the reflector
voltage range (from −0.27 to −0.29 V) where the peak in
resistance occurs corresponds to the regime where the fine
oscillations are most pronounced [Fig. 2(a)]. The dramatic
change between different traces is a clear indication of
the effect arising due to cavity formation. Once the cavity is
on, i.e., both Va and Vr are sufficiently negative, its size
and, therefore, the energy spacing of cavity states can be
adjusted by sweeping the reflector voltage. The strong
coupling between the 1D and cavity leads to a peak in
the measurement.
The fine oscillations corresponding to interference

between the waves emerging from the 1D region and the
reflected waves are observable as the phase coherence
length (>10 μm) is greater than the size of the device.
In this respect, our observation is similar to the Fabry-Perot
interference previously observed [35].

B. Fano resonance

An analysis of the line shape of the peak in Fig. 3(a)
clearly indicates that after the cavity is switched on,
the dynamic change in resistance ΔRðVr; VaÞ ¼
RðVr; VaÞ − RðVr; 0Þ [we use RðVr; 0Þ to account for
the change in the reflection probability, which is always
present] follows the well-known Fano resonance [27,29,36]

R ¼ R0

½qþ γðV − V0Þ�2
1þ γ2ðV − V0Þ2

þ Rinc; ð2Þ

where R is the measured resistance, R0 is a constant
representing the amplitude of the resonance, q is the
Fano factor which decides the asymmetry of the line shape,
γ ¼ 20 V−1 is voltage-energy lever (estimated from the
Fermi energy and the pinch-off voltage), V0 is the arch-gate
voltage at the center of the resonance (dip), and Rinc
denotes intrinsic contribution from the background as
shown in Fig. 3(b). We notice that the Fano factor q takes
an oscillatory behavior against the arch QPC voltage as
shown in the lower graph in Fig. 3(b). When compared with
Fig. 2, q has a peak (approximately 1.9) at the fine
oscillations and remains constant (approximately 0.4)
elsewhere. The increase in q is due to an increase in the
resonant scattering. This result supports the argument that
the observed fine oscillations are correlated with the Fano
resonance. It is necessary to draw attention to the fact that
the Fano factor does not necessarily show a peak at a
conductance plateau if there is no fine oscillation,
as two conductance plateaus are well defined when
−0.6 V< Va < −0.5 V, while only a single Fano factor
peak is observed. This observation suggests that the result
does not arise simply due to the collimation of a QPC
(which produces similar behavior at all the conductance
plateaus) or an electrostatic effect.
The energy spacing between different cavity states is

small (of the order of 100 μeV from Ref. [16]) due to the

large size of the cavity. This indicates one 1D state may
couple to several cavity states and can result in relatively
broad fine oscillations. On the other hand, a single
broad pattern from second (Va ¼ −0.6 V) and third
(Va ¼ −0.5 V) plateaus or modes of the QPC may be
attributed to coupling of different modes of QPC with the
degenerate cavity states. In addition, the probability of
intersubband transition in 1D constriction [37] may result
in mixed states.
Most investigations of Fano resonance in nanostructures

have utilized a discrete state, for example, in a quantum dot
[36] or coupled QPCs [17]. It is clear that the system
studied here has significant differences in the lack of
control of the particular states undergoing interference as
well as being open [38–40]. However, the discrete state
forming part of the interference along with the continuum
corresponds to a collimated electron wave between the
QPC and cavity that is then reflected towards the Ohmic
contact and subsequently interferes. This situation is
essentially identical to the case of an optical wave reflected
by a sharp bend in a waveguide which behaves as a
localized state [15,32]. The momentum value and direction
required for the reflected wave to reach the contact without
further reflection are stringent, corresponding to a sharply
defined state which then can interfere with the continuum
comprising scattered electrons.

C. Effect of perpendicular magnetic field

The localized states, which represent the quantization of
standing waves in the cavity, are highly dependent on
the trajectory of electrons and, thus, sensitive to the
perpendicular magnetic field. As a consequence, the fine
oscillations arising from coupling between the cavity and
1D states should also be field sensitive [15]. In Fig. 4, we
show (negative) transverse-magnetic-field dependence of

FIG. 4. Effect of perpendicular magnetic field. The reflector
voltage is set to −0.28 V, and the field is increased from 0 mT
(bottom trace) to −200 mT (top trace) by steps of −20 mT. It is
clear that the fine oscillations disappear around −60 mT (marked
by an arrow). Peak I of the double-peak structure weakens with
increasing field, while peak II gets enhanced by magnetic field
and shifts towards less negative Va as indicated by a dashed
black curve.
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the resistance, which gives information on the coupling
between 1D states and cavity states. It is clear that the fine
oscillations smear out at a weak field of −60 mT as
expected. The double-peak structure (in the 1D-2D tran-
sition regime) follows a more complicated trend. The
intensity of peak I gets reduced by increasing field, but
it survives at much higher field compared to the fine
oscillations (−120 mT at negative field end). On the
contrary, peak II gets enhanced by the magnetic field
[29]. Similar results are obtained with positive transverse
magnetic field. We note that when peaks I and II are
observed, the channel is much wider than that for the fine
structure. Consequently, the restriction on the formation of
the localized state is much weaker, accounting for the
higher field necessary to remove the peaks. The initial
enhancement of peak II is presumably a geometric effect.
A detailed magnetoresistance study is presented in

Fig. 5. When the reflector is grounded or set to
−0.25 V, a typical Hall voltage development is seen for
both Va ¼ 0 V where the QPC is in the 2D regime and
Va ¼ −0.5 V when the quasi-1D channel forms in the
QPC, as shown in Fig. 5(a). In Fig. 5(b), a voltage of
−0.3 V is applied to the reflector. When Va is 0 and
−0.21 V (cavity is not formed), the result is almost similar
to that in Fig. 5(a); however, Shubnikov-de Haas (SdH)
oscillations are seen in the large field regime, which come
from the contribution of the reflected electrons. When the
cavity is switched on (Va ¼ −0.24 or −0.63 V), additional
structure, which is highly asymmetric against magnetic
field, is observed in the small field regime up to �70 mT,
which is similar to the magnetic field value required to
quench the fine oscillations as shown in Fig. 4. In the large
field regime, a superposition of Hall voltage and SdH
oscillations dominates. The dynamics in resistance with
cavity switched on, e.g., green trace in Fig. 5(b), defined
as ΔRðVa; BÞ ¼ RðVa; BÞ − Rð0; BÞ also resembles a Fano
resonance. Figure 5(c) shows a theoretical fitting of
ΔRð−0.24 V; BÞ [corresponding to green trace in Fig. 5(b)]
with the Fano line shape. It is also noticed that there is a shift
of minima of R against magnetic field in Fig. 5, which is
likely due to the combined effect of the inclined reflector and
the negative field because both of them guide electrons to
Ohmic 3, while positive field directs electrons to Ohmic 4
whose trajectory is then compensated by the reflector. The
difference becomes more apparent when the electrons are
more ballistic and collimated (i.e., with more negative Va).
The self-consistency between the reflector [Fig. 3(b)]

and magnetic-field- [Fig. 5(c)] induced Fano resonance
shows that we can tune coupling between the 1D and cavity
states both electrostatically and magnetically. To gain a
comprehensive understanding of the scenario, a non-
Hermitian description of the QPC-cavity hybrid system
comprising of reflected wave functions into the continuum
is necessary [41]. This is beyond the scope of current
work.

D. Temperature dependence

Temperature-dependence measurement is a useful tool to
investigate quantum effects such as the origin of fine
oscillations. As mentioned previously, the energy spacing
for cavity states is an order of magnitude smaller than the
1D subband spacing in the QPC; a slightly higher temper-
ature makes the cavity states become a continuum, while
1D subbands are still well resolved. The thermal smearing
of the cavity states, in turn, leads to smearing out of the fine

FIG. 5. Magnetoresistance of the arch QPC reflector assembly.
(a) The reflector is grounded or set to −0.25 V; the results show a
typical Hall voltage development as the magnetic field is swept
for different QPC voltage. Data for Vr ¼ −0.25 V are offset
vertically by 50 Ω for clarity. (b) The reflector is set to −0.3 V,
QPC voltage Va is set at −0.63 V (at fine oscillations), −0.24 V
(peak I), −0.21 V (peak II), and 0 V, respectively. Data are offset
vertically by 100 Ω for clarity. (c) Theoretical fitting of
ΔRðVa; BÞ ¼ RðVa; BÞ − Rð0; BÞ, where Va ¼ −0.24 V, show-
ing the experimental data follow a Fano line shape, the Fano
factor q ¼ 0.823.
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oscillations. Figure 6(a) shows the evolution of the fine
oscillations in the lattice temperature range of 20 mK to
1.8 K. It is clear that the fine oscillations smear out at 1.8 K
where the conductance plateaus of QPC still persist. On the
other hand, the double-peak structure is present even at
1.8 K; however, its intensity decreases against rising
temperature. The double-peak structure is a consequence
of the interference effect, and its intensity can be expressed
by [42]

R ∝ expð−l=lϕÞ; ð3Þ

where l is the electron propagation length, and the temper-
ature dependence of phase coherence length lϕ is

lϕ ∝
ffiffiffiffiffiffiffiffi

T−p
p

; ð4Þ

where p ¼ 1 for a 2D system [1] and p ¼ 2
3
for a 1D system

[43]. In our device, p ¼ 1 gives the best fitting, as shown
in Fig. 6(b), which is consistent with the fact that the
cavity states are essential to observe the quantum interfer-
ence [30].

IV. CONCLUSION

In conclusion, we show the operation of an integrated
quantum device consisting of an arch-shaped QPC coupled
to an electronic cavity, whose states can be tuned using a
reflector gate. We demonstrate that it is possible to couple
and decouple the 1D states with the 2D cavity states using
either the reflector barrier or a transverse-magnetic field,
resulting in the direct observation of Fano resonance which
arises from the interference between the QPC (1D) and
cavity states (2D). The present results show the promise of
such integrated quantum devices in realizing complex
quantum systems to study the 1D-2D transition and a
possible precursor for quantum-information processing

based on modulation of 1D states, for instance, a quantum
analogy of amplitude modulation or phase modulation in
classical information processing.

ACKNOWLEDGEMENTS

The work is funded by the Engineering and Physical
Sciences Research Council, UK.

[1] M. J. Uren, R. A. Davies, M. Kaveh, and M. Pepper,
Magnetic delocalisation of a two-dimensional electron
gas and the quantum law of electron-electron scattering,
J. Phys. C 14, L395 (1981).

[2] R. A. Davies, M. J. Uren, and M. Pepper, Magnetic
separation of localisation and interaction effects in a two-
dimensional electron gas at low temperatures, J. Phys. C 14,
L531 (1981).

[3] C. J. B. Ford, T. J. Thornton, R. Newbury, M. Pepper, H.
Ahmed, G. J. Davies, and D. Andrews, Transport in GaAs
heterojunction ring structures, Superlattices Microstruct. 4,
541 (1988).

[4] C. Schönenberger, A. Bachtold, C. Strunk, J.-P. Salvetat,
J.-M. Bonard, L. Forró, and T. Nussbaumer, Aharonov-
Bohm oscillations in carbon nanotubes, Nature (London)
397, 673 (1999).

[5] R. P. Taylor, R. Newbury, R. B. Dunford, P. T. Coleridge,
A. S. Sachrajda, and J. A. Adams, Classical and weak
localization processes in a tunable ballistic-electron cavity,
Phys. Rev. B 51, 9801 (1995).

[6] J. P. Bird, D. M. Olatona, R. Newbury, R. P. Taylor, K.
Ishibashi, M. Stopa, Y. Aoyagi, T. Sugano, and Y. Ochiai,
Lead-induced transition to chaos in ballistic mesoscopic
billiards, Phys. Rev. B 52, R14336 (1995).

[7] Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and
H. Shtrikman, An electronic Mach-Zehnder interferometer,
Nature (London) 422, 415 (2003).

[8] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and
T.W. Ebbesen, Channel plasmon subwavelength waveguide
components including interferometers and ring resonators,
Nature (London) 440, 508 (2006).

[9] I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and
V. Umansky, Interference between two indistinguishable
electrons from independent sources, Nature (London) 448,
333 (2007).

[10] A.W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H.
Blick, Coherent Coupling of Two Quantum Dots Embedded
in an Aharonov-Bohm Interferometer, Phys. Rev. Lett. 87,
256802 (2001).

[11] T. Jeltes et al., Comparison of the Hanbury Brown–Twiss
effect for bosons and fermions, Nature (London) 445, 402
(2007).

[12] H. Kiesel, A. Renz, and F. Hasselbach, Observation of
Hanbury Brown–Twiss anticorrelations for free electrons,
Nature (London) 418, 392 (2002).

[13] R. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Quantum
interference in electron collision, Nature (London) 391, 263
(1998).

FIG. 6. Temperature dependence of R. (a) The evolution of
nonlocal resistance at Vr ¼ −0.3 V against temperature; the
lattice temperature increases from 20 mK (top trace) to 1.8 K
(bottom trace). Data are offset vertically for clarity. (b) Theoretical
fitting of the height of peak I of the double-peak structure using
Eqs. (3) and (4) with p ¼ 1 for the fitting.

CHENGYU YAN et al. PHYS. REV. APPLIED 8, 024009 (2017)

024009-6

https://doi.org/10.1088/0022-3719/14/13/003
https://doi.org/10.1088/0022-3719/14/19/003
https://doi.org/10.1088/0022-3719/14/19/003
https://doi.org/10.1016/0749-6036(88)90233-9
https://doi.org/10.1016/0749-6036(88)90233-9
https://doi.org/10.1038/17755
https://doi.org/10.1038/17755
https://doi.org/10.1103/PhysRevB.51.9801
https://doi.org/10.1103/PhysRevB.52.R14336
https://doi.org/10.1038/nature01503
https://doi.org/10.1038/nature04594
https://doi.org/10.1038/nature05955
https://doi.org/10.1038/nature05955
https://doi.org/10.1103/PhysRevLett.87.256802
https://doi.org/10.1103/PhysRevLett.87.256802
https://doi.org/10.1038/nature05513
https://doi.org/10.1038/nature05513
https://doi.org/10.1038/nature00911
https://doi.org/10.1038/34611
https://doi.org/10.1038/34611


[14] E. Bocquillon, V. Freulon, J.-M. Berroir, P. Degiovanni, B.
Placais, A. Cavanna, Y. Jin, and G. Feve, Coherence and
indistinguishability of single electrons emitted by indepen-
dent sources, Science 339, 1054 (2013).

[15] M. Saito, T. Usuki, M. Okada, T. Futatsugi, R. A. Kiehl, and
N. Yokoyama, Coupling between one-dimensional states in
a quantum point contact and an electron waveguide, Appl.
Phys. Lett. 65, 3087 (1994).

[16] C. Rössler, D. Oehri, O. Zilberberg, G. Blatter, M. Karalic,
J. Pijnenburg, A. Hofmann, T. Ihn, K. Ensslin, C. Reichl,
and W. Wegscheider, Transport Spectroscopy of a Spin-
Coherent Dot-Cavity System, Phys. Rev. Lett. 115, 166603
(2015).

[17] J. Fransson, M.-G. Kang, Y. Yoon, S. Xiao, Y. Ochiai, J. L.
Reno, N. Aoki, and J. P. Bird, Tuning the Fano resonance
with an intruder continuum, Nano Lett. 14, 788 (2014).

[18] T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J.
Davies, One-Dimensional Conduction in the 2D Electron
Gas of a GaAs-AlGaAs Heterojunction, Phys. Rev. Lett. 56,
1198 (1986).

[19] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H.
Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A.
Ritchie, and G. A. C. Jones, One-dimensional transport and
the quantisation of the ballistic resistance, J. Phys. C 21,
L209 (1988).

[20] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G.
Williamson, L. P. Kouwenhoven, D. van der Marel, and
C. T. Foxon, Quantized Conductance of Point Contacts in a
Two-Dimensional Electron Gas, Phys. Rev. Lett. 60, 848
(1988).

[21] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper,
D. R. Mace, and D. A. Ritchie, Possible Spin Polarization in
a One-Dimensional Electron Gas, Phys. Rev. Lett. 77, 135
(1996).

[22] S. Kumar, K. J. Thomas, L. W. Smith, M. Pepper, G. L.
Creeth, I. Farrer, D. Ritchie, G. Jones, and J. Griffiths,
Many-body effects in a quasi-one-dimensional electron gas,
Phys. Rev. B 90, 201304 (2014).

[23] W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D.
Anderson, G. A. C. Jones, and D. A. Ritchie, Incipient
Formation of an Electron Lattice in a Weakly Confined
Quantum Wire, Phys. Rev. Lett. 102, 056804 (2009).

[24] C. W. J. Beenakker, H. van Houten, and B. J. van Wees,
Mode interference effect in coherent electron focusing,
Europhys. Lett. 7, 359 (1988).

[25] H. van Houten, C. W. J. Beenakker, J. G. Williamson,
M. E. I. Broekaart, P. H. M. van Loosdrecht, B. J. van Wees,
J. E. Mooij, C. T. Foxon, and J. J. Harris, Coherent electron
focusing with quantum point contacts in a two-dimensional
electron gas, Phys. Rev. B 39, 8556 (1989).

[26] T. M. Chen, M. Pepper, I. Farrer, G. A. C. Jones, and
D. A. Ritchie, All-Electrical Injection and Detection of a

Spin-Polarized Current Using 1D Conductors, Phys. Rev.
Lett. 109, 177202 (2012).

[27] U. Fano, Effects of configuration interaction on intensities
and phase shifts, Phys. Rev. 124, 1866 (1961).

[28] M. D. Petrović and F. M. Peeters, Fano resonances in the
conductance of graphene nanoribbons with side gates, Phys.
Rev. B 91, 035444 (2015).

[29] C. Yan, S. Kumar, M. Pepper, P. See, I. Farrer, D. Ritchie, J.
Griffiths, and G. Jones, Fano resonance in a cavity-reflector
hybrid system, Phys. Rev. B 95, 041407(R) (2017).

[30] The closed square cavity formed near Ohmic 5 does not
affect the observations. The dimension of the square cavity
is larger than the phase coherence length extracted from the
temperature data. Ohmic 6 is floating all the time.

[31] L.W. Molenkamp, A. A. M. Staring, C. W. J. Beenakker,
R. Eppenga, C. E. Timmering, J. G. Williamson, C. J. P. M.
Harmans, and C. T. Foxon, Electron-beam collimation with
a quantum point contact, Phys. Rev. B 41, 1274 (1990).

[32] C. C. Eugster and J. A. del Alamo, Tunneling Spectroscopy
of an Electron Waveguide, Phys. Rev. Lett. 67, 3586 (1991).

[33] Y. Takagaki and D. K. Ferry, Tunneling spectroscopy of
quantum point contacts, Phys. Rev. B 45, 12152 (1992).

[34] Y. Takagaki and D. K. Ferry, Tunneling spectroscopy of a
quantum resonator, J. Appl. Phys. 72, 5001 (1992).

[35] C. G. Smith, M. Pepper, H. Ahmed, J. E. F. Frost, D. G.
Hasko, R. Newbury, D. C. Peacock, D. A. Ritchie, and
G. A. C. Jones, Fabry-Perot interferometry with electron
waves, J. Phys. Condens. Matter 1, 9035 (1989).

[36] J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A.
Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Fano
resonances in electronic transport through a single-electron
transistor, Phys. Rev. B 62, 2188 (2000).

[37] Y. Oowaki, J. E. F. Frost, L. Martin-Mareno, M. Pepper,
D. A. Ritchie, and G. A. C. Jones, Enhancement of inter-
subband transition probability in a one-dimensional con-
striction, Phys. Rev. B 47, 4088 (1993).

[38] S. Rotter, F. Libisch, J. Burgdörfer, U. Kuhl, and H. J.
Stöckmann, Tunable Fano resonances in transport through
microwave billiards, Phys. Rev. E 69, 046208 (2004).

[39] A. M. Satanin and Y. S. Joe, Fano interference and reso-
nances in open systems, Phys. Rev. B 71, 205417 (2005).

[40] A. E. Miroshnichenko and Y. S. Kivshar, Sharp bends in
photonic crystal waveguides as nonlinear Fano resonators,
Opt. Express 13, 3969 (2005).

[41] H. Eleuch and I. Rotter, Resonances in open quantum
systems, Phys. Rev. A 95, 022117 (2017).

[42] A. Yacoby, U. Sivan, C. P. Umbach, and J. M. Hong,
Interference and Dephasing by Electron-Electron Interac-
tion on Length Scales Shorter than the Elastic Mean Free
Path, Phys. Rev. Lett. 66, 1938 (1991).

[43] N. Paquin, M. Pepper, A. Gundlach, and A. Ruthven,
Negative magnetoresistance in uniaxially stressed Si(100)
inversion layers, Phys. Rev. B 38, 1593 (1988).

INTERFERENCE EFFECTS IN A TUNABLE QUANTUM … PHYS. REV. APPLIED 8, 024009 (2017)

024009-7

https://doi.org/10.1126/science.1232572
https://doi.org/10.1063/1.112468
https://doi.org/10.1063/1.112468
https://doi.org/10.1103/PhysRevLett.115.166603
https://doi.org/10.1103/PhysRevLett.115.166603
https://doi.org/10.1021/nl404133d
https://doi.org/10.1103/PhysRevLett.56.1198
https://doi.org/10.1103/PhysRevLett.56.1198
https://doi.org/10.1088/0022-3719/21/8/002
https://doi.org/10.1088/0022-3719/21/8/002
https://doi.org/10.1103/PhysRevLett.60.848
https://doi.org/10.1103/PhysRevLett.60.848
https://doi.org/10.1103/PhysRevLett.77.135
https://doi.org/10.1103/PhysRevLett.77.135
https://doi.org/10.1103/PhysRevB.90.201304
https://doi.org/10.1103/PhysRevLett.102.056804
https://doi.org/10.1209/0295-5075/7/4/013
https://doi.org/10.1103/PhysRevB.39.8556
https://doi.org/10.1103/PhysRevLett.109.177202
https://doi.org/10.1103/PhysRevLett.109.177202
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1103/PhysRevB.91.035444
https://doi.org/10.1103/PhysRevB.91.035444
https://doi.org/10.1103/PhysRevB.95.041407
https://doi.org/10.1103/PhysRevB.41.1274
https://doi.org/10.1103/PhysRevLett.67.3586
https://doi.org/10.1103/PhysRevB.45.12152
https://doi.org/10.1063/1.352026
https://doi.org/10.1088/0953-8984/1/45/026
https://doi.org/10.1103/PhysRevB.62.2188
https://doi.org/10.1103/PhysRevB.47.4088
https://doi.org/10.1103/PhysRevE.69.046208
https://doi.org/10.1103/PhysRevB.71.205417
https://doi.org/10.1364/OPEX.13.003969
https://doi.org/10.1103/PhysRevA.95.022117
https://doi.org/10.1103/PhysRevLett.66.1938
https://doi.org/10.1103/PhysRevB.38.1593

