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Monolithically multi-color lasing 
from an InGaN microdisk on a Si 
substrate
M. Athanasiou  1, R. M. Smith  1, J. Pugh2, Y. Gong1, M. J. Cryan2 & T. Wang1

An optically pumped multi-color laser has been achieved using an InGaN/GaN based micro-disk with 
an undercut structure on a silicon substrate. The micro-disk laser has been fabricated by means of a 
combination of a cost-effective microsphere lithography technique and subsequent dry/wet etching 
processes. The microdisk laser is approximately 1 μm in diameter. The structure was designed in such 
a way that the vertical components of the whispering gallery (WG) modes formed can be effectively 
suppressed. Consequently, three clean lasing peaks at 442 nm, 493 nm and 522 nm have been achieved 
at room temperature by simply using a continuous-wave diode laser as an optical pumping source. 
Time–resolved micro photoluminescence (PL) measurements have been performed in order to further 
confirm the lasing by investigating the excitonic recombination dynamics of these lasing peaks. A three 
dimensional finite-difference-time-domain (FDTD) simulation has been used for the structure design.

Monolithically integrated multi-color lasers in the visible spectral region or white lasers are expected to find a 
wide range of applications, such as full colour high definition displays1–6, next generation vehicle headlighting, 
biosensors7, 8, visible light communications or even lighting9, etc. A number of approaches have been proposed 
in order to achieve white lasers. They are typically based on either a stacking structure or a structure containing 
multiple components, and are achieved exclusively by optical pumping, for examples, optical pumping a mix-
ture of different fluorescence dyes in a gain medium10, optical pumping a mixture of II–V group semiconductor 
nano-particles with different diameters which can obtain multiple-emissions with different wavelengths in the 
visible spectral region11. More recently, an optically pumped white laser has been achieved on a stacking structure 
consisting of different II–VI group semiconductor layers1. These excellent results indicate that it is possible to 
achieve white lasing through a proper design. However, a new design is necessary in order to achieve electrically 
injected white lasers, which will be explained below.

The last two decades have seen major progress on developing III-nitride based visible laser diodes. The emis-
sion from an InGaN alloy can be tuned across the full visible spectral region by precisely controlling indium 
composition in InGaN quantum wells12, 13. III-nitrides exhibit major advantages compared with II–VI semi-
conductors in the visible spectral region. As a result, III-nitrides would be ideal candidates for achieving white 
lasers. Although III-nitrides demonstrate a huge potential for the fabrication of a white laser, a number of great 
challenges need to be overcome in order to realise a white laser. For example, it is difficult to fabricate a cavity 
which can support multiple-wavelength lasing simultaneously. The second challenge is due to carrier transport 
issues. For a stacked structure, injection current will have to go through different active regions where a threshold 
for lasing in each region needs to be met, leading to a challenge for achieving multiple colour lasing as a result of 
high injection current required (it might be sufficient for light emitting diodes where the injection current density 
required is not high). A simple solution which can address this issue effectively is to achieve very low threshold 
for lasing, thus easily meeting population inversion for different wavelengths. Unfortunately, it is well-known that 
III-nitride based lasers generally exhibit intrinsically high thresholds for population inversion or lasing.

In order to achieve III-nitride lasing with a low threshold, a number of approaches have been explored, such 
as photonic crystal laser14, plasmonic lasers, etc15, 16. However, these approaches typically require complicated 
fabrication processes in addition to a number of fundamental limitations. Fabrication into a micro-disk laser 
is an alternative option, and is actually becoming particularly important for III-nitrides17, 18. It leads to a signif-
icant reduction in threshold for lasing as a result of reduced modal volume. Furthermore, it does not require 
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complicated processes for the fabrication of mirror facets, as optical confinement can be naturally achieved at the 
periphery of a micro-disk, forming well-known whispering gallery mode (WGMs) resonances. More importantly, 
a micro-disk laser can support a number of resonances, where both mode wavelengths and mode separation can 
be precisely tuned by controlling a micro-disk diameter. The mode separation of WGMs is given by equation 1 
below

λ λ
π

∆ =
Rn2 (1)

2

where λ is the wavelength, R the radius of the disk and n is the refractive index of the gain medium. Consequently, 
the radius of a micro-disk on a micrometre scale generates WGMs with a large mode spacing, which can span 
a wide range in the visible spectral regime that cannot be achieved in any conventional laser diodes. Note that a 
micro-disk also exhibits a large number of modes along a vertical direction as a result of optical confinement in 
the vertical direction. Therefore, a proper design is crucially important in order to effectively suppress the vertical 
modes.

These features make micro-disk cavities ideal for the fabrication of multi-color lasers due to their intrinsic 
abilities to simultaneously support resonances with a number of wavelengths, potentially forming white lasing 
with a low threshold. Therefore, these unique properties can meet the two major requirements mentioned above. 
Given the extremely mature and the cost effectiveness of silicon technology, a combination of III-nitrides with 
silicon technology makes them even more attractive for the realization of integrated photonics and electronics on 
the same chip. Recently, our group has demonstrated an optically pumped InGaN microdisk based green laser 
with a record low threshold operating in a continuous wave (CW) mode at room temperature19. The micro-disk 
laser was fabricated on an InGaN/GaN multiple quantum well (MQW) structure grown on a silicon substrate. 
The utilization of a silicon substrate can simplify the fabrication process as a result of ease in introducing an air 
gap by a chemical wet-etching technique.

In this study, we demonstrate a monolithic multi-color laser optically pumped at room temperature with 
a low threshold from a single InGaN microdisk on a Si substrate, which has never been achieved in the field 
of III-nitrides. The micro-disk laser has been fabricated by means of a cost effective microsphere lithography 
technique along with a proper design, demonstrating lasing at three distinct peaks, covering the blue, cyan and 
green spectral regions, namely, at 443 nm, 492 nm and 522 nm respectively. It is also worth highlighting that our 
structure design has effectively suppressed the vertical modes.

The micro-disk lasers used in the present study have been fabricated on an InGaN/GaN multiple quantum 
well epiwafer grown on (111) silicon by means of using a standard metal organic chemical vapor deposition 
(MOCVD) technique. An initial AlN buffer layer with a thickness of 400 nm was grown, followed by a 250 nm 
GaN buffer layer and then two different kinds of InGaN/GaN MQWs each with different indium content: first 
3 pairs of InGaN/GaN MQWs with indium composition of approximately 18% with its emission at 450 nm; 
and then 5 pairs of InGaN/GaN MQWs with an emission at 530 nm, where the indium composition is approxi-
mately 28%. The thickness of the AlN buffer layer was designed and engineered in a way which helps to suppress 
higher order modes in the vertical direction, thus enhancing the confinement of the WGMs formed. This will be 
explained later through a simulation based on a three dimensional (3D) finite-difference- time-domain (FDTD) 
approach.

Figure 1a schematically depicts our microdisk laser which is fabricated from the InGaN/GaN MQWs epiwa-
fer. Figure 1a also shows a schematic illustration of our fabrication procedure using a microsphere lithography 
approach20, 21. Figure 1b shows a cross-sectional scanning electron microscopy (SEM) image of our microdisk, 
demonstrating straight sidewalls with a thin silicon post underneath which is left to mechanically support 
the microdisk. The microdisk is approximately 750 nm thick. An air gap formed underneath was introduced 
by a chemical wet-etching approach using a potassium hydroxide (KOH) solution, and the air gap is approxi-
mately 1.2 μm in height. It is expected that the introduction of the air gap underneath will enhance the optical 

Figure 1. (a) Schematic illustration of our multi-color micro-disk laser, where Inset shows our procedure of the 
fabrication of dispersed micro-disks on a silicon substrate; (b) Side-view SEM image of our typical micro-disk 
with a diameter of ~1 μm, demonstrating straight and smooth sidewalls with a large air gap underneath.
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confinement in the microdisk region. A top-view SEM image provided in the inset of Fig. 1b demonstrates an 
excellent circular geometry of our microdisk whose diameter is approximately 1 μm. It is worth highlighting that 
any imperfections or roughness at the periphery of the micro-disk will generate disruption to optical confinement 
as a result of scattering, leading to a leakage of photons out of the cavity and thus reducing its quality factor. This 
will result in an increase in threshold for lasing.

Lasing spectral measurements have been performed on our microdisk laser at room temperature using a 
commercial confocal system, where a CW 375 nm diode laser is used as an optical pumping source and the spa-
tial resolution of the system is around 160 nm. The system is equipped with a high resolution x-y-z piezo-stage, 
allowing us to preferentially excite and then collect any emission from a single micro-disk (see supplementary 
material). Figure 2 shows the emission spectra of our microdisk laser as a function of optical pumping density 
ranging from 0.4 to 120 kW/cm2. Under low optical pumping, a few weak emission peaks corresponding to differ-
ent WGMs have been observed. However, when the optical pumping density is above the lasing threshold, three 
very sharp and strong emissions located at 443 nm, 492 nm and 522 nm have been observed. In each case, the 
intensity increases dramatically along with a significant reduction in full width at half maximum (FWHM) with 
further increasing optical pumping density, indicating a lasing action. The inset of Fig. 2 provides the emission 
spectra of the as-grown sample for comparison, showing two broad emission peaks from the two kinds of InGaN/
GaN MQWs with different indium content as expected. Furthermore, Fig. 2 also shows a typical emission image 
captured when the optical pumping density is above the threshold, demonstrating multi-color lasing achieved on 
our micro-disk laser.

Figure 3(a) to (c) show the light-light (L-L) curves of the three lasing peaks at 443 nm, 492 nm and 522 nm. In 
each case, the L-L curve plotted in a log-log scale exhibits a “s” shaped behaviour which is a typical fingerprint of 
lasing action demonstrating the three steps process towards lasing, namely, spontaneous emission, then amplified 
spontaneous emission, and final lasing oscillation. From the L-L plots, the thresholds are determined to be 27 kW/
cm2, 15 kW/cm2 and 5 kW/cm2 for the lasing peaks at 443 nm, 492 nm and 522 nm, respectively. In fact, the actual 
thresholds are even lower, in particular for the blue peak, as only a small portion of optical pumping power can 
reach the blue MQWs region which is located below the green MQWs region as the optical pumping power needs 
to firstly pass through the green MQWs region. Figure 3(a) to (c) also provide the FWHMs of the three emission 
peaks as function of optical pumping density. In each case, the FWHM shows a dramatic reduction when the 
optical pumping density exceeds the threshold for lasing, further confirming the lasing behavior.

The quality factor (i.e., Q factor) which is defined as λ /Δλ can be determined, where λ and Δλ are the wave-
length and its FWHM respectively. Under low optical pumping, the Q factors are ~ 500, ~ 620 and ~ 1200 for the 
three peaks at 443 nm, 492 nm and 522 nm respectively.

In order to further investigate the lasing properties of our micro-disk laser, time-resolved micro-PL (μ-TRPL) 
studies have been conducted as a function of excitation power density from 0.75 to 37 kW/cm2, which spans a 
wide range from a spontaneous region through a threshold to a lasing region. A 375 nm pulsed diode laser with a 
pulse width of 50 ps was used as an optical excitation source.

Figure 4(a) to (c) shows the μ-TRPL decay traces measured as a function of excitation power density at room 
temperature. A standard bi-exponential model was used to fit the TRPL decay traces when the excitation power 
density used is below the threshold, and a TRPL trace labelled as I(t) can be described by Equation 2 provided 
below19–21:
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Figure 2. Lasing spectra from our micro-disk laser recorded as a function of optical pumping power density 
at room temperature, where Inset shows the emission spectrum of the un-patterned (i.e., as-grown) sample for 
comparison. Optical image of the micro-disk laser captured during optical excitation, demonstrating a white 
emission of the micro-disk laser.
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Figure 3. (a) to (c) Integrated emission intensity and FWHM plotted as a function of optical excitation power 
density for the three lasing peaks at 443 nm, 492 nm and 522 nm, respectively. A typical “s” shaped behavior 
of the integrated emission intensity has been observed along with a sudden reduction in FWHM in each case, 
confirming the lasing action.

Figure 4. (a) to (c) μ-TRPL decay traces measured as a function of excitation power density for the three lasing 
peaks, where a standard bi-exponential mode, labelled as a green line, was deliberately used to fit the TRPL 
traces in order to highlight the evolution of the ultra-fast decay component under the lasing conditions; (d) 
Decay lifetime of the ultra-fast component in each case as a function of optical excitation power density, and 
Inset showing an example of the decay traces as a function of excitation power density.
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where A1 and τ1 (A2 and τ2) represent the fast (slow) decay components22, 23. Figure 4(a) to (c) also provide the fit-
ting data plotted as green curves, showing that a well-fitting has been obtained using the standard bi-exponential 
model for the TRPL-decay curves measured when the excitation power density is below the threshold.

However, when the excitation power is above the threshold, the situation has changed, and an extra ultra-fast 
decay component has been observed in each case. This can be observed more clearly after the data-fitting using 
the bi-exponential model (green lines). In this case, it is clear that the bi-exponential model no longer works for 
the TRPL traces, while an extra ultra-fast decay component is required in order to fit the TRPL traces. Therefore, 
an extra item needs to be added into Equation 2 as shown below:
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where A1 and τ1 (A2 and τ2) remain unchanged as stated above, and the last term represents the extra component, 
which is due to lasing19, 24.

Figure 4d shows the decay lifetimes of the lasing (i.e., ultrafast component labelled as τ3) of the three peaks 
plotted as a function of excitation power density. As an example, the inset of Fig. 4d shows the TRPL decay curves 
of the emission peak at 492 nm recorded as a function of excitation power density, showing that the extra compo-
nent starts to appear when the excitation power density is ≥10 kW/cm2.

Figure 4d indicates that the lifetimes of the ultra-fast decay components for the three lasing peaks are all on 
the order of 10 s ps. In detail, they are around 70 ps, 100 ps and 180 ps for the lasing peaks at 443 nm, 492 nm and 
522 nm under the highest excitation power density, respectively. The thresholds for lasing estimated from Fig. 4d 
are around 4 kW/cm2, 10 kW/cm2, 22 kW/cm2 for the peaks at 522 nm, 492 nm and 443 nm, respectively. There 
exists a slight difference in threshold for lasing compared with those obtained earlier under the conditions of 
using a CW diode laser as an optical pumping source. This can be attributed to the reduction of thermal effects 
due to the utilisation of a pulsed laser for the TRPL measurements.

The appearance of the ultra-fast decay component in conjunction with the super-linear increase in emission 
intensity and the sudden reduction in the FWHM of the emission peak provide solid evidences for the lasing 
behaviour17–19, 24–29.

As mentioned previously, it is crucial to make a proper design on AlN buffer thickness in order to effectively 
suppress vertical modes. In the meantime, a proper design in AlN buffer thickness is also necessary in order to 
achieve highest Q factors for each lasing peak. From the point of view of epitaxy, it is ideal to have a thick AlN 
buffer layer in order to improve the crystal quality of a sample grown on a large lattice-mismatched silicon sub-
strate. However, in order to effectively suppress vertical modes, the thickness of the AlN buffer needs to be mini-
mised. A proper AlN buffer layer is required in order to meet both requirements. Figure 5a shows the simulated Q 
factors for both the fundamental transverse-electric (TE) and the fundamental transverse-magnetic (TM) modes 
plotted as a function of AlN layer thickness. It is clear that an AlN buffer layer with a thickness of approximately 
400 nm leads to the highest Q-factors for both the TE and TM fundamental modes. Furthermore, the wavelengths 
of both the fundamental TM and TE modes decrease with increasing AlN buffer thickness. Figure 5b shows 
the distribution of the electrical fields for the three lasing modes, demonstrating the WG resonances from the 
top-view mode profiles and effective suppression of the vertical modes within the GaN region as a result of the 
utilisation of the AlN buffer with a proper thickness.

In summary, we have reported a room-temperature optically pumped multi-colour laser based on an 
InGaN/GaN microdisk laser with an undercut structure, which was fabricated by means of a combination of a 
cost-effective microsphere approach with subsequent dry etching and chemical etching processes. The optically 
pumped lasing was achieved at 443 nm, 492 nm and 522 nm in cw mode simultaneously, forming multi-color 
lasing, where their corresponding thresholds for lasing are around 27 kW/cm2, 15 kW/cm2 and 5 kW/cm2, respec-
tively. This is the first report of a multi-colour laser with a low threshold using III-nitride semiconductors so far, 
potentailly paving the way for achieving electrically injected lasing. The lasing behaviour of our micro-disk laser 
has been confirmed by optical pumping power dependent measurements and time resolved micro-PL measure-
ments. A 3D FDTD simulation has been used to design and engineer the AlN buffer layer in order to effectively 
suppress the vertical modes and then enhance the confinement within the cavity region.

Methods
Fabrication of microdisk lasers. The microdisks were fabricated from an InGaN/GaN MQW epi-wafer, 
which was grown by MOCVD on an (111) silicon substrate. The epi-wafer consists of a 400 nm AlN buffer layer 
and then a 250 nm GaN layer, followed by 3 pairs of In0.18Ga0.82N/GaN MQWs and then 5 pairs of In0.28Ga0.72N/
GaN MQWs, where the thicknesses of the quantum well and the barrier are 2.5 and 10 nm respectively. The 
epi-wafer was then fabricated into single microdisk structures by a combination of a silica microsphere lithog-
raphy approach and subsequent dry/etching processes. Initially, the silica micro-particles with a diameter of 
approximately 1 μm diluted in DI water with 1:50 concentration were deposited directly on the surface of the 
epi-wafer using a spin coating method at a high rotation speed (7000 rpm), serving as micro masks for subsequent 
dry-etching. A standard inductive couple plasma (ICP) technique was used to etch the InGaN/GaN epilayer 
in order to form sparsely distributed micropillars. The silica microspheres were then removed from the top of 
each micro-pillar simply by using an ultrasonic bath. Finally, a KOH wet etching method was then employed to 
undercut the micro-disk and then introduce an air gap, which will isolate the micro-disk region from the silicon 
substrate. A large air-gap (>1 μm) with a tiny post remaining to mechanically support the micro-disk was formed 
under the micro-disk region, significantly enhancing the optical confinement along the vertical direction and 
thus minimizing any optical losses to the silicon substrate. A further surface treatment involving the utilization 



www.nature.com/scientificreports/

6SCiEnTifiC REPORTS | 7: 10086  | DOI:10.1038/s41598-017-10712-4

of hot nitric acid has been developed in order to remove any residual etchants and cure any damage generated 
during the ICP dry etching process.

Lasing spectral measurements have been performed using a commercial WITec confocal microscope. A 
375 nm continuous wave (CW) diode laser is used as an optical pumping source and the system is equipped with 
a 300 mm Princeton instruments monochromator (SP2300i) and an air-cooled charge coupled device (CCD). 
An objective lens (100×, NA = 0.95) is used to focus the laser beam down to a spot with a diameter of ~220 nm. 
The emission is dispersed by the monochromator with a resolution of ~0.1 nm. An optical fiber with a diameter 
of 10 µm acts as a pinhole, thus allowing the emission to be collected only where the excitation is performed. The 
system is equipped with a high-resolution x-y-z piezo-stage to individually address and examine microdisk lasers. 
All the measurements have been performed at room temperature.

Time-resolved micro-photoluminescence measurements have been carried out in a micro-PL system, where 
a 375 nm pulsed diode laser is used as an optical pumping source and the system is equipped with a monochro-
mator (Horiba iHR550) and an air-cooled CCD. An objective lens (50×, NA = 0.43) was used to focus the laser 
beam down to a spot with a diameter of ~2 μm. The luminescence is dispersed by the monochromator with a 
resolution of 0.01 nm. For the μ-TRPL measurements, a time-correlated single photon counting (TCSPC) system 
is used, and the emission is detected by a Hamamatsu hybrid photon counting PMT. The response time of the 
system is 150 ps.

A three-dimensional finite difference time domain (FDTD) approach has been used to simulate the microdisk 
structure using commercial-grade software [Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/
fdtd/]. A dipole source with emission wavelengths from 370 to 720 nm was vertically centered in the plane of 

Figure 5. (a) Simulated Q-factors for the fundamental modes of both TE and TM as a function of AlN buffer 
thickness and simulated wavelengths of both the fundamental TE and TM modes as a function of AlN layer 
thickness; (b) Electrical field distribution for the three lasing peaks along the horizontal (i.e., X-Y plot) and 
vertical (X-Z) directions labelled as (a,b, and c), respectively.

http://www.lumerical.com/tcad-products/fdtd/
http://www.lumerical.com/tcad-products/fdtd/
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the microdisk quantum wells and 10 nm inside the edge of the microdisk. All the geometrical data used for the 
simulation are from the SEM measurement of our microdisk. The diameter and height of the microdisk used for 
the simulation are 1030 nm and 750 nm, respectively. Other parameters for the simulation include a 400 nm thick 
AlN buffer layer (n = 2.1), a 250 nm thick bulk GaN layer (n = 2.44) and a 100 nm thick refractive-index weighted 
average layer representing the QW region (n = 2.47). For the silicon post below the microdisk, a diameter and a 
height of 260 nm and 700 nm have been used, respectively. There is a minimum of ten mesh cells per wavelength 
in the simulation that is run for 5000fs. Frequency-domain power monitors have been used to record the emis-
sion profile over the simulation region, which is surrounded by perfectly matched layer absorbing boundaries 
on all sides. The simulated spectra are collected by a grid of 12 time-monitors placed both inside and outside the 
microdisk structure, accurately calculating the envelope of the time-domain field signal. Each resonant peak is 
isolated in the frequency domain using a Gaussian filter, and by taking the inverse Fourier transforms the time 
decay have been calculated separately for each peak. The slope of the time decay is used to calculate the Q-factor 
of each resonance.
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