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Abstract—The availability of complex temporal datasets in so-
cial, health and consumer contexts has driven the development of
pattern mining techniques that enable the use of classical machine
learning tools for model building. In this work we introduce a
robust temporal pattern mining framework for finding predictive
patterns in complex timestamped multivariate and noisy data.
We design an algorithm RobustSPAM that enables mining of
temporal patterns from data with noisy timestamps. We apply
our algorithm to social care data from a local government body
and investigate how the efficiency and accuracy of the method
depends on the level of noise. We further explore the trade-off
between the loss of predictivity due to perturbation of timestamps
and the risk of person re-identification.

Index Terms—robust, temporal pattern, noisy data, privacy

I. INTRODUCTION

The widespread collection of data in social, health and con-

sumer contexts has contributed to the availability of complex

temporal datasets. Data instances collected in these datasets

are characterized by a variable number of irregularly spaced

timestamped events that include information about continuous

activities and instantaneous events (e.g. Electronic Health

Records, machine log files, credit/debit card use). The increase

in the number of complex temporal datasets has prompted the

development of methods that extend applicability of classical

statistical, machine learning and data mining methods to those

datasets [1]–[3]. This is particularly important in monitoring

or detection problems such as: patient monitoring [4] or fraud

detection [5]. These methods involve identification of relevant

temporal patterns of events. Patterns represent sequences of

time-point (or time-intervals) events. They are used to encode

original variable-length data instances as fixed-length binary

vectors representing presence or absence of chosen patterns

therefore enabling application of existing classification and

prediction tools.

Existing temporal pattern mining algorithms extend sequen-

tial pattern mining methods to a more complex case of time-

related pattern mining. They are based on time point or interval

representations of the data and are typically exploiting Allen-

type relationships [6]. They require a temporal abstraction of

the raw data into ordered coded events (e.g. two weeks of

high blood pressure) [7]. This recoded data is searched for
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frequent sequential patterns using algorithms such as Gener-

alized Sequential Pattern algorithm (GSP) [8], PrefixSpan [9],

Sequential PAttern Mining (SPAM) [10] or Sequential PAttern

Discovery using Equivalence classes (SPADE) [11]. The ap-

plication of the above algorithms to monitoring and detection

tasks has been successful for datasets with accurately recorded

timestamps. Our objective is to build a frequent pattern mining

algorithm that performs well in mining temporal data that

include error/noise in the timestamps, a common occurrence

in manually maintained databases. The existing methods will

not work for noisy data as the noise may perturb frequent

patterns into a large number of rare patterns, which therefore

will be excluded from the inference or, if included, may lead

to over-fitting of a trained model.

This paper makes two contributions. Firstly, we design a

robust approach for analysis of longitudinal data that can ac-

count for noise/errors in the recorded timestamps. Such errors

are common in information systems maintained manually such

as health records or social care systems. Errors in inputting

information in the system might result in different or even

reverse temporal relations which are not true (for example

event A was recorded after event B whereas they took place

in the reverse order). Existing algorithms that allow for some

tolerance [3] take into account constant error margins around

intervals. Our contribution is both theoretical (formulation of

robust temporal patterns) and algorithmic (efficient methods

for identification of such robust patterns which go beyond and

are significantly harder than classical problems of sequential

pattern mining). Our approach focuses on using time points

instead of intervals and fitting probabilistic models for the

errors in the time stamp around these time points. Intervals

are represented as a start point and an end point with possibly

different errors around those points. This representation allows

for intuitive and relatively compact representation of patterns

while still retaining predictive power similar to interval-based

methods. Moreover, we noticed significant gains in terms

of computational and algorithmic complexity in our robust

pattern mining algorithm compared to a similar approach that

we explored for interval mining (not reported in the paper, but

will be clear to the reader after reading this article).

Our second contribution concerns privacy preserva-

tion/statistical disclosure problems in the context of longitudi-

nal data. As such data contain rich temporal information, they



may be used in person re-identification [12], [13]. A typical

approach of using aggregate statistics is often insufficient

for complex datasets as experience in [14] shows. Instead,

we borrow from a classical approach in statistical disclosure

and perturb timestamps with a random noise. Analysis with

such perturbed data is possible through our robust times-

tamps approach. We measure the risk of re-identification with

the Unicity measure [15]. This represents the percentage of

uniquely identified records given a number of points in time.

We will report on the performance of this method in predictive

modeling; in particular, we will discuss the loss of predictive

power and the sensitivity to specification of the noise.

As a test ground for our methods we will use a risk stratifi-

cation problem in Adult Social Care. The dataset is provided

by a local authority and contains for each client: timestamped

referrals, assessments, reviews and services provided as well

as static health and socio-economic descriptors. The aim is

to identify clients that are at the highest risk of moving into

expensive care (such as nursing or residential care) in order

to provide additional services to extend their independence.

The paper is organized as follows: Section II introduces

the classification problem. In Section III, we provide the

mathematical foundation for defining robust order and robust

pattern. Section IV describes the TestPattern algorithm and

Robust Sequential Pattern Mining (RobustSPAM) algorithms.

In Section V we explore the performance of the RobustSPAM

algorithm, analyze the loss of predictive power due to the noise

and the trade-off between the noise and privacy preservation.

Section VI concludes this work.

II. PROBLEM DEFINITION

The general approach for modeling temporal datasets is de-

fined as follows. Let D = {〈xi, yi〉}ni=1 be a training dataset:

xi ∈ X is a collection of multidimensional timestamped

instances and yi ∈ Y is a class label associated with xi. The

main aim is to learn a function f : X → Y that can classify

unlabeled instances.

The dataset considered in this paper was provided by

a local government body and comprises information from

an Adult Social Care system. Every data instance xi is a

complete record of interactions with and services provided for

a client. There are four main activities reported in the systems:

referrals, assessments, services and reviews. The class label

yi denotes whether or not a client is in receipt of one of two

expensive services (nursing or residence housing). A similar

problem, although on a shorter time scale, has been studied

for electronic health records (EHR) in [16].

Data instances are characterized by a variable number of

irregularly timestamped events. We may have a situation that

a client was referred for a need of care but was not eligible

to receive any service then, but after a number of years ended

up with the same referral reason and received a number of

services. There are groups of clients (e.g mental health or

disability problems) that receive support throughout their lives

and groups of people that have single events like equipment or

home adaptation only. This heterogeneity of client data means

that a classifier cannot be learnt directly from the data.

A common approach for timestamped datasets is to apply

a (dataset-based) transformation φ : X → X ′ that maps each

instance xi into a fix-length vector x′

i while retaining as much

as possible temporal characteristics of xi. In this work we

use a dynamic transformation as proposed in [16]. We learn

transformation φ from data using temporal pattern mining by

following the steps:

1) convert activities (events and intervals) into point-time

sequences of events,

2) find frequent temporal patterns from the event sequence

data.

Having transformed data D′ = {〈x′

i, yi〉}ni=1 we can use

classical machine learning methods to learn the classifier.

Electronic health records, social care records and other

manually maintained datasets often contain errors in reporting

timestamps. We also consider the case when data contain

noise introduced in the process of anonymization. Current

approaches for temporal pattern mining do not take these

scenarios into account. Temporal patterns are searched within

sequences of events ordered using time-point and/or interval

relationships (e.g Allen’s relations [17]) which assume accu-

rate timestamps, therefore affecting pattern discovery. In this

paper we address this problem. We propose a robust pattern

mining algorithm for pattern discovery and we provide the

analysis of the classifier predictive power vs the added noise

to the timestamps. In the following sections we will explain

in details steps of our modeling approach.

III. ROBUST TEMPORAL PATTERNS

A. Event Abstraction

Let Σ be an abstraction alphabet that represents a finite

set of permitted abstractions. A multivariate variable xi is

transformed into an event representation ei = 〈ci, ti〉 with

ci ∈ Σ. In what follows we will write t(ei) for ti and

ei for ci. Temporal abstractions have been well studied for

transformation of numerical time series variables to a high

level qualitative representation [7]. In case of EHR data, each

clinical variable is transformed to an interval-based repre-

sentation [16]. For categorical data, the alphabet Σ consists

simply of all categories. Unfortunately, in many cases an

event ei is described by more than one categorical value (e.g.,

location and type of medical intervention). Constructing an

alphabet through a product of possible categories leads usually

to impractically large number of event codes (c.f. column 3 of

Table IV) making the pattern mining part very computationally

intensive and inference often infeasible. In such cases there is

a need to recode categories and arrange them in hierarchies

which can then be used at a different level of detail.

In this work we consider a social care dataset from a

local government body with categorical variables only. To

demonstrate the complexity of the data mentioned in the

previous paragraph, a referral activity has been coded using

three significant variables: source (by whom the referral was
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Fig. 1. Effect of noise in timestamps on relative position of events on time
axis. The top picture shows real times when events occurred. The effect of
noise in timestamps in presented on the bottom picture.

made), reason (why) and outcome (action taken after the

referral was made). The source categories were grouped into

two categories: health (H) when referral came from primary

or secondary care and other (O) representing e.g. police,

self-referral, family/neighbors, legal agent, etc. The variable

Reason was grouped in a number of categories such as (need

for assessment (A.1), referral to mental health (A.3), carer

assessment (C) etc.). The outcome variable includes: support

plan amended (A.1), accept for assessment (A.2), accept for

disability services (B.1), other decision (J). We represent the

code for a referral activity as activity type-source-reason-

outcome, e.g. Ref-O-A.1-J or Ref-H-C-B.1.

After abstracting all variables/activities, we represent an

instance xi as a sequence of events (SE) sorted according

to their timestamps ti:

SEi = 〈e1, e2, e3, . . . , el〉,
where t(el) ≤ t(el+1).

B. Robust Temporal Relationship

Consider two events e1 and e2 that occur at times t(e1) and

t(e2). Their relationship can be described in the following

way:

• e1 is before e2 (one event happens before the other event);

• e1 co-occurs with e2 (both events happen at the same

time).

In standard approaches, both relations are described with the

following order:

e2 ≥ e1 ⇔ t(e2)− t(e1) ≥ 0 (1)

The underlying assumption above is that observed data are

exact. However, when timestamps are recorded with an error

or are noisy, the relation between recorded timestamps t(e2) ≥
t(e1) may not imply that e2 really happened after e1. In this

paper we introduce a robust relation between events that is

immune to such noisy perturbation of timestamps.

Definition 1: (Robust ordering) Event e1 happens before e2
in robust ordering with respect to β, denoted as e1 � e2, if

t(e2)− t(e1) ≥ β(e1, e2). (2)

An ordering is called separable if

β(e1, e2) = β̂(e1) + β̂(e2) (3)

for a function β̂ depending on the event code.

Example.

Assume that the noise introduced to the timestamps is nor-

mally distributed with mean 0 and variance σ2, independently

from the type of event. Denoting by t(·) a recorded timestamp

and by t∗(·) a real timestamp, we have

t(·) = t∗(·) + ǫ, ǫ ∼ N(0, σ2).

We want to find a threshold K such that

P (t(e2)− t(e1) ≥ K
︸︷︷︸

β(e1,e2)

| t∗(e1) ≤ t∗(e2)) ≥ α

for some confidence level α, e.g., α = 95%. Then setting

β̂(·) = K/2 defines a separable robust ordering such that

t∗(e1) ≤ t∗(e2) implies that e1 � e2 with probability α, i.e.,

we identify the true ordering of events with probability α.

Notice that a normally distributed noise does not allow for

identification with probability 1 as the noise can potentially

be arbitrarily large (however with a very small probability).

We compute

P (t(e2)− t(e1) ≥ K | t∗(e1) ≤ t∗(e2))

≥ P (t(e2)− t(e1) ≥ K | t∗(e1) = t∗(e2))

= P (t∗(e2) + ǫ2 − t∗(e1)− ǫ1 ≥ K | t∗(e1) = t∗(e2))

= P ( ǫ2 − ǫ1
︸ ︷︷ ︸

N(0,2σ2)

≥ K)

= P (
ǫ2 − ǫ1√

2σ
︸ ︷︷ ︸

N(0,1)

≥ K√
2σ

) = Φ

(

− K√
2σ

)

Therefore,

P (t(e2)− t(e1) ≥ K | t∗(e1) ≤ t∗(e2)) ≥ α

if

Φ

(

− K√
2σ

)

= α,

i.e.,

K = −
√
2σΦ−1(α).

This yields a robust separable ordering with a constant func-

tion

β̂ ≡ −
√
2

2
σΦ−1(α).

Taking α = 50% gives β̂ = 0 and reclaims an ordinary

ordering of real numbers. In practice, one will usually use

α > 50%; for example α = 90% gives K ≈ −1.38σ. ⊳

Notice that unlike the exact relation between true times-

tamps t∗(·), the robust ordering defined above is not transitive

if β̂ < 0. Indeed, assume that e1 � e2 � e3. This means that

t(e2)− t(e1) ≥ β̂(e1) + β̂(e2),

t(e3)− t(e2) ≥ β̂(e2) + β̂(e3).

From here we can only deduce that

t(e3)− t(e1) ≥ β̂(e1) + 2β̂(e2) + β̂(e3),

while the right hand side is smaller (because β̂(e2) < 0) than

β̂(e1) + β̂(e3) which defines the relation e1 � e3.



C. Robust Temporal Patterns

The lack of transitivity of robust ordering means that

representations of temporal patterns may be very complicated

as temporal relationship between every pair of events has to be

specified. In this paper, motivated by computational tractabil-

ity, we restrict attention to patterns in which consecutive events

are assumed to be ordered according to the robust ordering �.

This means that a pattern can be represented by a sequence of

events and the robustness only enters at the stage of verifying

if it is contained in a given instance.

Definition 2: (Temporal Pattern) A temporal pattern is a

sequence of events P = 〈p1, p2, . . . , pk〉. The size |P | (also

denoted length(P )) of P is defined as the number k of events

in the sequence.

Definition 3: (Robust inclusion) An instance xi with the

event representation SEi = 〈e1, e2, . . . , el〉 contains a pattern

P = 〈p1, p2, . . . , pk〉, denoted P ∈ SEi, if there is a one-to-

one mapping p from {1, . . . , k} to {1, . . . , l} such that

∀i∈1,...,k : epi
� epi+1

,

where � is a robust ordering.

IV. TEMPORAL PATTERN MINING ALGORITHM FOR

ROBUST TIMESTAMPS

In this section, we present an algorithm for mining frequent

robust temporal patterns. The algorithm takes as an input D:

the sequence of events (SE) representation for each client and

the function β̂. It finds all frequent l-length patterns with the

length l within given bounds similarly as in the classical SPAM

[10]. The procedure is iterative and follows the following two

phases:

1) (candidate generation phase) generate a candidate pat-

tern by extending a frequent l-pattern using depth-first-

search (DFS) algorithm (as in SPAM),

2) (counting phase) accept the new pattern if it has support

at least τ , i.e. the proportion of records that contain it

is at least τ . This is where our algorithmic contribution

lies.

An l-pattern is a sequence s = 〈e1, e2, . . . , el〉 and s ∈ SE.

Its extension comprises adding a new event code at the end.

If the sequence s is not frequent any child sequence generated

from s cannot be frequent, which allows for truncation of the

search tree. This is called an a priori principle [18].

In the following subsection we describe details of these

steps.

A. Candidate Generation

To generate candidates we used the depth-first search (DFS)

approach as it was proposed in [10]. We start at the root

node with a 0-pattern. At each node n we extend the l-pattern

adding a new event ek at its tail and we calculate its support.

If the support of a generated pattern s is greater than minimum

support threshold τ , we store that sequence and repeat DFS

recursively on s. The maximum length of any sequence is

limited since the input database is finite. If the support of

Algorithm 1 RobustSPAM

Input: prefix, D, Sn, maxlen, τ , β
1: sTemp = ∅
2: sPattern = ∅
3: for (ci : Sn) do

4: pattern = (prefix, ci)
5: support = GetSupport(D, pattern, β)

6: if (support > τ ) then

7: store pattern

8: sTemp = sTemp ∪ ci
9: sPattern = sPattern ∪ pattern

10: end if

11: end for

12: for (i : sPattern) do

13: if (maxlen > |i|) then

14: RobustSPAM(i, D, sTemp, maxlen, τ , β)

15: end if

16: end for

Algorithm 2 GetSupport

Input: D, pattern[], β
1: count = 0
2: for (i : D) do

3: Convert SEi to tuple representation T[] = {(t, st, c)}
using β

4: count=count + TestPattern(T[], pattern[])

5: end for

6: return count/|D|

s is less than τ , then we do not need to repeat DFS on s
as indicated by the a priori principle. If none of the generated

children are frequent, then the node is a leaf and we backtrack

up the tree and follow further steps of DFS procedure. Details

are provided in Algorithm 1, RobustSPAM (Robust Sequential

Pattern Mining). The algorithm takes the following inputs: a

prefix (l-pattern to be extended), data D, a list possible events

for extensions Sn, maximum pattern length maxlen and the

minimal support τ . In the first iteration Sn = Σ.

B. Pattern Count

In contrast to other temporal pattern mining algorithms

the counting phase is challenging due to robust timestamps.

In existing algorithms only the time order of events matters

and standard subsequence matching algorithms suffice; their

complexity is linear with respect to the length of the record.

However, in the case of robust timestamps a definitive ordering

of events cannot be established (c.f. Definition 3) and existing

sequence matching algorithms cannot be applied. We therefore

designed an algorithm for pattern matching which, thanks to

the particular choice of function β(e1, e2) = β̂(e1) + β̂(e2)
with β̂ < 0, has also a linear complexity – the feature crucial

for the efficiency of our approach.

The following observation lies at the roots of our algorithm:



e1 � e2 if and only if

t(e2)− β̂(e2) ≥ t1 + β̂(e1).

(Recall that β̂(·) < 0.) Figure 2 presents the robust order

e1 � e2 between events e1 and e2.

e1 e2

−β̂(e1)

−β̂(e2)

Fig. 2. Robust order for pattern count algorithm.

Following the above observation, we recode events for each

client in the following way. For each event, we create two

tuples (t,st,c) representing timestamp (t), status (st) and event

code (c) as follows:
(
t(ei) + β̂(ei), ”start”, ei)

)
,

(
t(ei)− β̂(ei), ”end”, ei)

)
.

For each client, those tuples are sorted with respect to (t)

and stored in table T[] (see Algorithm 2), which forms the

input to Algorithm 3. We use two arrays Active[] and Used[]

that keep track of active event codes that can be used to

match a pattern and those events which have already been

matched, respectively. We walk through the table T[]. When

we encounter a starting tuple (status=”start”) we increase the

count for the code of this event within Active[] array. Then we

test if there is a match with a corresponding event code in the

pattern. If yes then we increase the event count in Used[] array

and we test consecutive event code from the pattern against all

the active but not already used codes. This is repeated until

all event codes in Active[] are used. We then proceed with

the next element from T[]. If the tuple status represents the

closing intervals then we reduce the count in Active[] and

Used[] arrays (the event is no more available for a matching).

V. EXPERIMENTAL RESULTS

In this section, we present results for a dataset on provision

of adult social care by a local government. We test our

approach when timestamps are perturbed by various levels

of additive (Gaussian) noise thus enabling comparison to a

benchmark model obtained under the assumption that the

original dataset is free of inaccuracies in timestamp recording.

We further explore the trade-off between privacy preservation

through perturbation of timestamps and the loss of predictive

power.

A. Dataset

The original dataset consists of 100,000 records of adult

social care clients. For each client, there is an independent

variable (label) yes/no describing if the client is in receipt of

an expensive social care support package. Each client’s record

comprises a number of activities and their timestamps. There

are four types of activities: referrals, assessments, services and

reviews. Activities are described in the original dataset by a

Algorithm 3 TestPattern

Input: T[], pattern[]

1: Active[]=0, Used[]=0, j = 0, x = 0
2: for i = 1 to n do

3: (t,st,c) := T[i]

4: if (st==”start”) then

5: Active[c]++

6: if (pattern[j]==c) then

7: ps = pattern[j]

8: do

9: Used[ps]++

10: j++

11: ps = pattern[j]

12: while Active[ps]-Used[ps]> 0 &j < |pattern|)
13: if (j==|pattern|) then

14: x = 1
15: exit

16: end if

17: end if

18: else

19: Active[c]−−
20: Used[c] = max(0, Used[c]-1)

21: end if

22: end for

23: return x

TABLE I
RE-CODING ACTIVITIES TO THE EVENT REPRESENTATION.

Event Type Potential no. codes No. codes in data

referral 260 18
assessments 16 10

services 116 90
reviews 17 8

number of attributes. We transformed them into a coded event

dataset, see Table I. The referral event code is composed of

three parts: source (who made a referral) – 2 categories; reason

(why the service is needed) – 12 categories and outcome

(decision for assessment) – 15 categories. The assessment

activity was coded using only one variable – eligibility with 16

categories. The service activity was coded with 116 categories

and the review activity – with 17 categories. The numbers

of all possible codes for each event type is presented in the

second column of Table I. The actual number of codes found

within the dataset are showed in the last column of the same

table.

For each client we represented the data as a sequence of

events, sorting them by the timestamp. We selected 42,585

clients – those with more than three events |SEi| > 3.

We used this dataset to test model classification performance

with an increasing level of timestamp perturbation. Further, to

explore in more detail the risk of person re-identification and

to analyze the loss of predicting power for our classifier to

specification of the introduced noise, we selected 2000 clients

and restricted their data to services only: there were 60 event



type codes describing a type of service the client received. To

increase the accuracy of the reference model (so that the effect

of noise is clearer) we artificially assigned labels 0 and 1 to

clients using clustering methods based on frequent temporal

patterns.

B. Workflow of the Experiment

The experiment was performed in two steps:

1) Classification performance - to test ability of the Ro-

bustSPAM algorithm to find patterns in noisy (randomly

perturbed) data.

2) Detailed analysis of the trade-off between the loss of

predictive power and the ability to re-identify individuals

from timestamps.

In the first step we used original label defining if a person

receives an expensive care support package. We followed the

workflow provided in Section II. We converted activities into

point-time sequences of events. We then perturbed timestamps

by adding noise as follows:

timestamp −→ timestamp + noise N(0, γ2) in days,

where N(0, γ2) stands for the normal distribution with the

mean 0 and the variance γ2. We applied the RobustSPAM

algorithm for β̂(·) = 2γ to find frequent patterns. Then we

transformed the sequences of events into a binary matrix where

each column represented presence (1) or absence (0) in a client

record of a frequent pattern. The random forest model was

used as a classifier.

In the second step, we used a similar procedure but extended

the range of γ and assessed the probability of re-identification.

In both cases we mined frequent robust temporal patterns

from each class label separately. Using local minimum support

rather than global minimum support for the entire training

dataset allows for finding patterns relevant for a given class,

particularly in the case of unbalanced data.

C. Classification Performance

In this section we test the ability of our RobustSPAM

algorithm to capture temporal patterns that are important for

prediction. We compare our results with the original SPAM

algorithm applied on unperturbed dataset. The dataset included

107 codes representing: referrals, assessment, service and

review activities for 42,585 clients. The total number of 17503

clients was labeled as not using expensive care, whereas

25083 were labeled as recipients of an expensive care support

package.

Firstly, we used the SPAM algorithm [10] to find frequent

patterns for non-perturbed data. Then we used these patterns

to build random forest classifier. To build a classifier we split

dataset into two sets: training and testing. The training dataset

included 4000 clients that were balanced equally between two

classes. The testing dataset contained the remaining records.

We used the same training and testing datasets for the Ro-

bustSPAM algorithm. Introducing different levels of noise to

timestamps we tested the ability of the RobustSPAM to find

important predictive patterns. The results of the analysis are

presented in Table II. For each level of noise γ (here γ is

the standard deviation of the Gaussian noise) we collected

frequent patterns and the model performance for the training

and testing datasets. To decide if a pattern is frequent we

used 10% minimum support. The minimum pattern length

was set to 3 and we allowed patterns to grow to the max-

imum length. Sensitivity (true positive rate) represents the

proportion of clients who are at risk of expensive care and are

correctly classified. Specificity (true negative rate) represents

a proportion of clients that are not at risk of expensive care

and are correctly classified. The difference between sensitivity

and specificity is bigger for the testing dataset than for the

training dataset because the majority of clients in the testing

dataset are not at risk of expensive care. The significant drop

in the model accuracy is observed only for the noise with the

standard deviation ≥ 50 days.

The original SPAM and RobustSPAM with γ = 0 find

the same patterns within the data (as expected), see the

column Patterns in the first two rows of Table II (different

values of accuracy are caused by randomness involved in the

construction of the random forest classifier). When we add

noise (reported as the standard deviation γ in days) we notice

an increase of the number of patterns and a drop in the model

predictive power suggesting the loss of important temporal

information from the data. The increase in the number of

identified patterns is due the algorithm relaxing conditions for

matching a pattern (so that the noise does not prevent patterns

to be found in data) allowing, therefore, more patterns to reach

the required support level. However, some predictive power is

retained even for large noise, which may be explained by the

fact that the presence of certain (atemporal) combinations of

events is significant for the prediction.

D. Predictivity and Re-identification vs Noise

In this section we restrict attention to a smaller population

of 2000 clients and with reduced number of codes as explained

in Subsection V-A. This enables us to make a more thorough

analysis of the link between the noise, the predictive power

and the risk of re-identification. The latter is assessed based

on a modification of the unicity measure for spacio-temporal

data [13].

1) Unicity Measure: The unicity measure was introduced

in [13] as the risk of client re-identification knowing p pieces

of spatio-temporal information about a user. The algorithm

proposed in [15] is based on the Monte Carlo paradigm. For

p randomly selected points from a randomly selected client’s

sequence of events (e.g. mobile phone or credit card usage),

one counts how many clients have the same subset of events

within their records. This is repeated many times and the

percentage of those with an unique p-sequence of events is

reported.

We use the unicity measure to analyze risk of re-

identification using coded longitudinal data. In our framework,

codes replace the spatial information in the original algorithm

and time is measured with daily accuracy. We applied the



TABLE II
CLASSIFICATION PERFORMANCE.

algorithm noise γ Patterns Train Acc Train Sn Train Sp Test Acc Test Sn Test Sp

SPAM NA 4454 0.8012 0.8193 0.7851 0.8019 0.8939 0.7069
RobustSPAM 0 4454 0.8018 0.8178 0.7872 0.7974 0.8908 0.7017
RobustSPAM 2 5101 0.8058 0.8365 0.7801 0.7967 0.8887 0.7016
RobustSPAM 7 6622 0.7975 0.8073 0.7883 0.7935 0.8804 0.7012
RobustSPAM 14 9019 0.7887 0.8203 0.7629 0.7884 0.8815 0.6928
RobustSPAM 25 13622 0.7827 0.789 0.7768 0.7866 0.8791 0.6912
RobustSPAM 50 29764 0.6158 0.6226 0.6097 0.5986 0.7173 0.5004

Fig. 3. Predictivity vs level of noise

TABLE III
RISK OF RE-IDENTIFICATION VS LEVEL OF NOISE.

Noise γ p=2 p=3 p=4 p=5 p=6

0 0.62 0.95 0.99 0.99 1
1 0.21 0.95 0.99 0.99 0.99
7 0.07 0.46 0.79 0.92 0.97

12.5 0.05 0.32 0.66 0.85 0.93
25 0.03 0.21 0.47 0.69 0.82
100 0.01 0.06 0.17 0.30 0.42
250 0.006 0.02 0.07 0.13 0.21
500 0.005 0.02 0.04 0.08 0.13

5000 0.003 0.01 0.03 0.05 0.08

algorithm for various levels of perturbation of timestamps.

Table III collects the results.

2) Loss in Model Prediction: For a selection of noise

standard deviations γ reported in first column of Table IV, we

perturbed the data and applied our inference approach with

robust timestamps. Each model was generated on the same

training sample of 800 clients and tested on the remaining

1200 clients. Both datasets were balanced.

Figure 3 presents the model predictivity as a function of

the noise standard deviation γ; exact values and the number

of patterns found are collected in Table IV. Comparison of

Tables III and IV yields a conclusion that the noise with

standard deviation of γ = 25 days retains good predictivity

while providing good prevention of re-identification based on

2 external observations and acceptable for 3 observations.

Increasing noise to γ = 100 strongly improves the privacy

(even at the level of 6 observations) but at a cost of a visible

TABLE IV
TESTING SET ACCURACY VS LEVEL OF NOISE.

Noise γ Patterns Acc Sn Sp

0 13 0.99 0.99 1
1 27 0.94 0.94 0.94
7 40 0.91 0.90 0.92

12.5 45 0.90 0.89 0.90
25 59 0.87 0.85 0.88

100 218 0.79 0.75 0.82
250 565 0.70 0.62 0.78
500 819 0.66 0.59 0.73
5000 1283 0.64 0.57 0.72

loss of predictive power. Taking into account that this test was

performed on a small dataset of 2000 individuals, we may

conclude that the perturbation of timestamps in the whole

dataset of over 42,000 clients should provide significantly

stronger privacy protection. Further investigations will be

taken up in future research.

All experiments were conducted on Intel(R) Core(TM) i7-

4790 3.0Ghz CPU and 16GB of RAM.

VI. CONCLUSIONS

Techniques for mining (time-point) sequential data as well

as methods to mine time-interval data have been developed

over the last twenty years. These algorithms have been suc-

cessfully used for datasets with accurately recorded times-

tamps. However, existing methods do not work for noisy data

as the noise may blow a true frequent pattern into a large

number of rare patterns, which therefore will be excluded



from the inference or, if included, may lead to over-fitting

of a trained model.

In this paper we proposed a new robust temporal pat-

tern mining framework for finding predictive patterns in the

presence of error/noise in timestamps, a common occurrence

in manually maintained databases. We presented an a priori

algorithm RobustSPAM that mines time-point patterns and is

extendable to time-interval data via encoding the beginning

and the end of an interval as two time-point events. Evaluation

on adult social care data, comprising both time-point and

time-interval data, showed that the algorithm successfully

finds patterns that are important for client risk stratification.

Due to increased concerns about data privacy and recent

research showing that longitudinal data are at high risk of

re-identification, we explored the trade-off between the loss

of predictivity due to random perturbation of timestamps and

the risk of person re-identification.

Future work includes optimization of the RobustSPAM

algorithm and extension to other specifications of the function

β(e1, e2), which will bring algorithmic and conceptual chal-

lenges. We also plan tests of the methodology on Delirium

EHR dataset when screening process is completed and we

obtain an official permission to use that dataset.
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