Crystal Structure, Infrared Spectra, and Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Y,Bi)VO₄ Solid-Solution Ceramics

Di Zhou,†‡ Jing Li,† Li-Xia Pang,§ Guo-Hua Chen,∥ Ze-Ming Qi,⊥ Da-Wei Wang,‡ and Ian M. Reaney*†

1Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
2Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K.
3Micro-optoelectronic Systems Laboratories, Xi’an Technological University, Xi’an 710032, Shaanxi, China
4Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
5National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China

ABSTRACT: A series of (Bi₁₋ₓYₓ)VO₄ (0.4 ≤ x ≤ 1.0) ceramics were synthesized using the traditional solid-state reaction method. In the composition range of 0.4 ≤ x ≤ 1.0, a zircon-type solid solution was formed between 900 and 1550 °C. Combined with our previous work (scheelite monoclinic and zircon-type phases coexist in the range of x < 0.40), a pseudobinary phase diagram of BiVO₄−YVO₄ is presented. As x decreased from 1.0 to 0.40, the microwave permittivity (εᵣ) of (Bi₁₋ₓYₓ)VO₄ ceramics increased linearly from 11.03 to 30.9, coincident with an increase in the temperature of resonant frequency (TCF) from −61.3 to +103 ppm/°C. Excellent microwave dielectric properties were obtained for (Bi₀.₆Y₀.₄)VO₄ sintered at 1025 °C and (Bi₀.₃Y₀.₇)VO₄ sintered at 1075 °C with εᵣ ∼ 19.35, microwave quality factor (Qₓ) ∼ 25 760 GHz and TCF ∼ +17.8 ppm/°C and εᵣ ∼ 16.3, Qₓ ∼ 31 100 GHz, and TCF ∼ −11.9 ppm/°C, respectively. Raman spectra, Shannon’s additive rule, a classical oscillator model, and far-infrared spectra were employed to study the structure–property relations in detail. All evidence supported the premise that Bi-based vibrations dominate the dielectric permittivity in the microwave region.

INTRODUCTION

Microwave dielectric ceramics have played an important role in modern wireless communication systems such as dielectric resonators, filters, capacitors, and duplexers. To meet the requirement of miniaturization and reliability of microwave devices, large dielectric permittivity (εᵣ), large microwave quality factor (Qₓ), and near-zero temperature coefficient of resonant frequency (TCF) must be achieved.1–5

Many classic microwave dielectric ceramics based on ABO₃ perovskite structure have been explored, and the structure–property relation has been extensively studied.6–9 Recently, many complex oxides with a classic ABO₃-type structure, such as scheelite (CaMoO₄, BiVO₄),7,8 Fergusonite (LaNbO₄, NdNbO₄),9 stibiotantalite (BiNbO₄, BiTaO₄),10,11 wolframite (ZnWO₄, MgWO₄),12 zircon (CeVO₄),13 and rutile (Zn,Nb)-TiO₂ (Cu,Nb)TiO₂)14,15 structures, have been reported to have good microwave dielectric properties. Zircon-type (I₄/mamd) vanadates (AVO₄, A = Sc⁴⁺, Ln³⁺, Bi³⁺) are a subset of ABO₃-type compounds and were widely investigated due to their potential optical, magnetic, elastic, and electric properties.13–15 The zircon structure is composed of alternating [VO₄] tetrahedra and edge-sharing [AO₄] dodecahedra, forming chains parallel to the c axis. Two [AO₄] dodecahedra are arranged along the a, b, and c axes, which results in a linear increase in cell volumes with A-site ionic radius.4,16 As reported by Watanabe and Zuo,10 LaVO₄ prefers to crystallize in a monoclinic monazite-type structure with a space group P₂₁/n. The microwave dielectric properties of zircon-type CeV₀₄ ceramics were first reported by Wang et al.13 with a εᵣ ∼ 12.3, Qₓ ∼ 41 460 GHz, and TCF ∼ −34.4 at a sintering temperature of ∼950 °C. It can be deduced that other rare-earth orthovanadates, such as YVO₄, SmVO₄, and NdVO₄ may also possess similar microwave dielectric properties. However, their large negative TCF values must be modified to near zero. There are two traditional methods to modify the TCF value of microwave dielectric ceramics to near zero, which are broadly separated into a composite and a solid-solution approach.18 In our previous work, a temperature-stable microwave dielectric composite ceramic, which contains both scheelite BiVO₄ and zircon-type (Bi₀.₆Y₀.₄)VO₄ phases with a εᵣ = 45, Qₓ ∼ 14 000...
GHz, and TCF = +10 ppm/°C, was achieved.4 The end member, (Bi0.6Y0.4)VO4, takes on the zircon structure with a positive TCF (+32 ppm/°C). This result inspired the design of a zircon-type solid-solution ceramic in the (Bi,Y)VO4 system with a near-zero TCF. Undoped BiVO4 ceramic prepared via the solid-state reaction method crystallizes in a monoclinic scheelite structure, not a zircon structure. As reported by Watanabe,17 the solid solubility of the Bi3+ ion in zircon-structured (Bi0.3−xCex)VO4 ceramics is ≥60%, as confirmed in our previous work,19 which is attributed to the presence of the zircon-type BiVO4 synthesized by a precipitation method.20,21 Undoped zircon-type BiVO4 is not stable and irreversibly transforms into a monoclinic scheelite structure at >300 °C,21 and it is plausible that the substitution of Bi for Y in YVO4 stabilizes the zircon-type lattice. In the present work, a comprehensive study on the phase assemblage and evolution in the (Bi,Y)VO4 system was performed on the zircon-type solid-solution region and its associated sintering behavior, microstructure, and microwave dielectric properties were studied in detail.

RESULTS AND DISCUSSION

The X-ray diffraction (XRD) patterns of the (Bi1−xYx)VO4 ceramics calcined and sintered at their optimal temperatures are presented in Figure 1a. All peaks were indexed as a zircon-type phase for x ≥ 0.4. As Bi concentration increased (decrease of x), all diffraction peaks shifted to the lower 2θ, commensurate with an increase in the cell volume, which is attributed to the larger ionic radius of Bi3+ (1.17 Å) compared with that of Y3+ (1.019 Å). The cell parameters of (Bi1−xYx)VO4 (x ≥ 0.4) ceramics as a function of x value are presented in Figure 1b. a and c parameters increased from 7.116 to 7.225 Å and 6.287 to 7.394 Å, respectively, as x decreased from 1.0 to 0.4, commensurate with an increase in the cell volume from 318.35 to 333.79 Å3. As shown in Figure 1c, the refined values of lattice parameters for the (Bi0.3Y0.7)VO4 sample are a = b = 7.163(7) Å and c = 6.336(2) Å with a space group I41/amd (141). All of the atomic fractional coordinates are listed in Table 1. The goodness of fit of refinement, which is defined as the ratio of R_{wp} to R_{exp} is ~3.15. The V−O distance in the zircon-type (Bi0.3Y0.7)VO4 sample is 1.7005 Å, similar to that in YVO4 (1.7058 Å). The long and short (Bi,Y)−O bond

Figure 1. XRD patterns of (Bi1−xYx)VO4 ceramics calcined and sintered at different temperatures (a), cell parameters as a function of the x value (b), and experimental (circles) and calculated (line) X-ray powder diffraction profiles of the (Bi0.3Y0.7)VO4 composition sintered at 960 °C for 2 h at room temperature (c) ($R_p = 12.7\%, R_{wp} = 12.9\%, R_{exp} = 7.27\%$). The short vertical lines below the patterns mark the positions of Bragg reflections. The bottom continuous line is the difference between the observed and the calculated intensity and the schematic phase diagram of the BiVO4−YVO4 system (d).
Table 1. Refined Atomic Fractional Coordinates from XRD Data for the (Bi$_{0.3}$Y$_{0.7}$)VO$_4$ Samplea

<table>
<thead>
<tr>
<th>atom</th>
<th>site</th>
<th>occ.</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>biso.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>4a</td>
<td>0.08750</td>
<td>0.00000</td>
<td>0.75000</td>
<td>0.12500</td>
<td>0.27426</td>
</tr>
<tr>
<td>Bi</td>
<td>4a</td>
<td>0.03750</td>
<td>0.00000</td>
<td>0.75000</td>
<td>0.12500</td>
<td>0.27426</td>
</tr>
<tr>
<td>V</td>
<td>4b</td>
<td>0.12500</td>
<td>0.00000</td>
<td>0.32500</td>
<td>0.37500</td>
<td>0.14327</td>
</tr>
<tr>
<td>O</td>
<td>16h</td>
<td>0.50000</td>
<td>0.00000</td>
<td>0.06795</td>
<td>0.20273</td>
<td>0.12035</td>
</tr>
</tbody>
</table>

aThe lattice parameters at room temperature are $a = b = 7.163(7)$ Å and $c = 6.336(2)$ Å with space group $I4_1/amd$ (141).

Distances are 2.3301 and 2.4520 Å, respectively, which are larger than those in YVO$_4$ (2.2986 and 2.4434 Å, respectively),23 consistent with the larger ionic radius of Bi$^{3+}$ than that of Y$^{3+}$. Combined with our previous work,4 the schematic phase diagram of the (1 - x)BiVO$_4$ - xYVO$_4$ binary system is presented in Figure 1d. In the region $x \geq 0.4$, a zinc-type solid-solution phase field was formed. In the region $x < 0.4$, both monoclinic BiVO$_4$ and zinc (Bi$_{0.8}$Y$_{0.2}$)VO$_4$ coexisted with stable cell parameters.

Undoped YVO$_4$ belongs to the D^{4h}_y crystal structure ($I4_1/amd$), and the theoretical group analysis gives an irreducible representation of the vibrational modes after Miller et al.23 and Vali.24

$$\Gamma_{36} = (2A_{1g} + 2B_{1g}) + (B_{1g} + A_{1u}) + (A_{2g} + B_{2u}) + (4B_{2g} + 4A_{2u}) + (5E_u) + (5E_u)$$

(1)

The $2A_{1g}$, B_{1g}, B_{2g}, and E_u modes are the Raman-active optical modes, whereas the $3A_{2u}$ and $4E_u$ modes are infrared-active. In addition, there are two further inactive translational modes A_{2u} and E_u. As seen from Figure 2a, the main Raman modes created by stretching and bending of $[VO_4]$ tetrahedra at ~980, 378, 815, and 488 cm$^{-1}$ are assigned to A_{1g}(v$_2$), A_{2g}(v$_2$), B_{1g}(v$_3$), and B_{2g}(v$_3$), respectively. The weak mode at 837 cm$^{-1}$, which is close to the B_{2g}(v$_1$) mode, is assigned to E_u. The peaks at 260 cm$^{-1}$ and overlapping at about 160 cm$^{-1}$ are external modes caused by translation. As seen from Figure 2b, the main Raman modes shift to the lower wavenumber as x increases, along with broadening and a decrease in peak intensity, due to the A-site disorder in the solid solution. According to Hardcastle and Wachs’ study on the relation ($\nu = 21349 e^{(1.9176xR)}$),25 in which ν is the Raman shift and R is the bond length of V=O between the Raman shift and the V=O bond length, the decrease in the A_{1g}(v$_1$) Raman mode (stretching mode of [VO$_4$]) in Figure 2b is caused by the increase in the V=O bond length.

Scanning electron microscopy (SEM) images of the (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics are shown in Figure 3. For pure YVO$_4$ ($x = 1.0$), the densification temperature is above 1550 °C, and many pores are observed in ceramics sintered at 1550 °C for 2 h. As seen from Figure 3a–c, substitution of Bi for Y effectively lowered the sintering temperature and induced a homogeneous dense microstructure in (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics with $x = 0.7$, 0.8, and 0.9. As x decreased from 1.0 to 0.7, the sintering temperatures of (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics lowered from 1550 to 1025 °C along with a decrease in the grain size from ~5 to ~1 μm.

The microwave ε_e and Qf of the (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics as a function of sintering temperature are shown in Figure 4. The ε_e of (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics increased with sintering temperature due to the elimination of pores before reaching a stable value. The Qf increased with sintering temperature, reaching a maximum value before decreasing sharply for all samples except for $x = 1.0$. The Qf is composed of intrinsic and extrinsic contributions and affected by grain size, grain boundaries, and pores. For (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics, high Qf values were attained only in a relatively narrow sintering temperature range. Optimal microwave properties of (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics are listed in Table 2, in which ε_e increases linearly from 30.9 at $x = 0.4$ to 11.1 at $x = 1.0$ in accordance with Shannon’s additive rule. Shannon26 suggested that polarizabilities of oxides may be estimated by summing the polarizabilities of constituent ions. The polarizabilities, α_ω, of (Bi$_{1-x}$Y$_x$)VO$_4$ may be calculated as follows

$$\alpha_\omega = (1 - x) \times \alpha_{Bi^{3+}} + x \alpha_{Y^{3+}} + \alpha_{V^{5+}} + 4 \alpha_{O^{2-}}$$

(2)

where $\alpha_{Bi^{3+}}$, $\alpha_{Y^{3+}}$, $\alpha_{V^{5+}}$, and $\alpha_{O^{2-}}$ are the polarizabilities of Bi$^{3+}$, Y$^{3+}$, V$^{5+}$, and O$^{2-}$, respectively. Because of smaller polarizabilities of Y$^{3+}$ relative to those of Bi$^{3+}$ ($\alpha_{Bi^{3+}} > \alpha_{Bi^{3+}}$ = 3.81 Å3),26 there should be a linear decrease in (Bi$_{1-x}$Y$_x$)VO$_4$ as x increases. Using the Clausius–Mossotti relation, which relates ε_e, α_ω, and molar cell volume V_ω, ε_e may be calculated
The values of molecular α_x calculated from eqs 2 and 3 along with the macroscopic microwave dielectric properties are listed in Table 2. As x decreases, the relative deviation between $\alpha_{\text{cal.}}$ and $\alpha_{\text{meas.}}$ increases. Employing eq 3, it can be obtained that $\alpha_{\text{Bi}} - \alpha_{\text{Y}} = (\alpha_{x2} - \alpha_{x1})/(x_1 - x_2) \approx 5.8 \text{ Å}^3$. This result is greater than that reported by Shannon (2.31 Å3), which suggests that within its coordination in the zircon-type structure, Bi$^{3+}$ contributes much more than Y$^{3+}$ to the dielectric polarizability, compared with that in higher-symmetry systems.

![SEM images of (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics sintered at different temperatures: $x = 0.70$ at 1025 °C (a), 0.80 at 1075 °C (b), 0.90 at 1225 °C (c), and 1.00 at 1550 °C (d).](image1)

![Microwave dielectric permittivity (a) and Qf values (b) of (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics as a function of sintering temperature.](image2)

Figure 3. SEM images of (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics sintered at different temperatures: $x = 0.70$ at 1025 °C (a), 0.80 at 1075 °C (b), 0.90 at 1225 °C (c), and 1.00 at 1550 °C (d).

Figure 4. Microwave dielectric permittivity (a) and Qf values (b) of (Bi$_{1-x}$Y$_x$)VO$_4$ ceramics as a function of sintering temperature.

Table 2. Densification Temperature, Microwave Dielectric Properties, and Molecular Polarizability of the (Bi$_{1-x}$Y$_x$)VO$_4$ Ceramics

<table>
<thead>
<tr>
<th>x</th>
<th>S.T. (°C)</th>
<th>ε_r</th>
<th>Qf (GHz)</th>
<th>TCF (ppm/°C)</th>
<th>V (Å3)</th>
<th>$\alpha_{\text{cal.}}$ (Å3)</th>
<th>$\alpha_{\text{meas.}}$ (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>975</td>
<td>30.9</td>
<td>15 570</td>
<td>+103</td>
<td>333.79</td>
<td>16.16</td>
<td>18.11</td>
</tr>
<tr>
<td>0.65</td>
<td>995</td>
<td>20.5</td>
<td>16 380</td>
<td>+32</td>
<td>325.43</td>
<td>15.58</td>
<td>16.83</td>
</tr>
<tr>
<td>0.7</td>
<td>1025</td>
<td>19.35</td>
<td>25 760</td>
<td>+17.8</td>
<td>324.55</td>
<td>15.46</td>
<td>16.65</td>
</tr>
<tr>
<td>0.8</td>
<td>1075</td>
<td>16.3</td>
<td>30 100</td>
<td>−11.9</td>
<td>322.76</td>
<td>15.23</td>
<td>16.11</td>
</tr>
<tr>
<td>0.9</td>
<td>1225</td>
<td>13.49</td>
<td>40 720</td>
<td>−31.2</td>
<td>319.96</td>
<td>15.00</td>
<td>15.40</td>
</tr>
<tr>
<td>1.0</td>
<td>1550</td>
<td>11.03</td>
<td>28 600</td>
<td>−61.3</td>
<td>318.35</td>
<td>14.77</td>
<td>14.63</td>
</tr>
</tbody>
</table>

\[
\varepsilon_x = \frac{3V_x + 8\pi a_x}{3V_x - 4\pi a_x} \Rightarrow \alpha_x = \frac{3V_x \varepsilon_x - 1}{4\pi \varepsilon_x + 2}
\] (3)

\[\alpha_{\text{Bi}} - \alpha_{\text{Y}} = \frac{(\alpha_{x2} - \alpha_{x1})}{(x_1 - x_2)} \approx 5.8 \text{ Å}^3.\]
The highest Qf (~40 700 GHz) was obtained for (Bi0.3Y0.7)VO4 but as x decreased to 0.65 and 0.40, the Qf decreased linearly to 16 000 GHz. The intrinsic dielectric loss determines the upper limit of Qf and is quantitatively described by the classical one-phonon damped oscillator model as follows:

\[
\varepsilon^*(\omega) - \varepsilon(\infty) = \frac{(ze)^2/mV\varepsilon_0}{\omega^2 - \omega^2 - j\omega} \tag{4}
\]

where \(\varepsilon^*(\omega)\) is the complex permittivity, \(\varepsilon(\infty)\) is the electronic part of the static permittivity, \(\tau\) is the transverse frequency of the polar phonon mode, \(\gamma\) is the damping parameter, \(z\) is the equivalent electric charge number, \(e\) is the electric charge of an electron, \(m\) is the equivalent atom weight, and \(V\) is the unit volume. In the microwave region, considering \(\omega^2 \ll \omega_\tau^2\), the relationship between the Qf and \(\varepsilon\) is obtained as follows:

\[
Q \times f \approx \frac{(ze)^2/mV\varepsilon_0}{2\pi\tau} \times (\varepsilon^*(\omega) - \varepsilon(\infty)) \tag{5}
\]

The above relation was successfully used to explain the reciprocal relationship between the \(\varepsilon\) and Qf in scheelite solid solutions. The same qualitative relationship holds for zircon-type solid solutions in (Bi1-xYx)VO4 ceramics. The decrease in Qf for undoped YVO4 is attributed to the absence of a sintering temperature, at which the density of the end member compound may be optimized. The TCF of undoped YVO4 is ~61.3 ppm/°C. As x decreased to 0.40, the TCF linearly increased to +103 ppm/°C. In contrast, +17.8 and −11.9 ppm/°C were obtained in the (Bi0.3Y0.7)VO4 and (Bi0.2Y0.8)VO4 ceramics, respectively, suggesting that zero TCF may be achieved for 0.7 < x < 0.8. The TCF is usually defined as follows:

\[
TCF = -\alpha_l - \frac{1}{2} \tau_e \tag{6}
\]

where \(\alpha_l\) is the thermal expansion coefficient and \(\tau_e\) is the temperature coefficient of dielectric constant. Usually \(\alpha_l\) of microwave dielectric is < +20 ppm/°C and independent of x. Hence, the TCF value mainly depends on \(\tau_e\). Using the Clausius–Mosotti relation, Bosman and Havinga derived an expression for \(\tau_e\) at constant pressure as follows:

\[
\tau_e = \frac{1}{\varepsilon} \left(\frac{\partial \varepsilon}{\partial T} \right)_p = \frac{(\varepsilon - 1)(\varepsilon + 2)}{\varepsilon} (A + B + C)
\]

\[
\tau_e = \left(\frac{\varepsilon - 2}{\varepsilon + 2} + 1 \right) (A + B + C) \tag{7}
\]

\[
A = \frac{1}{3V} \left(\frac{\partial V}{\partial T} \right)_p, \quad B = \frac{1}{3\alpha_m} \left(\frac{\partial \alpha_m}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_p, \quad C = -\frac{1}{3\alpha_m} \left(\frac{\partial \alpha_m}{\partial T} \right)_V
\]

The sum of the A and B terms is approximately 6 ppm/°C. Term C usually lies between −1 and −10 ppm/°C and represents the direct dependence of the polarizability on temperature. Figure 5a shows a plot of the temperature dependence of permittivity (\(\varepsilon\)) as a function of temperature. Figure 5b shows a plot of the temperature dependence of permittivity and Qf as a function of temperature for the (Bi0.3Y0.7)VO4 and (Bi0.2Y0.8)VO4 ceramics. The decrease in temperature-stable microwave dielectric may be optimized. The TCF of undoped YVO4 is ~+17.8 ppm/°C, which is within the acceptable range. Using this relation, any TCF value can be achieved by precisely adjusting the composition. Furthermore, it is similar to the empirical logarithmic rule (\(\ln \varepsilon = \ln \varepsilon_1 + \ln \varepsilon_2/\varepsilon\)) for all of the (Bi1-xYx)VO4 ceramics to extrapolate the (A + B + C) value ~16.1 ppm/°C, which is within the acceptable range. Using this relation, any TCF value can be achieved by precisely adjusting the composition. Furthermore, it is similar to the empirical logarithmic rule (\(\ln \varepsilon = \ln \varepsilon_1 + \ln \varepsilon_2/\varepsilon\)) for all of the compositions. The temperature dependence of the \(\varepsilon\) of the (Bi0.3Y0.7)VO4 and (Bi0.2Y0.8)VO4 ceramics in the temperature range 25−130 °C is shown in Figure 5b. \(\varepsilon\) is stable at ~19 and 16 for the (Bi0.3Y0.7)VO4 and (Bi0.2Y0.8)VO4 ceramics, respectively. Qf decreased linearly with temperature from 28 000 to ~20 000 GHz, confirming that the dielectric loss increased with temperature. Taking into account the above arguments, temperature-stable microwave dielectric ceramics may be obtained for 0.7 < x < 0.8 with 16 ≤ \(\varepsilon\) ≤ 19 and Qf > 20 000 GHz between 25 and 130 °C. The sintering temperature of this system (below 1050 °C) is much lower than that of SrLnAlO4 (Ln = Nd and Sm) microwave dielectric ceramics (1475−1500 °C) with similar properties (permittivity 17.8−18.8, Qf values 25 700−54 880 GHz, and TCF values ~9 − +2 ppm/°C), and this can save a lot of energy during processing.

Far-infrared reflectivity is a useful tool to investigate intrinsic dielectric properties of microwave ceramics. As discussed above, there are three infrared-active modes including three \(A_{2u}\) and four \(E_u\) modes. In Vali et al.’s work, a perpendicular electric field of the incident light to the c axis of YVO4 single crystal was employed to obtain the infrared reflectivity and only four \(E_u\) modes, at 195, 263, 309, and 780 cm⁻¹, were observed. As
shown in Figure 6, besides the four E_u modes, two other modes at 439 and 916 cm$^{-1}$, assigned to A_{2u} modes, were also observed to contribute to the infrared reflectivity spectra of the YVO$_4$ ceramic sample. The high wavenumber peak at 916 cm$^{-1}$ belongs to the stretching mode of [VO$_4$], which is similar to that at 977 cm$^{-1}$ caused by the Si–O stretching in ZrSiO$_4$ material.31,32 As x decreased to 0.8, four new modes are observed, at 69, 136, 233, and 749 cm$^{-1}$. These new modes are also assigned to E_u modes caused by the partial occupation by Bi on the A site of the zircon structure. The external E_u modes below 450 cm$^{-1}$ are conventionally caused by translation and rotation between A-site ions and [VO$_4$] tetrahedra, as shown in Figure 6b. Because of the different relative masses of Bi and Y atoms, the translation and rotation strengths are different and lead to different Raman shifts; consequently, the strength of the E_u modes increased with Bi concentration.

Using eq 4, the relation between complex reflectivity $R(\omega)$ and permittivity can be obtained as follows

$$R(\omega) = \frac{1 - \sqrt{\varepsilon(\omega)}}{1 + \sqrt{\varepsilon(\omega)}}$$

The fitting of infrared reflectivity was employed to study the intrinsic dielectric contribution from each vibrational mode. Infrared reflectivity spectra of (Bi$_{0.3}$Y$_{0.7}$)VO$_4$ were fitted using eight modes as shown in Figure 7a, and the related parameters are listed in Table 3. Among the eight modes, Nos. 1, 2, 4, and 6 belong to Bi-based vibrations, and their total contribution to the microwave permittivity was \sim8, whereas all others were attributed to the Y-based and [VO$_4$] tetrahedral vibrations (value about \sim7.2). The optical permittivity is \sim4.41. This result indicates that Bi-based vibrations mainly contribute to permittivity in the microwave region, in accordance with the analysis using Shannon’s additive rule. The measured and fitted real and imaginary parts of permittivity are plotted in Figure 7b. The measured part corresponded well with the fitted values.

![Figure 6. Far-infrared reflectivity of (Bi$_{1-x}$Y$_{x}$)VO$_4$ ceramics (a) and schematic of external E_u modes caused by translation and rotation (b).](image)

![Figure 7. Measured and calculated infrared reflectivity spectra (a) (solid line for fitting values and circle for measured values) and fitted complex dielectric spectra (b) of the (Bi$_{0.3}$Y$_{0.7}$)VO$_4$ ceramic (the circles represent the experimental values in the microwave region).](image)

<table>
<thead>
<tr>
<th>mode</th>
<th>ω_{ij}</th>
<th>ω_{ij}</th>
<th>γ_j</th>
<th>$\Delta \varepsilon_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86.97</td>
<td>170.99</td>
<td>32.31</td>
<td>3.77</td>
</tr>
<tr>
<td>2</td>
<td>142.85</td>
<td>245.14</td>
<td>45.68</td>
<td>2.74</td>
</tr>
<tr>
<td>3</td>
<td>187.97</td>
<td>444.15</td>
<td>26.78</td>
<td>5.38</td>
</tr>
<tr>
<td>4</td>
<td>229.35</td>
<td>266.24</td>
<td>39.57</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>256.07</td>
<td>168.85</td>
<td>15.32</td>
<td>0.44</td>
</tr>
<tr>
<td>6</td>
<td>750.00</td>
<td>365.67</td>
<td>54.21</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>803.83</td>
<td>967.63</td>
<td>93.02</td>
<td>1.35</td>
</tr>
<tr>
<td>8</td>
<td>871.76</td>
<td>154.23</td>
<td>32.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

$\varepsilon_\infty = 4.41$
$\varepsilon_0 = 19.61$

aBold type represents the modes coming from Bi-based vibrations.
conforming that in the microwave region the dielectric polarization is mainly caused by phonon absorption in the infrared region.

CONCLUSIONS

A zircon-type solid solution is formed in (Bi1-xYx)VO4 (0.4 ≤ x ≤ 1.0) ceramics. Substitution of Bi effectively lowered sintering temperatures from above 1550 °C for undoped V2O5 to ~900 °C for (Bi0.8Y0.2)VO4. As x decreased from 1.0 to 0.4, cell parameters increased linearly, along with the increase of ε′ from 11.03 to 30.9 accompanied by a shift of TCF value from ~61.3 to ~103 ppm/°C. Excellent microwave dielectric properties with a ε′ ~ 19.35, Qf ∼ 25 760 GHz, and TCF ∼ ±17.8 ppm/°C were obtained in (Bi0.3Y0.7)VO4 ceramic sintered at 1025 °C. For (Bi0.5Y0.5)VO4 ceramic sintered at 1075 °C, ε′ ∼ 16.3, Qf ∼ 31 100 GHz, and TCF ∼ ±11.9 ppm/°C were obtained. It is demonstrated that temperature-stable microwave dielectric ceramics can be obtained for compositions with 0.7 < x < 0.8. Therefore, we conclude, with reference to our previous work,4 that there are two methods to design temperature-stable microwave dielectric ceramics in the (Bi1-xYx)VO4 system for gigahertz frequency applications: (1) the fabrication of composites of scheelite and zircon phases and (2) the formation of zircon-structured solid solution with 0.7 < x < 0.8.

EXPERIMENTAL SECTION

The (Bi1-xYx)VO4 (x = 0.4, 0.65, 0.7, 0.8, 0.9, and 1.0) (abbreviated BYVx) samples were prepared via the solid-state reaction method as described in our previous work.5 Samples were sintered at temperatures from 850 to 1550 °C for 2 h.

XRD was performed with Cu Kα radiation (Rigaku D/MAX-2400 X-ray diffractometry, Tokyo, Japan) using a powder sample. The diffraction pattern was collected over 5–65° (2θ) at a step size of 0.02°. The Rietveld refinement method was employed to analyze the data using the FULLPROF program. As-fired surfaces were observed by SEM (FEI; Quanta 250 F). Raman spectra were performed with a Raman spectrometer (inVia; Renishaw, England), excited by an Ar† laser (514.5 nm). Infrared reflectivity spectra were measured using a Bruker IFS 66v FT-IR spectrometer on the infrared beamline station (U4) at the National Synchrotron Radiation Lab. (NSRL), China. Microwave dielectric properties were measured using the TE01δ method with a network analyzer (HP 8720 Network Analyzer; Hewlett-Packard) and a temperature chamber (Delta 9023; Delta Design, Poway, CA). The temperature coefficient of resonant frequency TCF (τf) was calculated with the following formula

\[
TCF(τ_f) = \frac{f_T - f_{T_0}}{f_{T_0} \times (T - T_0)} \times 10^6
\]

where \(f_T\) and \(f_{T_0}\) are the TE01δ resonant frequencies at temperatures T and \(T_0\) respectively.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: zhoudi1220@gmail.com. Tel/Fax: +86-29-82668679 (D.Z.).
*E-mail: i.m.reaney@sheffield.ac.uk (I.M.R.).

ORCID

Di Zhou: 0000-0001-7411-4658

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (U1632146), the Young Star Project of Science and Technology of Shaanxi Province (2016YFXX0029), the Fundamental Research Funds for the Central University, Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology), P.R. China (Project No. 161004-K), and the 111 Project of China (B14040). The authors would like to thank the administrators of the IR beamline workstation of the National Synchrotron Radiation Laboratory (NSRL) for their help. The SEM work was done at the International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China, and the authors thank Yan-Zhu Dai for her help in using SEM.

REFERENCES

(8) Zhou, D.; Pang, L. X.; Guo, J.; Qi, Z. M.; Shao, T.; Yao, X.; Randall, C. A. Phase evolution, phase transition, and microwave dielectric properties of scheelite structured xBi(Fe1/3Mo2/3)O4 (1 – x)Bi2O3 (0.0 ≤ x ≤ 1.0) low temperature firing ceramics. J. Mater. Chem. Phys. 2012, 22, 21412–21419.
(15) Kim, E. S.; Kang, D. H. Relationships between crystal structure and microwave dielectric properties of \((\text{Zn}_{1/3}\text{B}_{2/3})^+\text{Ti}_{1-x}\text{O}_2\) \((\text{B}^\text{V} = \text{Nb, Ta})\) ceramics. *Ceram. Int.* 2008, 34, 883–888.

(18) Zhou, D.; Pang, L. X.; Wang, H.; Guo, J.; Yao, X.; Randall, C. A. Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing \((\text{Na}_0.5\text{Bi}_{1-x}\text{Mo}_x\text{V}_4\text{O}_{11})\) solid solution ceramics with scheelte structure. *J. Mater. Chem.* 2011, 21, 18412–18420.

