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The Temporal Event Graph

ANDREW MELLOR∗†
Department of Applied Mathematics, School of Mathematics,

University of Leeds, Leeds LS2 9JT, U.K.

4 September 2017

Temporal networks are increasingly being used to model the interactions of complex systems. Most

studies require the temporal aggregation of edges (or events) into discrete time steps to perform analysis.

In this article we describe a static, behavioural representation of a temporal network, the temporal event

graph (TEG). The TEG describes the temporal network in terms of both inter-event time and two-event

temporal motifs. By considering the distributions of these quantities in unison we provide a new method

to characterise the behaviour of individuals and collectives in temporal networks as well as providing a

natural decomposition of the network. We illustrate the utility of the TEG by providing examples on both

synthetic and real temporal networks.

Keywords: temporal networks; temporal motifs; connectivity; inter-event times.

1. Introduction

Temporal networks have seen increased use in the study of dynamics in complex systems. This is due

partly to the increase in available timestamped data from sources such as Twitter [1] and proximity

sensors [2], among others, but also due to the recognition that the temporal patterns of complex systems

have a major influence on the proliferation of processes upon them [3]. The role that temporal patterns

of connectivity play on dynamics is not fully understood, the clearest example being whether spreading

mechanisms are helped or hindered by temporal connections [4–7]. What is clear however is that the

inclusion of temporal information uncovers patterns not observable from the study of a static network

alone [8, 9], making it vital to be able to characterise and understand the structure of temporal networks.

There are many ways to represent a temporally evolving network [10–12], the simplest being a

sequence of timestamped edges (u,v, t) which may also last for a duration. This is referred to as event

or contact sequence [13]. A number of representations aim to describe a temporal network as a single

static network (with varying degrees of aggregation). We briefly review some of these constructions

before introducing the temporal event graph.

A trivial way to represent a temporal network is to consider an aggregation in the temporal dimension

creating a time-aggregated graph. Two nodes share an edge in the time-aggregated graph if they share

a edge at any point in time. Alternatively the time-aggregated graph can be a weighted graph where

each edge is weighted by how many times it appears over time. This representation can be useful to

understand the density of the network or highly active edges but in aggregating the temporal dimension

we lose information about causality and temporal walks. In reachability graphs [14] there is a directed

edge from nodes u to v if there exists a temporal path from u to v. This captures whether or not one node

can affect another and is useful for understanding how well processes can spread on the network. This

∗Correspondence address: Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK.
†mellor@maths.ox.ac.uk

1



2 of 22 A. MELLOR

has also can be generalised to ask whether a temporal path exists starting at time t but taking no longer

than a fixed duration δ [15].

The reachability graph tells us whether or not a temporal path exists, but it does not describe the path

itself (length, route taken, etc.). More recent approaches aim to keep all the information of the temporal

network. This is done by considering nodes at different times separately (sometimes referred to as time-

unfolded nodes [3]), in what is known as a time-node graph [16]. In a time-node graph a temporal event

(u,v, t) is represented by an edge from a node ut to a node vt+1, or to node vt+δ if the event has duration

δ . This type of representation can be useful as static methods can be applied which, due to the structure

of the network, automatically include the temporal dimension. Results for individual nodes can then

be collated by mapping (or ‘refolding’) the timestamped nodes back to the original nodes. This type of

network can also be conveniently expressed as an adjacency tensor or multilayer network when time is

discretised [17]. Like the reachability graph this representation preserves temporal paths, and is in fact

lossless - the representation uniquely defines a temporal network.

The second class of temporal network representations consider the dual of the network, where the

edges of the original network are now the vertices of the dual. The transmission graph [18] connects

edges of the network when a temporal event occurs between two connected edges within a short time

window. For example a sequence of events (u,v, t1),(v,w, t2) would create a link between vertices (u,v)
and (v,w) provided t2 − t1 was sufficiently small. These links between vertices can be cumulative,

or persist only for a set time. Closely related to the transmission graph are the second-order time-

aggregated networks of [3]. These correspond to the final state of the cumulative transmission graph.

The link weights are the number of times those edges have been involved in a two-step path. In a similar

flavour the second-order memory networks of [19] consider the probability of the two-step path given

that the first step has occurred, i.e. the probability of edge (v,w) occurring after an observation of edge

(u,v). Unlike the time-node graphs these representations are lossy. We know that paths have occurred

along certain edges but we do not know exactly when.

In this article we introduce the temporal event graph (TEG), a static representation of a temporal

network. The TEG combines approaches from time-unfolded nodes, and the dual representation of

transmission graphs. In the TEG the vertices are individual timestamped events (u,v, t) which are

connected if they occur close in time, and share one or more nodes. This differs from the approaches of

transmission graph and memory networks where only edges (u,v) between nodes act as vertices.

As this is a network of temporal events, we can consider the relationship between any two events,

namely the inter-event times (IETs) and two-event temporal motif they form [13]. The analysis of

temporal motifs has previously uncovered the behaviour of individuals when applied to a number

of different temporal networks [9, 20–22]. Similarly the IETs of temporal networks has attracted

a large number of studies [23–25]. Using the TEG we are able to decompose a temporal network

into constituent components and study the motif and IET distributions in tandem, highlighting the

heterogeneity of behaviour across components and allowing us to uncover patterns of behaviour not

seen when considering motifs and IETs alone.

In Section 2 we formally describe the temporal event graph. In Section 3 we outline some of

the theoretical properties of the TEG, showing specifically that we can recover a temporal network

from the TEG up to a translation of disconnected components in time. In Section 4 we state the

statistical properties which describe the TEG before applying them in Section 5 to characterise an

online social network. Finally, in Section 6 we discuss the possible applications of the TEG and further

generalisations.
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2. The Temporal Event Graph

We consider temporal networks as a sequence of temporal events E. Let V ⊂ N be a set of interacting

nodes, and T ⊂ R
+
0 a non-empty ordered set of interaction times, then the temporal network is defined

as the tuple G = G(V,E,T ) where E ⊂ V 2 × T . An individual event ei = (ui,vi, ti) ∈ E corresponds

to an interaction of node ui with node vi at time ti (here assuming interaction is instantaneous and that

each ti is distinct). The systems most suited to this representation are communication networks (letter

and email correspondence, phone calls, social media etc.) and proximity networks (human contact

networks) [26]. To define the TEG we first need to be able to relate two events in a meaningful way,

capturing the relationship of the nodes and the temporal proximity of the events. One such relation is

that of ∆ t-adjacency [13].

DEFINITION 2.1 Two time-ordered events ei,e j are said to be ∆ t-adjacent if they share at least one

node ({ui,vi}∩{u j,v j} ≠ /0) and the time between the two events (inter-event time) is no greater than

∆ t, i.e. 0 < t j − ti ⩽ ∆ t.

This definition of ∆ t-adjacency makes no assumption on the directionality of events; events can be

directed or undirected. As such this definition gives little information as to the existence temporal paths

in the network, although one could modify it accordingly to consider only events which are guaranteed

to create a path. For the remainder of this article we assume that events are directed.

Using the definition of ∆ t-adjacency we can now formally define the TEG.

DEFINITION 2.2 For a temporal network G = G(V,E,T ), the ∆ t-Temporal Event Graph, hereby known

as the ∆ t-TEG, is a directed graph G = G (V ,E ) with V = E and E ⊂ V ×V . The graph is defined

such that there is a vertex for each event in E and each vertex is connected to the subsequent ∆ t-adjacent

event of each node in that event. More precisely, let

S(ui) = {k| ({ui}∩{uk,vk} ̸= /0)
︸ ︷︷ ︸

Share a node

and (0 < tk − ti ⩽ ∆ t)
︸ ︷︷ ︸

Occur within ∆ t of each other

},

be the set of subsequent ∆ t-adjacent events for the node ui with the equivalent set defined for vi. The

set of edges in the TEG is then given by

E = {(ei,e j)|( j = min{S(ui)}) or ( j = min{S(vi)})}.

This construction means that each vertex has an out-degree and in-degree of at most two (see

Lemma 3.1).

The ∆ t-TEG consists of one or more temporal components (or maximal temporal subgraphs [13]),

that is, for each pair of events in a component there exists a sequence of events between them such that

all pairs of consecutive events are ∆ t-adjacent, that is each pair of events are ∆ t-connected. From a

purely graphical standpoint these are the weakly connected components of the ∆ t-TEG. Of particular

interest is the ∆ t-TEG in the limit ∆ t → ∞, hereby referred to as the TEG. This captures all possible

connected events (due to no cut-off) and hence gives us the most information on the temporal network.

In practice for a given empirical temporal network there exists a maximal ∆ t which we can consider

as infinity given that these networks are sampled over a finite time window. The examples in Figure 1

show how the TEG is constructed from an event sequence. To avoid ambiguity we use the terms nodes

and events for the temporal network, and vertices and edges for the TEG.

There are two important functions of the edge set to consider. Firstly the function τ : E → R
+
0 ,

given by τ ((ei,e j)) = t j − ti describes the IET between the two events. The function µ : E → M,
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(a) Event Sequence (b) Temporal Network (c) TEG (d) Edge-labelled TEG

ui vi ti

e1 α β 1
e2 α β 3
e3 β α 6
e4 α β 7

ui vi ti

e1 α β 1
e2 α γ 2
e3 α δ 3
e4 α ϵ 4

ui vi ti

e1 α β 1
e2 γ β 2
e3 α δ 4
e4 δ γ 6

ui vi ti

e1 α β 1
e2 α γ 2
e3 β α 3
e4 γ β 4

α β

1, 3, 7

6

ϵ

β

α

γ

δ

1

2

3

4

α

β γ

δ

1

2

4

6

α

γ

β

2 4

1

3

e1 e2 e3

e4

e1 e2 e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

(2, ABAB) (3, ABBA)

(1, ABBA)

(1, ABAC) (1, ABAC)

(1, ABAC)

(1
,
A
B
C
B
)

(3,
A
B
A
C
)

(4,
A
B
C
A
)

(2
,
A
B
B
C
)

(1
,
A
B
A
C
)

(2,
A
B
B
A
)

(2,
A
B
B
C
)

(1
,
A
B
C
A
)

(1
,
A
B
C
A
)

FIG. 1: Illustration of the duality of temporal networks and the temporal event graph. a) Four simple

temporal networks (event sequences) involving four events. b) Pictorial representations of the temporal

networks. Event labels represent the instantaneous time when that event occurred between two nodes.

c) The TEG for each temporal network (with ∆ t → ∞). d) The corresponding edge-labelled TEGs

(Def. 2.3). Edges are labelled with the tuple (τ,µ), the inter-event time and motif respectively. Note in

the bottom example the next two events for node A are connected to the first event. This is consistent as

the ABBA edge occurred after that of the ABAC, i.e., node A’s subsequent event was A → C and node

B’s subsequent event was B → A (coincidently A’s next event).
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where M = {ABAB, ABBA, ABAC, ABCA, ABBC, ABCB} is the set of two-event motifs (Table 1),

describes the relative positions of the nodes between events. These motifs are given a descriptive name

which is indicative of the behaviour associated with each pattern. For example, the ABAC motif is

described as the broadcast motif as node A is in contact with multiple other nodes (B and C). The

ABBA motif is the reciprocal motif, as an event from A to B is then followed by the reciprocal event B

to A. Let fi j be an enumeration of the ordered sequence of nodes (ui,vi,u j,v j) (not necessarily distinct)

mapped to the corresponding alphabetic character1, then µ ((ei,e j)) = fi j(ui) fi j(vi) fi j(u j) fi j(v j). For

example, the edge ((5,10, t0),(10,12, t1)) has nodes (5,10,12) which are mapped to (A,B,C) and so

becomes ABBC under the action of µ . It is also possible for the motif function µ to incorporate other

event data such as event or node colourings.

Motif Name Shorthand ξout ξin ξswitch

A → B, B → A Reciprocal ABBA AB BA −1

A → B, A → B Repeated ABAB AB AB 1

A → B, A →C Broadcasting ABAC A• A• 1

A → B, C → A Non-sequential ABCA A• •A −1

A → B, B →C Message Passing ABBC •B B• −1

A → B, C → B Receiving ABCB •B •B 1

TABLE 1: The set of all possible two-event motifs M, given by their contact sequence, description,

label, and label properties ξin, ξout, and ξswitch.

There are three properties of the motif set, (ξout,ξin,ξswitch), which are required in Section 3.1.

For event pairs involving three distinct nodes we define ξout to be the label and position of the node

which appears in both events, ξin to be the label and position of the shared node in the later event, and

ξswitch = 1 if ξout = ξin and −1 otherwise. For example, in the motif ABBC the node labelled B is

carried forward from the first event so ξout(ABBC) = •B and takes the first position in the second

event so that ξin(ABBC) = B•. Subsequently as ξout ̸= ξin, then ξswitch(ABBC) = −1, the node

labelled B has switched between being the target of an event to a source. For consistency we define

ξout(ABAB) = AB = ξout(ABBA) and ξin(ABAB) = AB and ξin(ABBA) = BA.

When constructing the TEG from a temporal network we have information on the events and

their connectivity. We can also consider a TEG without the event information, defined purely by the

connectivity information and edge functions (IETs and motifs).

DEFINITION 2.3 The edge-labelled TEG is the static graph defined by the upper-triangular adjacency

pair (Aτ ,Aµ) where

Aτ
i j =

{

τ(ei,e j) if (ei,e j) ∈ E

0 otherwise
,

is the weighted adjacency matrix consisting of IETs and

A
µ
i j =

{

µ(ei,e j) if (ei,e j) ∈ E

0 otherwise
.

1 e.g. fi j(ui) = A, fi j(vi) = B, . . . .
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is the matrix containing edge motif labels.

3. Theoretical Properties of the TEG

In this section we state and prove a number of properties of the TEG and list the conditions required for

an edge-labelled TEG to represent a temporal network. Using this knowledge we are then able to show

how the edge-labelled TEG uniquely defines a temporal network up to a translation in time between

components.

LEMMA 3.1 Each vertex in the TEG has at most in-degree two and out-degree two.

Proof. Consider an event vertex representing the event ei = (ui,vi, ti). From our definition we let

A+
u (i) = {k|({ui}∩{uk,vk} ̸= /0) and (0 < tk − ti ⩽ ∆ t)},

A+
v (i) = {k|({vi}∩{uk,vk} ≠ /0) and (0 < tk − ti ⩽ ∆ t)}

be the subsequent ∆ t-adjacent events for the nodes ui and vi respectively. The set of edges in the TEG

is given by

E = {(ei,e j)| j = min(A+
u (i)) or j = min(A+

v (i))}.

Therefore, for each ei there exists then the two edges to events whose indices are the minima of each

set. These two minima do not need be unique, nor exist, and so there are at most two out edges. For the

edge in-degree, the previous ∆ t-adjacent events for the nodes ui and vi are

A−
u (i) = {k|({ui}∩{uk,vk} ̸= /0) and (0 < ti − tk ⩽ ∆ t)},

A−
v (i) = {k|({vi}∩{uk,vk} ≠ /0) and (0 < ti − tk ⩽ ∆ t)}

We can analogously define the edge set as

E = {(e j,ei)| j = max(A−
u (i)) or j = max(A−

v (i))}.

By the same reasoning as with forward definition, vertices can have a maximum in-degree of at most

two. □

LEMMA 3.2 The TEG is a directed acyclic graph (DAG).

Proof. For a graph G to be a DAG, each node in G must not have a directed path from that node back

to itself. The edge set is given by

E = {(ei,e j)| j = min(A+
u (i)) or j = min(A+

v (i))}

where the set A+
u (i) contains only events ek such that tk > ti by definition. Suppose there exists a direct

path from event i back to itself via a sequence of ordered events ek1
,ek2

, . . .ekn
. Then by transitivity this

implies ti < tk1
< tk2

< · · · < tkn
< ti, which is a contradiction. Hence no such path exists and the TEG

is a DAG. Simply put, as edges travel strictly forward in time there can be no cycles in the graph. □

LEMMA 3.3 The set of nodes in each temporal component of the TEG are distinct, i.e. if there exists

two temporal components of the TEG, C1 and C2, with node sets V1,V2,⊂V then V1 ∩V2 = /0.
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Proof. Suppose V1 ∩V2 ̸= /0 and there exists a node u ∈V1 ∩V2. Then there exists a set of events in C1

which contain u with times t
(1)
1 , t

(1)
2 , . . . , t

(1)
n1

. Similarly there exists a set of events in C2 which contain u

with times t
(2)
1 , t

(2)
2 , . . . , t

(2)
n2

. Assuming that event times are distinct then there exists an ordering of these

times. Regardless of the relative ordering of these times there must exist a time t
(1)
i followed by a time

t
(2)
j (or vice versa). These events share a node and the timing of the events are consecutive meaning the

two events are adjacent. This implies there exists an edge between the two events by definition of the

TEG, and C1 and C2 are one component. This contradicts the original statement and hence C1 and C2

must contain distinct nodes. □

Note that this is not true in the ∆ t-TEG, even if the components completely overlap in time.

LEMMA 3.4 The maximal path (allowing for backwards traversal along edges with negative weight)

through a temporal component of the edge-labelled TEG includes the earliest and latest event in the

temporal component.

Proof. Let pmax = (e0, . . . ,ek) be the sequence of vertices in the maximal path. Suppose there exists an

event e∗ /∈ pmax such that t∗ < ti for i = 0, . . . ,k. Then, as the component is connected, there exists a path

p∗i (ignoring edge directions) from e∗ → ei, ∀ei ∈ pmax. Then l(p∗i)> l(p0i) where l(·) is the weighted

length of the path, and hence the path e∗ → ei → ek is longer than pmax. This is a contradiction and

hence the maximal path through the component must contain the earliest event. A similar but opposite

argument shows that the latest event is also contained in the maximal path. □

3.1 Duality

Before we show that relationship between the edge-labelled TEG and the temporal network we first

show that not all permutations of the vertices and edges of an edge-labelled TEG describe a temporal

network. The structure of the TEG takes a specific form and there are four conditions required for an

edge-labelled TEG to represent a temporal network.

[C1] Event times must be consistent across all paths (Fig. 2(c)): Let Pi j be the set of all directed

paths between vertices i and j. We describe a path pα ∈ Pi j as the sequence of edges in the path.

The sum of inter-event times along all paths must be equal, that is

∑
(k,l)∈pα

Aτ
kl = ∑

(k,l)∈pβ

Aτ
kl for all pα , pβ ∈ Pi j.

[C2] Nodes in each event have only one subsequent event (Fig. 2(a)): For each pair of out-edges

(i,k),(i, l) of a vertex we require ξout(A
µ
ik) ̸= ξout(A

µ
il ).

[C3] Nodes in each event cannot be overprescribed (Fig. 2(b)): For each pair of in-edges (k, i),(l, i)
of a vertex we require ξin(A

µ
ki) ̸= ξin(A

µ
li).

[C4] Edge types and nodes must be consistent across multiple paths (Fig. 2(d)): If there exists an

edge (i, j) such that there exists a secondary path p ∈ Pi j via at least one other vertex then

A
µ
i j =







ABAB if ∏
(k,l)∈p

ξswitch(A
µ
kl) = 1

ABBA if ∏
(k,l)∈p

ξswitch(A
µ
kl) =−1

.
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Conversely if there is a vertex with two in edges, (i, j),(k, j), with A
µ
i j ∈ {ABAB, ABBA} then

there exists a path p ∈ Pi j with (k, j) ∈ p and ∏(m,n)∈p ξswitch(A
µ
mn) = ξswitch(A

µ
i j). Similarly for a

vertex with two out edges (i, j),(i,k) with A
µ
i j ∈ {ABAB, ABBA} then there exists a path p ∈ Pi j

with (i,k) ∈ p and ∏(m,n)∈p ξswitch(A
µ
mn) = ξswitch(A

µ
i j).

We call graphs which satisfy these conditions consistent graphs. Those graphs which do not satisfy these

conditions are inconsistent in that they do not uniquely describe a temporal network, and attempting to

recover the temporal network using the following algorithm will lead to contradiction. Examples of

inconsistent TEGs are given in Figure 2. Generally it is difficult to generate graphs which satisfy these

conditions however any TEG generated from a temporal network will be consistent.

(a) (b)

(c) (d)

e1

e2

e3

(1
, A

BC
A)

(2, ABAC) e1

e2

e3

(2
, A

BA
C)

(1, ABBC)

e1

e2

e3

e4

(1
, A

BC
B)

(2, ABAC)

(2, ABCA)

(3
, A

BB
C)

e1

e2

e3

(1
, A

BB
C)

(2, ABAC)

(1
,
A
B
C
A
)

FIG. 2: Inconsistent edge-labelled temporal event graphs. Edges are labelled with the tuple (τ,µ).
a) The subsequent two events for node A are included as edges, breaking condition [C2]. b) Both

incoming edge types dictate the first node of the event which is contradictory (condition [C3]). c) The

inter-event times across multiple paths are not equal (condition [C1]). d) The edge between events e1

and e3 is incorrectly labelled. By reconstructing the temporal network or using condition [C4] we see

that A
µ
13 = ABAB.

For each connected component of an edge-labelled TEG we are able to reconstruct the temporal

network with the following algorithm:

(a) Find the maximal path from a root vertex (no incoming edges) to a leaf vertex (no outgoing edges)

in the edge-labelled TEG using the network of IETs, Aτ , allowing for backwards traversal along

edges with opposite weight. (Fig. 3(a)). This can be achieved by finding the shortest path in the

network (Aτ)T −Aτ , where ·T is the transpose.

(b) Label the first vertex in the maximal path with t = 0 and subsequently propagate the event times

through the edge-labelled TEG along the edges. We know that this event is the earliest in the
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(a) (b) (c)

0

2

3

5 6

8 10

13

14

12 18

3

1

2

1

7

2

3

4

2

6

( α, β, t1) ( γ, δ, t2)

( δ, α, t3)

A
B
C
A

A
B
B
C

( α, β, t1)

( β, γ, t2)

A
B
B
C

FIG. 3: The inverse algorithm for the TEG. a) The maximal path between root and leaf vertices (red)

through the TEG with edges labelled with IETs. Once the maximal path has been found, the root

vertex is assigned time t = 0 and the remainder of times are found by propagation along all other edges

(black). b) The resolution of an event from two incoming edges. Each incoming edge determines one

of the nodes in the later event. c) The resolution of an event with one incoming edge. In this case only

one node is prescribed and so the other is given a new label.

component using Lemma 3.4. For a vertex i, the time at which that event occurs is given by

ti = ∑
(m,n)∈P0i

(

(Aτ)T −Aτ
)

mn

To be able to do this we require the condition [C1] otherwise the existence of multiple paths

between vertices can lead to a contradiction in event times.

(c) For events in time order, resolve the nodes in each event from the incoming edges (Fig. 3(b,c)).

We require condition [C3] here otherwise there can be a conflict on resolving a node position. If a

node in an event is unprescribed (the event has zero or one incoming edge) then the unprescribed

nodes are given a new label.

Condition [C2] is required by definition of the edge-labelled TEG to enforce that the subsequent event

of each node is connected by an edge. Without it, the subsequent two edges for one node could be given.

Finally condition [C4] ensures that the edge-labelled TEG is uniquely labelled (Fig. 2(d)).

The existence of an inverse algorithm confirms a duality between the edge-labelled TEG and the

temporal network.

THEOREM 3.1 Let X be the set of all temporal networks translated in time such that the first event

occurs at t = 0, nodes are labelled in order of appearance, and such that the time-aggregated graph of

connections is connected. Let Y be the set of all consistent and connected temporal event graphs. Then

there exists a bijection f : X → Y , that is, an edge-labelled TEG uniquely describes a temporal network

in X .
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Proof. Trivially for each temporal network there exists only one edge-labelled TEG as the nodes in each

event have at most one subsequent event2 and the functions τ and µ are deterministic. The proof rests

on the existence of the inverse algorithm f−1, outlined above. We consider a general event ei = (ui,vi, ti)
in the temporal network, and its representative vertex x in the edge-labelled TEG. By the translation of

the temporal network, this event occurs ti time units after the first event. By finding the maximal path

through the edge-labelled TEG we find the first event in the temporal network (Lemma 3.4), and can

hence find the time at which x occurs relative to this first event, that is, ti. The event is now is correctly

placed in time. To recover the nodes of the event ui and vi, assume the nodes in all previous events have

been correctly determined in order of appearance. There are three possible cases:

1. Event ei has no incoming edges. In this case neither of these nodes have previously interacted and

can be enumerated.

2. Event ei has one incoming edge prescribing one node. In this case a new node is involved and is

enumerated accordingly (Fig. 3(c)).

3. Event ei has one or two incoming edges prescribing both nodes. In this case the nodes are

completely determined by previous events (Fig. 3(b)).

For the base case, the earliest event vertices have no incoming edges and are labelled freely. Subsequent

event vertices must then have all incoming edges prescribed as they occur strictly earlier in time. Hence

the nodes in ei are correctly labelled, relative to the labelling of the previous events. As both nodes are

labelled relative to previous events, and the time of the event is positioned relative to the first event,

the event is recovered from the TEG. Since this argument holds for an arbitrary event in the temporal

network, it holds for all. Therefore f−1( f (X)) = X , and f is a bijection. □

COROLLARY 3.1 A temporal event graph G , consisting of multiple connected components defines a

temporal network up to a translation of time between components. If the events of G are time stamped

then G uniquely defines a temporal network.

Proof. By Theorem 3.1 for each connected component there exists a unique temporal network such

that the earliest event occurs at t = 0. Trivially there exists an ensemble of temporal networks with the

same TEG, dependent on the choice of earliest event time for each component. If the time of this event

is given then the choice is removed and hence the TEG uniquely defines the temporal network. □

Time translation between components may seem disconcerting, however these components are

disconnected and do not share any nodes (using Lemma 3.3). This means that, assuming the network

is not visible to those within it, any dynamics on the network are completely independent across

components3. Most digital communication channels that we will consider are hidden from an observer,

e.g. email, SMS, telephone calls. Other sources of communication such as Twitter are in the public

domain and so all messages are observable (although require active searching). Furthermore, with real

examples we keep the event timestamps which fixes the temporal components in time, and so the TEG

uniquely defines a temporal network. This means that the temporal network can be uniquely defined

within the time translation of components by the network of subsequent adjacent events, their IETs, and

2 Here we assume that a node participates in only one event at the time same.
3 In the case where the network is visible, observing the network usually prompts a response that is directed towards the

observed agents, subsequently connecting the two components. There may be cases where nodes in one component observe

nodes in another and act upon that information without any interaction with the component. In these cases it is important to

include the time stamp of each event in the TEG.
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the motifs formed between them. As a result, considering the network in this formalism is equivalent to

studying the temporal network as the same information is contained in both representations.

4. Statistical Properties of the TEG

We now look to describe the TEG statistically by considering the temporal components as a function

of ∆ t and the distribution of IETs and motifs across these components. In this section we consider the

∆ t-TEG as a weighted directed static network where edge weights are the IETs between events. This

allows us to prune a network based on edge weights (IETs).

The ∆ t-TEG contains edges (i, j) where Aτ
i j ⩽ ∆ t, using the notation of the edge-labelled TEG from

Section 2. Let C∆ t
i be the ith temporal component of the ∆ t-TEG, where components are partially

ordered by the number of events they contain such that |C0| ⩾ |C1| ⩾ . . . . These components provide

a natural decomposition of the temporal network into constituent events. The temporal components

do not however immediately give any insight into the connected components of nodes. In fact it has

been shown previously that finding strongly connected components of nodes in temporal networks is an

NP-complete problem [27], so we will therefore make no such attempt.

4.1 Component Sizes, Distribution, and Growth

The number and size of temporal components in the ∆ t-TEG evidently depends on ∆ t. A natural

question is to ask how many temporal components there are in a temporal network and how the events

are distributed between them.

In the limit ∆ t → 0 the TEG will be completely disconnected (assuming a node does not participate

in two events at once), however it is not guaranteed that as ∆ t → ∞ a single component will form. In

fact in the limit ∆ t → ∞ the components of the TEG contain distinct sets of nodes (Lemma 3.3) and

correspond to the connected components of the time-aggregated temporal network. For intermediate

∆ t the structure of the TEG has a complex dependency on both the connectivity of the nodes (network

topology) and the timing between subsequent events.

To characterise the network structure we look at the component size distribution of the ∆ t-TEG.

We are also interested in the size of the largest component |C∆ t
0 |, given by the number of events in that

component. In particular, understanding the growth of |C∆ t
0 | as a function of ∆ t gives an understanding

of the different timescales involved in the network, e.g. what fraction of the whole network does it

contain and for what value of ∆ t does it reach 95% of its total size?

As an example, we look at a randomly generated temporal network. To generate a temporal network

of N nodes with M events with a prescribed IET distribution X we perform the iteration:

1. Increment t to t + τ where τ is drawn from X

2. Draw u,v from {1, . . . ,N} without replacement

3. Add event (u,v, t) to the temporal network

for each event, after initialising t = 0.

In Figure 4 we see the results for a random graph where N = 200, M = 5000, and X is power-law

distributed with density P(x;a) = axa−1, where 0 ⩽ x ⩽ 1 and a = 0.2. Results are averaged over an

ensemble of 100 temporal networks. The size of the largest component has a sigmoidal dependence

on ∆ t, with only a small fraction of the TEG connected below a characteristic time, and the majority
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FIG. 4: Temporal component dependence on ∆ t. a) The size of the largest temporal component in the ∆ t-

TEG as a fraction of all events for a random temporal network of 200 nodes and 5000 events. The largest

component size has a sigmoidal dependence on ∆ t, with a sharp transitional period from being only a

small fraction of all events (< 10%), to containing almost all events (> 90%). b) The corresponding

distribution of temporal component sizes for ∆ t = 5,10,15 constructed using an ensemble of random

temporal networks. For ∆ t = 5 there are a range of component sizes however non which make up more

than 10% of the network. For ∆ t = 10 components can take any size. For ∆ t = 15 components either

make up the majority of the network, or are small isolated components.

of events connected above (Fig. 4(a)). The average duration of the temporal network is 1000 meaning

that when ∆ t is only 2% of the network duration, the majority of events are connected. Also, due

to the random selection of nodes the largest component ultimately contains every event as ∆ t → ∞.

The distribution of temporal components (Fig. 4(b)) also display this transition. For ∆ t = 5 there is

a continuous spectrum of component sizes although the maximum observed size is less than 10% of

events. The probability of observing components any larger grows exponentially small. For ∆ t = 10

almost all possible component sizes are observed. However, above the characteristic time at ∆ t = 15,

the distribution is not continuous. Components either are a small fraction of the TEG, or are the majority

fraction. There are no components of intermediate size.

One way to visualise the temporal components is through a temporal barcode, as seen in Figure 5.

This displays the components of the ∆ t-TEG, ordered by their size with the largest components at

the bottom. Within each component, the individual events are plotted by a single vertical line. This

visualisation allows us to see the duration of each component, its temporal position relative to other

components, and the distribution of IETs within the component.

4.2 Motif and Inter-event Time Distributions

We can also consider the IET and motif distributions across the temporal components of the TEG4.

The simple temporal networks in Figure 6 have trivial motif distributions. In Figure 6(a) the only

4 For consistency with the work of [13] we will consider only valid motifs and their corresponding IETs.
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FIG. 5: Illustration of the temporal barcode associated with a ∆ t-TEG. a) A temporal network involving

six nodes and nine events. Event labels represent the instantaneous time when that event occurred. b)

The temporal components of (a) when ∆ t = 4. c) The temporal barcode of (b). There are three different

components. Events in each component appear as black lines. Components 1 and 2 are distinct from 3

as they involve a distinct set of nodes. Components 1 and 2 are distinct as there is a gap greater than ∆ t

between activity on the nodes.

motif present is that of ABAC, reflective of the broadcasting type behaviour of node ε in this instant. If

we were to consider the distribution of motifs in Figure 6(b) we would see an equal split between the

ABAB and ABBA motifs. However, considering the motif distribution of each component we see that

there are in fact two distinct components containing either the ABAB or ABBA motif only. Without

a suitable null model for the temporal network, analysing the motif distributions alone cannot give

the significance of any observations [28, 29], and choosing a null model is non-trivial beyond time-

shuffling and time-reversal [30, 31]. Comparing the temporal network with itself however allows us

to gain information about the relative motif counts across components. Motif counts can be compared
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across different node or event types, or even different intervals in the network, however, given the use

of temporal components in the calculation of motif counts, comparing the motif distributions across

temporal components is a natural way to proceed.

γ δ

α β

ϵ

14
11

3 9

(6, ABAC) (2, ABAC) (3, ABAC)

(a) (Left) a temporal network consisting of a central node messaging four other nodes in turn. (Right) the

corresponding TEG.

γ δ

α β

1, 3, 7, . . .

2, 4, 6, . . .

1, 2, 3, . . .
. . .

. . .

(1, ABBA) (1, ABBA) (1, ABBA)

(1, ABAB) (1, ABAB) (1, ABAB)

(b) (Left) a temporal network consisting of two pairs of nodes. The bottom pair periodically reciprocate messages

in turn, whereas in the top pair all messages are sent in one direction. (Right) the corresponding TEG.

FIG. 6: Examples of temporal networks and their temporal event graphs.

Returning to the random temporal network example of Section 4.1 it can be shown that the motif

distribution is given by

Pr(x) =

{
1

4N−6
for x ∈ {ABAB,ABBA}

N−2
4N−6

for x ∈ {ABBC,ABCB,ABAC,ABCA}.
(4.1)

So, as N → ∞, the ABAB and ABBA motifs are less likely to be observed and all other motifs

are observed with equal probability. This illustrates why the random temporal network model is an

unsuitable null model for social systems where one expects a degree of reciprocity.

Coupled to each motif, each edge in the TEG carries the IET between the two connected events.

This is the time between events which an individual node participates (inward and outward activity).

This time differs from what has been previously studied in temporal networks - usually the global time

between events for the entire network, or the outward activity of an individual node [10, 25, 32]. We

may also partition the IETs based on the motif formed between the two events. For example we can

calculate Pr(t|m) with m ∈M, the probability of observing an IET of t given the motif formed between

the two events is m. By considering these conditional probabilities we can uncover more information
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about the process that generated the temporal network than if we considered the IETs and motifs in

isolation.

In Figure 7(a) we plot the CCDF of the IETs of the TEG. For real data, this distribution is a complex

function of node interactivity and activity patterns. For the random temporal network however the

distribution is approximately geometric. This is due to each node having a constant probability of being

in an event at each iteration. The distribution would be exactly geometric if X was deterministic. In

Figure 7(b) we see that the motifs with two nodes (ABAB and ABBA) occur faster on average than the

motifs containing three nodes. This make sense as in the random temporal network model the three

node motifs are more likely to occur and so the two node motifs must occur quickly or not at all.
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FIG. 7: The IET distributions for the random temporal network. a) the CCDF for the IET distribution of

the TEG, i.e. the time between consecutive events for each node. b) the CCDFs of the IET distributions,

conditional on the motif formed. The motifs containing two nodes have on average a smaller IET than

motifs with three nodes.

4.3 Induced Aggregate Networks

The ∆ t-TEG provides a convenient way to decompose a larger temporal network, however being event-

centric it can be difficult to assess the connectivity of the nodes within each component. This information

can be extracted easily however by considering the static aggregation of the temporal component. The

static network can then be analysed using standard methods to find quantities of interest. In particular,

we will be interested in the number of nodes, edge density, the fraction of reciprocated edges, and

network diameter.

Studying the components of the decomposed network offers the advantage of understanding the role

of nodes within a particular context, as opposed to consideration of the static graph of the full temporal

network, which may be dense or noisy, or of fixed intervals which may dissect patterns of behaviour.

Partitioning the random temporal network into intervals of fixed width results in a series of Erdős-

Rényi (ER) static networks with edge forming parameter p dependent on the number of events in each

partition. This gives the ‘temporal ER network’ as described in [33]. The aggregated networks of the

TEG components by contrast are not in the class of ER graphs as they are guaranteed to be connected,
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and a full analysis of their properties is yet to be undertaken.

5. Application to Data

In this section we consider the social network of students from University of California, Irvine

(UCI) [34, 35]5. The social network was created to sustain social interaction among students and to

help enlarge their social circles. Students created a profile which contained a short biography and

demographic characteristics. Students could then view or message any other student in the network.

The dataset covers a period of six months from April to October 2004, over this time 59,835

messages were sent between 1,899 users6. The resulting aggregate network has 20,296 directed edges,

meaning the network is sparse (0.56% of all possible edges are present).

To get a first impression of the network structure we look at the temporal barcode of the 10min-TEG

over a short period (12 hours) of the data in Figure 5. The TEG consists of multiple large components

which occur over a duration of over an hour. Some of these components overlap in time suggesting that

distinct conversations were occurring. Over the same time period there a number of smaller components

of interest. For example, component 20 consists of two users exchanging messages back and fourth over

a period of 30 minutes. Interestingly one of these users has a response time significantly shorter than the

other. Component 19 is a more complicated mix of broadcasting nodes which then converse amongst

themselves. Despite containing more events than component 20, this component only lasts for a duration

of nine minutes. We can quantify these observations by examining the motif and IET distributions across

each component.
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FIG. 8: The top 20 components of the 10min-TEG for a twelve hour period beginning on 10th May

2004. As with Figure 5, each vertical black line represents a single event. The 10min-TEG consists of a

number of large components (with some overlap) which occur in the mid to late evening. There are also

many smaller components occurring at the same time with distinctive IETs.

We now systematically study the structural dependence of the TEG on the parameter ∆ t. In

Figure 9(a) we plot the size of the largest component (as a fraction of all events). As we increase

5 Data available at: http://snap.stanford.edu/data/CollegeMsg.html
6 Special users who broadcast messages to the entire network were removed.

http://snap.stanford.edu/data/CollegeMsg.html
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∆ t, the largest component increases in a step-wise fashion, indicating that there are distinct timescales

in the connectivity of the TEG. For example, the jump in connectivity around ∆ t = 6 hours could be

attributed to message pairs which occur in the late evening and then first thing in the morning. The step-

like nature of the largest component highlights a need to exercise caution when choosing a value of ∆ t.

Any analysis of these networks may be robust to small variation in ∆ t on each step however there is now

the question as to which step is most suitable for the analysis. We also see that as ∆ t → ∞ (not shown)

the largest component contains all but four events (out 59,835). Consequently the aggregate static

network contains only four components with the activity of the smaller three consisting of one or two

events only. Furthermore the distributions of component sizes for varying ∆ t are given in Figure 9(b).
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FIG. 9: Temporal component dependence on ∆ t. (a) The size of the largest temporal component in the

∆ t-TEG as a fraction of all events for the UCI network. (b) The corresponding distribution of temporal

component sizes for ∆ t = 60,3600,86400 seconds (corresponding to 1 minute, 1 hour and 1 day). For

∆ t = 60 the distribution of component sizes are well represented by a power-law distribution. For

∆ t = 3600 we see the onset of the giant component. For ∆ t = 86400 the largest component is over 80%

of all events and there are very few moderately sized components. The remaining components are all

relatively small.

The component size distributions mirror that of the random temporal network with the formation of a

giant component as ∆ t increases. However in this case the transition from multiple small components

to a giant component is less abrupt. For ∆ t = 60 (blue squares) and for other small values of ∆ t the

distribution of component sizes can be well approximated by a power-law distribution.

For the remainder of this section we fix ∆ t = 3600s (1 hour). The choice of ∆ t in this case (as

in previous work) is chosen arbitrarily, although as Figure 9 confirms we are in a regime where the

largest component is no larger than 5% of the total number of events. We first calculate the distribution

of two-event motifs across the entire network and compare this to the average distribution over an

ensemble of 200 time-shuffled versions of the network7 (Table 2). The distribution of motifs in the

true network differs significantly from the random ensemble in most motifs, in particular the ABBA is

over-represented (z = 569) and the ABBC motif is under-represented (z =−162).

7 Node pairs are kept the same however times are shuffled between events.
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Network ABAB ABBA ABAC ABCA ABBC ABCB

UCI 7.0×10−2 0.14 0.27 0.15 0.11 0.25

Shuffled 9.0×10−3 7.6×10−3 0.27 0.22 0.22 0.26

(215) (569) (-3.93) (-94.8) (-162) (-16.9)

TABLE 2: Motif distribution for the UCI temporal network and ensemble of shuffled networks.

Standardised scores are given in brackets.
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FIG. 10: The motif distribution of the largest 100 components of the 1h-TEG, reduced to two dimensions

using principal component analysis (red dots). Behind, a kernel density estimate of the motif distribution

from the largest 100 components of 200 time-shuffled networks (blue shading). Darker areas have higher

probability. Here we can see that the average motif distribution differs from the randomised networks,

and that also there is a larger variance among the components compared to the randomised networks

(see text).

By considering the TEG structure (the temporal components in particular) we can decompose

the motif counts into the components from which they originate (see Figure 10). There are two

observations to note. Firstly, the majority of the TEG components (red dots) lie outside the bulk of

the time-shuffled component distribution (blue shading, darker being higher density) which confirms

our earlier observation that the difference in aggregate motif distributions is significant. This is

somewhat unsurprising as we have removed any temporal correlations between events by shuffling.

More surprising is that the diversity in the motif counts of each component is greater than in the

randomised networks (a z-score of 12 when considering the average nearest-neighbour distance). The

largest components have distributions close to the average for the entire network however there are

certain components where one motif is more greatly expressed than the others. For example, in the three



THE TEMPORAL EVENT GRAPH 19 of 22

components in the top right of Figure 10 the ABAC motif makes up over 95% of all observed motifs in

these components. This highlights that the temporal network is not simply made up of homogeneous

groups of nodes and activity but instead consists of distinct heterogeneous components. The largest

components can be decomposed by further reducing ∆ t which may isolate more diverse behaviour.

Much like in Figure 6(b), by considering the motif distribution at the component level we are able

to understand the behaviour of nodes and groups of nodes much more clearly than considering the

aggregate motif distribution alone. This also has a major consequence should we attempt to model this

network, or any temporal network in general. To faithfully model this network we need to incorporate

the heterogeneity of behaviour across different nodes and also across time.

Another benefit of studying IETs and motifs in tandem is that we can consider the IET distribution

conditioned on the motif formed between the two events. In Figure 11(a) we see the IET distribution

across the whole TEG (blue □), compared to the same distribution over an ensemble of 100 time-

shuffled versions of the network (dashed). The time-shuffled CCDF is well modelled by a log-normal

distribution, however in the real network smaller IETs are overrepresented and the log-normal fit is poor.

By considering the conditional IET distributions, Pr(t|m), we see in Figure 11(b) that on average the
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FIG. 11: The IET distributions for the UCI network. (Left) the CCDF for the IET distribution of the

TEG (blue □), i.e., the time between consecutive events for each node. The IET CCDF of an ensemble

of 100 time-shuffled versions of the temporal network is given by the dashed line. (Right) the CCDFs of

the IET distributions, conditional on the motif formed. The fastest appearing motif on average is that of

ABAB. The slowest appearing motif is the ABCB motif. The time-shuffled ensemble CCDFs for each

motif are all roughly identical (not shown).

ABAB motif occurs much quicker than the other five motifs, and all motif IETs are smaller than the

random ensemble equivalent. This is most likely due to users of the network breaking their messages

and sending the same information over multiple messages. These conditional distributions help further

our understanding of the generative mechanisms of the network, and also show that simple priority

queue models of temporal networks [25], while useful, cannot capture the rich behaviour observed.
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6. Conclusions

In this article we introduced the temporal event graph, a static representation of a temporal network.

Furthermore we show that the TEG can uniquely define a temporal network up to a translation of

disconnected components in time. In this sense we are able to fully describe a temporal network in

terms of inter-event times and two-event motifs. In Section 5 we showed that the TEG provided a

natural decomposition of the temporal network and that by considering the inter-event times conditioned

on motif type we were able to uncover different timescales for behaviour that would not be visible when

considering both properties independently. We also saw how the behaviour of individuals and collectives

differed across temporal components, suggesting that temporal motifs should be considered on a

component level, rather than in aggregate. This also suggests new ways to model temporal networks.

A possible method may be to model the temporal components, matching their size distributions and

placement in time, and then modelling the behaviour of each component individually.

It is also worth noting that the TEG is not limited to simple event tuples (u,v, t) but can be generalised

in the same fashion as temporal motifs to include coloured events or nodes, e.g. to distinguish phone

calls and SMS messages in communication networks. Provided a meaningful relationship between

events exists then in fact any such sequence of timestamped events can be represented by a TEG. The

calculation of the TEG is also computationally efficient. Building the TEG from a temporal network

can be done in time which scales linearly with the number of events in the network. This means that this

type of analysis is well suited to large datasets such as those extracted from social or telecommunication

networks. It also allows the TEG to be constructed in real-time (provided data is received sequentially)

and so provides a method to quickly assess behavioural changes in the network.

While many details of the TEG are yet to be explored, our study demonstrates how a temporal

network can be represented as a static network of events and be how it can be classified using event

relationships. This finding provides an initial, but significant step towards the systematic investigation

of temporal networks and their generating mechanisms.
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