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Abstract 

Well-known analytical equations for predicting permeability are generally reported to 

overestimate this important property of porous media. In this work, more robust 

models developed from statistical (MVR) and Artificial Neural Network (ANN) 

methods utilized additional particle characteristics (‘fines ratio’ (x50/x10) and particle 

shape) that are not found in traditional analytical equations. Using data from 

experiments and literature, model performance analyses with average absolute error 

(AAE) showed error of ~40% for the analytical models (Kozeny-Carman and Happel-

Brenner). This error reduces to 9% with ANN model. This work establishes 

superiority of the new models, using experiments and mathematical techniques. 
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1. Introduction  

The permeability of solids forming a porous medium is an important parameter that 

determines the frictional loss during fluid flow through that medium. It can be used to 

predict the flow rate of fluid through the material for a given pressure difference when 

modelling the behaviour of fluid transport in any porous media, or packings. In many 

filtration experiments in the laboratory, the objective is to determine the filter cake 

permeability or, alternatively, specific cake resistance to filtration and how it varies 

with pressure as well as information on the filter medium resistance after it has 

stabilised [1, 2]. The permeability of the porous media is essential to establish the 

relationship between the fluid flow rate and pressure gradient for application of 

Darcy’s law [3]. 

 

In practice, permeability is a function of various parameters including particle size, 

particle shape, voidage and packing arrangement, particle size distribution and on 

occasion the concentration of slurry being filtered [4]. Theoretical relations for 

permeability are often used as a guide to estimate permeability if no operating data 

is available. Measured permeabilities may be one or even two orders of magnitude 

lower than that given by the analytical models [5]. In general, the permeability of 

porous media is measured experimentally using Darcy’s law, which is the basic 

equation relating pressure drop (ǻP) and superficial velocity (U0). For a single 

dimension this is described by Eq. (1): 

0U
kL

P µ
−=

∆
          (1) 

where k is the filter cake permeability [m2], ȝ is the liquid viscosity [Pa s] and L is the 

bed height [m]. Darcy’s law is often applied to a single-phase fluid flow in a porous 
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medium when the flow is laminar [6]. The permeability of a liquid such as water, 

through a porous sample can be measured simply by allowing it to flow continuously 

through the sample with a constant pressure gradient [6]. The volume of liquid that 

flows through the sample is measured at specific time intervals, which can be used 

to calculate the volumetric flow rate [7, 8]. 

 

The porous medium refers to a body of particles usually irregular in shape, different 

in size, vary in size distribution and have different surface morphology. These 

characteristics affect the industrial processes in different ways and their effects make 

particle characterisation a difficult but important application in many manufacturing 

processes. In industry, particle shape and size are the most important factors, which 

affect particulate system behaviour such as flow and reaction properties [9, 10]. In 

particular, particle characteristics such as particle size, particle size distribution 

(especially the fine particles), solid concentration, particle shape and orientation 

influence the permeability of a porous medium [11, 12]. 

 

There are a number of well-known analytical expressions for the prediction of 

permeability e.g. Happel-Brenner (H-B) Eq. (2) and Kozeny-Carman (K-C) Eq. (3) 

but their reliability is limited [13–15].  
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where k is the hydraulic permeability [m2], C is the solid concentration by volume 

(C=1-e) where e is the voidage and xsv is the Sauter mean diameter [m], K is the 

Kozeny coefficient which may be equal to 5 as is conventionally assumed [16, 17] in 
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the absence of any experimental work to determine an empirical alternative value, 

which would be the case when performing design type calculations. 

 

The K-C and H-B models assume that the particles are in fixed geometry, rigid and 

are in point contact with each other [4]. It has been reported that both models work 

best within a voidage range of 0.4 < İ < 0.7 [18]. Also, the K-C model and many 

other models contain ‘coefficients’ whose values often depend on the process and 

material properties and as such there exist no relationships for their predictions [17]. 

 

The determination of permeability through experiments is time consuming and is not 

always possible. The available models for its prediction are limited and to overcome 

these challenges, there is a need to develop new models that allow the prediction of 

permeability using different variables under various process conditions. This is the 

motivation for this work; it aims to establish a new model, or technique, that can 

predict permeability at very low and high solid concentrations, and also for different 

sizes and shapes of particles. 

 

2. Computational Methods  

2.1. Multivariate Regression (MVR) 

The MVR model is one of the most widely used of all statistical methods. MVR 

accommodates more than one response variables and that can be useful when 

variability in the independent variable occurs. Also, MVR models such as PCR and 

PLSR, are based on the inverse method [19–21]. The PLSR and PCR approaches 

are both linear and similar with the only main difference, which is the way that the 

data is compressed. In PCR the regression is applied to those variables that account 
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for variance in the input data, but in PLSR variance is present in both (input and 

output) and this is considered during model building. As a result, the compressed 

variables obtained will be different and are termed as latent variables [19, 22].  

 

In a number of studies comparing MVR and ANN models the values of root mean 

square error (RMSE) have been used to determine which technique fits best. The 

ANN models showed better fit as they are capable of catching sophisticated non-

linear integrating effects [21, 23, 24]. In one comprehensive study, Saleemi, (2011) 

[25], the PCR model failed to predict the output accurately and a significant 

difference was observed between the measured and predicted values. The MVR 

model faces difficulties when multicollinearity exists in the data. Multicollinearity 

occurs when some of the variables can be expressed as linear functions based on 

other variables in the system. This limits the MVR capability and leads to an unstable 

model with poor predicted response [25]. Johnson and Wichern, (2007) [26] reported 

that the published applications of multivariate methods have increased tremendously 

in recent years to include data reduction or simplification, sorting and grouping, 

investigation of the dependence among variables, prediction and hypotheses testing. 

 

2.2. Artificial Neural Networks (ANN) 

ANN within MATLAB is an interconnected assembly of simple processing elements 

(units or nodes) whose functionality is based on the structure and function of 

biological neural networks with ability to learn from rounds of training, using existing 

data. Thus, it is a very useful modelling tool with neurons operating in parallel, 

typically in three layers; input, hidden and output [27–31]. An ANN can be trained to 
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perform a particular function by adjusting the values of the weights assigned to the 

neurons between the inputs and the output [32–34]. 

 

In the literature, ANN model is still being designed in a time-consuming iterative trial 

and error method, which depends mostly on the problem itself and the user’s 

experience [35]. Also, ANN can be designed based on either single or multilayer 

network [36]. The network system can either be Feedforward (FF) or Feedback (FB) 

[27, 29, 36]. ANN with the FB algorithm is the most popular and is very common in 

engineering applications [37–39]. Although, many transfer functions can be used 

with ANN, the most commonly used are log-sigmoid, tan-sigmoid and linear [29, 40, 

41].  

 

ANN modelling begins with network training. There are different algorithms for 

training, and it is difficult to identify the fastest and most accurate one [42]. 

Supervised and unsupervised training methods are used [40, 43]. However, a 

supervised training algorithm has more applications [34, 37]. To improve the model 

performance, a high number of data points needs to be used for the training set [43]. 

Training stage is followed by validation and testing of the network to evaluate 

performance [29]. 

 

2.2.1. Advantages and Disadvantages of ANNs: 

The main advantages of using ANNs are: it requires basic level programming and it 

is becoming widely accepted to simplify programming and algorithm design for a 

given wide range of outputs [28, 36, 44]. ANNs are particularly useful for solving 

problems that cannot be expressed as a series of steps, such as series prediction 
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and data mining [31, 45]. The utilization of an ANN approach has been reported 

previously in the prediction of permeability for the purposes of petroleum reservoir 

engineering [46], but this was not based on particle characterisation such as size 

distribution and shape. On the other hands, according to Agachi et al., (2006) [47], 

ANNs have limited ability to identify possible causal relationships, as there is no 

established criteria for interpreting the weights and biases. When dealing with a large 

number of variables ANNs are likely to over fit [31, 45]. 

 

Zargari et al., (2013) [31] states that, permeability is one of the most difficult physical 

properties to predict because it is based on number of parameters that are not easy 

to determine either experimentally or theoretically. For example, the size of particle, 

which has the highest influence on the prediction of permeability, is measured based 

on spherical shaped calculation while in reality it can be away from that e.g. clay. 

Permeability can be time and cost consuming to obtain from laboratory data and is 

prone to subjective interpretation. Instead of using traditional regression techniques, 

ANNs provide accuracy, consistency and improved overall quality of permeability 

prediction for reservoir engineering [48]. Wakeman and Wu, (2003) [49] established 

a relationship for the specific cake resistance and the combined cake resistance 

using an ANN model for vibration assisted filtration. This model consists of three 

inputs (vibration acceleration, cumulative filtrate and concentration), using one 

hidden layer (8 neurons) and one output (vibration specific cake). They found that 

ANNs showed promising results, but this method also has its own disadvantages 

such as failing to succeed when limited analysis data are available [37]. In general, 

using a large number of data points increases the processing time and decreases 

the impact of missed data [46]. More recently, Pazuki et al., (2012) [42] studied the 
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efficiency and accuracy of the ANN model for prediction of oil reservoir structure as a 

key parameter in reservoir engineering. Various Multilayer Perceptron (MLP) models, 

with different learning algorithms, layers and node numbers, were investigated. Their 

results show that, ANN with Improved Back Propagation (IBP) learning method and 

five nodes in the middle layer gave the highest accuracy for their applications.  

 

In order to make a rational decision about methods of computational intelligence, 

Zargari et al. (2013) [31] compared predicted permeabilities, again, for the purposes 

of reservoir engineering, from ANN and Adaptive Neuro-Fuzzy Inference System 

(ANFIS). Results showed that, the ANN model was much more accurate than the 

ANFIS. In addition, Tahmasebi and Hezarkhani (2012) [46] investigated the 

performance and accuracy of two different permeability prediction methods: Modular 

Neural Network (MNN) and traditional Multilayer Perceptron (MLP). The obtained 

permeability results showed that incorporating MLP showed good prediction. In the 

case of soil compaction and groundwater engineering Sinha and Wang (2007) [50] 

concluded that ANN prediction models could be used for compression and 

permeability determination with sufficient accuracy for their purposes, but again this 

was not work based on fundamental particle characterisation. It is apparent that 

ANNs have been accepted widely as tools for research in petroleum reservoir 

engineering and Geotechnical applications, but not yet for the prediction of loosely 

packed granular material. 

 

In the above work, researchers used different input parameters e.g. electrical 

conductivity and resistivity, photoelectric effect, solid density, bulk density, sonic 

transient time, spectral Gamma ray, deep induction log, correlated log porosity, 
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depth and water saturation. These parameters describe the local properties of the 

reservoir rather than the solid itself. Also, none of these parameters have considered 

either the particle shape or size distribution. Their analysis was appropriate for the 

modelling of large consolidated oil reservoirs, but not for the particulate constituents 

forming the reservoir.  

 

2.3. Model Performance  

The efficiency of network design mostly depends on the learning algorithm, topology 

and data distribution, which change from one dataset to another [46]. The criteria 

used to evaluate the performance of a model usually are the Coefficient of 

Correlation (R2), Root Mean Square Error (RMSE) and Average Absolute Error 

(AAE) as shown in Eq. (4), (5) and (6) respectively [42, 50]. 
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where, Ypred is the network prediction value, Ymeasured is the experimental response 

value, N is the total number of reading in the data points. RMSE is the basic tool to 

check the model accuracy [29, 32, 41]. These three measures of performance were 

applied for both numerical methods (MVR and ANN) while AAE was used to 

evaluate the analytical models (K-C and H-B).  
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The purpose of this research is to develop an alternative approach for the estimation 

of porous media permeability (and therefore specific resistance or any other 

derivative of permeability) for various materials under different conditions from 

particle characterisation data and process parameters and relevant to non-

consolidated systems such as during filtration and solid-liquid separation. This 

alternative approach can be employed for design and modelling purposes and is 

based on statistical computational (MVR) techniques and Artificial Neural Network 

(ANN) modelling. 

 

In this study, various approaches and techniques were used. The data were 

obtained from diverse sources (experimental and literature). Pre-processing of the 

data, investigation of the design and evaluation of numerical models were performed 

in order to achieve the ANN and MVR models with excellent performance. Finally, 

the predicted results from analytical (existing models) and numerical models 

(developed in this work) were examined in the light of the measured results with the 

aim of establishing a more reliable model. 

 

3. Materials and Methods  

In this study, the permeability of the porous medium constituted by particulate solids 

is investigated during different separation processes including: sedimentation, 

permeation and filtration (constant pressure and rate). For the modelling and 

regression based techniques the data (total of 547 points) was obtained from 

previous studies [5, 15, 51–56]. The results are compared with the predicted values 

from the particle size analysis data using analytical models (K-C and H-B). For the 

analysis of the filtration tests, the general filtration equation [16] was used to 
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calculate specific cake resistance (Į) for both constant pressure and constant rate 

filtration. 

 

Furthermore, these previous studies were conducted to investigate the permeability 

of the porous media for different materials characterisation and process parameters 

using the same experimental procedure. The effect of various variables such as 

particle size, shape and size distribution, applied pressure and flow rate, pH and 

solid concentration on permeability were examined. All of these previous studies, 

which are used here, employed the same techniques as in the followed description. 

The Sauter mean diameter and size distributions of the particles were calculated 

using Malvern 2000 and Horiba LA-920 equipment laser diffraction based devices. 

Morphology of all materials was studied in order to find the shape coefficient of the 

particles, which was calculated using Heywood’s approach [57]. The Multivolume 

Pycnometer 1305 was used to measure the density of the materials. The data input 

was limited to the above literature studies, which mentioned at the start of section 3, 

due to uncertainties when attempting to obtain data from similar studies reported in 

the literature; for example it is not common for authors to provide sufficient 

information on the shape of the particles used to enable its use in the training data 

set used in this work. 

 

In MVR, there are a number of different models that can be used, but principal 

component regression (PCR), partial least squares regression (PLSR) and simple 

nonlinear regression (NLR) are common and were chosen. All of these methods are 

predictive model building techniques [25]. These models were found from a 

regression package provided by XLSTAT, which is an Add-In application for 
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Microsoft Excel®. In many computing models pre- and post-processing steps are 

required, which lead to improved model training efficiency. There are several 

routines that can be used; the most common are provided automatically within the 

model. Both, the input and the output vectors are normalized before applying the 

regression algorithm [39]. From the literature, it was found that the PCA function is 

highly recommended for use on the data before regression analysis. 

 

3.1. Pre-Processing Data 

The main objectives of pre-processing data when applying ANN technique are: to 

remove outliers (noise) and to obtain a training data set that serves as the 

characteristic of the input and output data. Some outliers are the result of incorrect 

measurements and can be immediately rejected and removed from the set of data 

[58, 59]. In this work, the raw data (547 points) was checked and cleaned statistically 

by removing all data (17 points) that does not follow similar data pattern. In order to 

find the outliers of all data, this step was down after combining all data from all 

sources. 

 

3.2. Selection of input variables 

According to Naes, (2002) [60] introducing too many factors will result in a large 

network size and consequently increased processing time and decreased efficiency. 

Understanding the influence of input variables is of primary concern when 

developing a numerical model [31]. In order to overcome this difficulty Principal 

Component Analysis (PCA) function was applied to the data and then the treated 

data was used as an input for the ANNs and NLR models, although, PCA is a built-in 

function for PCR and PLSR models. In this work, eight different variables (Sauter 
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mean diameter, particle concentration, ‘fine ratio’ (x50/x10), shape coefficient, shape 

factor (sphericity), solid density, pH and pressure gradient) were obtained and 

investigated numerically (using PCA) and experimentally [5, 51]. Table 1 shows that, 

particle size is the most significant variable, having a correlation coefficient of 0.92. 

These results corroborate the theoretical models (e.g. K-C and H-B) on the 

importance of particle size on the porous medium permeability. In the same table, 

the next important parameter is particle concentration though with much lower 

coefficient of correlation. Two other variables worthy of consideration are the shape 

and the size distribution of particles.  

 

The four variables mentioned above were identified as the effective variables in the 

prediction of permeability to be considered as the inputs for the numerical models. 

Two of these variables (particle size and concentration) are already explicitly 

presented in the theoretical models. The output is the measured permeability (k) that 

is obtained from experimental methods as presented in Table 2. 

 

3.3. ANN Design  

In order to create a successful model, a number of investigation on different aspects 

is required e.g. the model design, the number of layers and the elements per layer, 

the connections between the layers, the transfer and training functions [61]. There 

are standard steps required for designing an ANN model to solve a problem as 

shown in Figure 1.  

 

Different variables (e.g. inputs number, transfer, learning and training functions) 

affect the ANN performance, but number of hidden layers and neurons are the most 
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important. The number of hidden layers is based on the number of inputs as reported 

in the literature. On the other hand, trial and error is used to find the number of 

neurons in each hidden layer. The number of neurons in the output layer 

corresponds to the number of output variables that are desired [39, 62]. Arpat et al., 

(1998) [37] stated that for reservoir permeability prediction, supervised algorithms 

are generally preferred. Using FB network, which is a development technique, will 

ease several problems. Therefore, an ANN model was designed using the FB 

network to determine the optimum number of layers and neurons.  

 

To be in a good agreement with the analytical models such as K-C and H-B, different 

numerical models were studied. Some of them (ANN2, NLR2) consist only of two 

variables (as in the analytical models) and the other (ANN4, NLR4) use four 

variables (from the variable investigation) as shown later in Tables 3 and 4 for ANN 

and in Figure 5 for NLR.  

 

4. Results and Discussion 

4.1. Data Analysis 

The variables used in this study for permeability prediction covered a large range of 

data as shown in Table 2. Due to this extensive data collection, the data was treated 

using the PCA function for easy and quick conversion.  

 

The main statistical descriptions of the data used are illustrated in Figure 2. About 

90% of the particle size values are less than 10 µm and almost 75% of the solid 

concentrations are between 0.3 and 0.5 (v/v). Additionally, more than 90% of the 

particle size distribution is less than 5 and more than 70% of the shape coefficient 
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values are higher than 0.5. The preponderance in term of data at the fine particle 

size is deliberate and useful. In the case of predicting permeability for design 

purposes, it is the prediction of finer particles permeability that poses the design 

problem, not that of larger particles [4, 16]. 

 

4.2. ANN design and training results 

In all cases the ANN was implemented using the ANN module contained within the 

MATLAB environment. Initially, two different numbers of hidden layers (1 and 2) 

were studied to find the optimum number for the relationship between input and 

output data; it was found that, an ANN model with one hidden layer suffices for this 

purpose. Also, different numbers of neurons in the hidden layer were investigated 

with ANN2 and ANN4 as shown in Tables 3 and 4.  

 

The ANN models with various transfer, training and learning functions were run. The 

results showed that the combination of TANSIG (tangent sigmoid), TRAINBR 

(bayesian-regularization) and LEARNGDM (gradient descent weight/momentum) 

functions yielded optimum results. The ANNs architecture of ANN4 model (with four 

inputs) includes one hidden layer and one output layer as shown in Figure 3. 

Subsequently, in the case of using only two inputs, particle size (which had the 

highest correlation value) was studied with shape coefficient and size distribution as 

well as with particle concentration in order to investigate the best two inputs for use 

with the models. As can be seen in Tables 3 and 4, twenty networks modelled for 

both ANN cases (ANN2 and ANN4). Accuracy was measured using two accepted 

parameters: the coefficient of determination (R2) and the root mean square error 
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(RMSE). The text in bold indicates the optimum model. These results are shown 

later in Figure 6.  

 

From all the information above, it can be seen that the designed ANN models give 

an acceptable performance based on both, R2 and RMSE. Furthermore, the ANN2 

results in Table 3 are in good agreement with the analytical models when using only 

two variables (particle size and concentration) as inputs. The design of the ANN in 

this work is based on creating a Feedback (FB) network with one hidden layer 

architecture with either 4 nodes (ANN2) or 5 nodes (ANN4), in the hidden layer (see 

Figure 3). Of all the architectures simulated, the ANN model with only one hidden 

layer and five nodes showed better results than the other models. 

 

4.3. Predicted and measured permeability comparison 

4.3.1. PCR, PLSR and NLR Models: 

MVR based linear models can give a stable solution when using a larger number of 

principal components for slightly nonlinear data, while a nonlinear model can give 

much better solutions using fewer variables [60]. The prediction permeability function 

of the NLR model using the four input variables (NLR4) is shown in Eq. (7). This 

equation was found from a nonlinear regression package provided by XLSTAT, 

which is an Add-In application for Microsoft Excel®. 
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where k* is the predicted output, X  are the responses: 1X  is the Sauter mean 

diameter [m2], 2X  is particle concentration (v/v), 3X  is shape coefficient, 4X  is 

particle spread (x50/x10). Both Eq. (8) and (9) are used to normalize (Y*) and de-

normalize (k’) the data respectively. 
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where Xi is the variable value, Xmax and Xmin are the maximum and minimum values of 

the inputs respectively that are shown in Table 2 for all inputs (X1, X2, X3 and X4), k
* is 

the predicted output, k*
max and k*

min are the maximum and minimum values of the 

predicted output as in Table 2 respectively.  

 

The Eq. (7) is used to predict the value of output (k*) that is de-normalized using Eq. 

(9) before taking the anti-log10 and then multiplied with 1E-16, as demonstrated in 

the example of permeability prediction using NLR model shown in the Appendix. 

Figure 4 shows a flowchart describing this process. The RMSE and R2 were used to 

quantify the prediction performances for PCR, PLSR and simple Nonlinear 

Regression (NLR) models. The values obtained for all of these models (linear and 

nonlinear) using the 4 inputs (size, concentration, shape and size distribution) are 

shown in Table 5. As can be seen in Figure 5 the performance criteria values for 

both PCR and PLSR models are similar, which could imply that these models give 

similar regression coefficients and prediction results as is often found in the 
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literature. However, the NLR model shows much better prediction than both linear 

models as shown in Table 5 and Figure 5. 

 

4.3.2. ANN Model: 

Figure 6 presents the predicted porous media permeability from both ANN models 

and shows that ANN4 predicts permeability better than ANN2. Also, results of ANN4 

and the analytical models were compared with the measured values (see Figure 7). 

This is carried out with the aim of understanding the relationship between them and 

to find the degree of difference. Measured results are represented by the dashed red 

line. Figure 7 demonstrates that the ANN model results are closer to the measured 

results, with reduced error when compared to the analytical models. The average 

absolute error (AAE, Eq. 6) was found with K-C and H-B models to be 35% and 

40%, respectively. The results of using ANN2 model provide an error ratio of 14%. 

However, the ANN4 model decreases the error ration to approximately 9% 

compared to the measured results. One important reason for the reduced error is the 

addition of a shape coefficient and particle spread (fines ratio) in the ANN4 model. 

These two parameters are not inherent in the analytical relations, such as K-C and 

H-B models of permeability.  

 

A comparison of both nonlinear (NLR and ANN) models regarding RMSE and R2 

values, under the same conditions (4 inputs), shows that the ANN model within 

MATLAB provides a better prediction, as presented in Figures 5 and 6. However, the 

NLR model gives more advantages as the use of a special code is not required 

unlike in the case of MATLAB. In addition, the Excel software is easier to access and 

use compared to the MATLAB software. Furthermore, the AAE was calculated for all 
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models. The results showed that, the AAE decreased significantly from about 40% to 

9% by using the ANN4 with four inputs. Table 6 presents a summary of all the 

performance criteria for the models with their values. This table shows that, adding 

two more inputs improved the prediction of the nonlinear models 

 

In general, it can be observed that the ANN model in all cases successfully maps the 

training data and provides more accurate prediction values of permeability. The ANN 

model results give a reasonable view of the link between permeability using different 

methods and different conditions of materials and thus provide good predictions that 

are better than the analytical and the MVR models.   
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5. Conclusion  

Using multivariate regressions (MVR) and artificial neural network (ANN), novel 

statistical models for the prediction of permeability of loosely-packed materials are 

presented. Existing analytical models (like K-C and H-B) were shown to overestimate 

permeability prediction leading to error in designs of process equipment. The data 

used were taken from both experimental tests as well as what are reliably reported in 

the literature where permeability of filter cakes for different materials was reported. 

 

As a result of PCA and the experimental investigation of the input variables, this 

study is based on four input variables (three are inherent ones from the particle 

characterisation process): Sauter mean diameter (ranging from 0.2 to 168 µm), the 

‘fines ratio’ (x50/x10), particle shape coefficient (as based on Heywood’s approach) 

and voidage of the porous media (ranging from 98.5 to 37.2%). Using these four 

parameters as inputs, performance of models from the linear and nonlinear MVR as 

well as ANN were investigated together with the existing analytical models (K-C and 

H-B). The K-C and H-B are two-variable models (particle size and voidage) and their 

comparison with corresponding two-variable models from ANN (ANN2) and MVR 

(NLR2) showed that the latter models have better predictive performance. 

Furthermore, four-variable (particle size, ‘fines ratio’, particle shape, and voidage) 

models developed from the MVR (NLR4) and ANN (ANN4) exhibit excellent 

performance.  

 

Based on the values of R2, RMSE and AAE, the performance of different linear 

regression models was analysed and compared to nonlinear regression and ANN 

models. From this comparison, the ANN4 model showed better prediction than the 
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other models. ANN4 results were compared with the results of the analytical models 

(K-C and H-B). The AAE was found with K-C and H-B models to be 35 and 40%, 

respectively while the results of using ANN2 model reduced the AAE to 14%. The 

ANN4 model further reduced the AAE to approximately 9% compared to the 

measured results. Furthermore, it was found that using the ANN4 model led to 

increase in the R2 value from 0.90 to 0.99 and significant decrease in the RMSE 

value from 0.121 to 0.054. The new models possess the capability to predict the 

permeability of porous media more accurately owing to the incorporation of the 

additional particle characteristics that are not found in the existing models. 

 

It can be concluded that the ANN model with four inputs and one hidden layer with 

five nodes provide the most reliable prediction with better fits than the other models. 

This work demonstrates that ANNs are capable of catching sophisticated non-linear 

integrating effects. However, prediction of permeability using this ANN approach 

depends on the availability of the ANN code to the user, it is based on MATLAB 

which is an industry standard, but it is not universally available and accessible. A 

simpler alternative approach is to use the NLR model within Excel, using the 

constitutive equations provided here and the procedure illustrated in Figure 4 (and 

the Appendix). This provides an accessible method for the prediction of permeability 

in non-consolidated porous media based on the characterisation data from the 

particles making up that media. 
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Nomenclature 

A =  cross sectional area (m) 

C =  solid concentration by volume fraction (-) 

c =  dry mass of solids per unit filtrate volume (kg m-3) 

e =  voidage (void ratio) (e = 1- C) (-) 

k = hydraulic bed permeability (m2) 

L =  bed height (m) 

Rm =  medium resistance (m-1) 

s =  solid concentration of the slurry by mass (-) 

t =  time (s) 

U0 = superficial velocity (m s-1) 

V =  volume of filtrate (m3) 

xsv =  Sauter mean diameter (m) 

 

Į =  specific cake resistance (m kg-1) 

ǻP = pressure drop (Pa) 

ȝ = liquid viscosity (Pa s) 

ȡ =  liquid density (kg m-3) 

ȡs =  solid density (kg m-3) 
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Abbreviations 

AAE = Average Absolute Error 

ANN = Artificial Neural Networks 

ANN2 = Artificial Neural Networks consisting of two inputs 

ANN4 = Artificial Neural Networks consisting of four inputs 

ANFIS = Neuro-Fuzzy Inference System 

NLR2 = Simple Nonlinear Regression model consisting of two inputs 

NLR4 = Simple Nonlinear Regression model consisting of four inputs 

FF = Feedforward network 

FB = Feedback network 

IBP = Improved Back Propagation  

H-B = Happel-Brenner Model 

K-C = Kozeny-Carman Model 

RMSE = Root Mean Squared Error 

R2 = Coefficient of Correlation  

MVR = Multivariable Regression  

MNN = Modular Neural Network  

MLP = Multilayer Perceptron 

PCA = Principal Component Analysis 

PCR = Principal Component Regression 

PLSR = Partial Least Squares Regression 
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Table 1 the relationship between input and output valuables (correlation work) 

 Input Variables 
Correlation  
with Output  

X1 Particle Size, xsv 0.92 
X2 Particle Concentration (v/v) 0.20 
X3 Shape Coefficient, Fva 0.11 
X4 x50/x10 0.06 
• Average particle size (Sauter mean diameter, xsv), 
• Solid concentration, (C) by volume 
• Particle shape coefficient (Fva) and 
• Fines ratio (x50/x10) 
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Table 2 Distribution of the input and output variables 

 Variable Min Max Unit 
X1 Particle Size (xsv) 0.245E-6 168.0E-6 m 
X2 Particle Concentration, C (v/v) 0.015 0.628 - 
X3 Shape Coff. (Fva) 0.0055 0.700 - 
X4 x50 / x10 1.150 29.410 - 
k Measured Permeability 1.63E-17 5.3E-9 m2 
k* Output  -0.788 7.724 - 
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Table 3 An investigation on the number of input variables and neurons using TANSIG 

(transfer), TRAINBR (training) and LEARNGDM (learning) functions for 2 inputs (ANN 

model) 

 

(a) Using Size and Concentration of particles 

 X1  X2  X3  X4 Neuron R2 RMSE- 
xsv C - - 1 0.901 0.167 
xsv C - - 2 0.947 0.123 
xsv C - - 3 0.962 0.105 
xsv C - - 4 0.980 0.075 
xsv C - - 6 0.945 0.127 
xsv C - - 10 0.940 0.129 
xsv C - - [1  1] 0.978 0.081 
xsv C - - [2  2] 0.979 0.079 
xsv C - - [4  2] 0.980 0.074 

 

(b) Using Size with Shape Coefficient and with Size Distribution of particles  

 X1  X2  X3  X4 Neuron R2 RMSE- 
xsv - Fva - 4 0.949 0.121 
xsv - - x50/x10 4 0.913 0.157 

X1, X2, X3 and X4: the input variables, RMSE: root mean square error, xsv: particle size (Sauter 
mean diameter), microns, C: particle concentration (v/v), x50/x10: particle size distribution, Fva: 
particle shape coefficient  
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Table 4 An investigation on the number of input variables and neurons using TANSIG 

(transfer), TRAINBR (training) and LEARNGDM (learning) functions for 4 inputs (ANN 

model) 

 

 X1  X2  X3  X4 Neuron R2 RMSE- 
xsv C Fva x50/x10 1 0.923 0.148 
xsv C Fva x50/x10 3 0.971 0.093 
xsv C Fva x50/x10 4 0.980 0.076 
xsv C Fva x50/x10 5 0.990 0.054 
xsv C Fva x50/x10 7 0.982 0.070 
xsv C Fva x50/x10 11 0.970 0.094 
xsv C Fva x50/x10 [2  2] 0.903 0.167 
xsv C Fva x50/x10 [4  2] 0.955 0.116 
xsv C Fva x50/x10 [4  4] 0.968 0.097 

X1, X2, X3 and X4: the input variables, RMSE: root mean square error, xsv: particle size (Sauter 
mean diameter), microns, C: particle concentration (v/v), x50/x10: particle size distribution, Fva: 
particle shape coefficient 
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Table 5 Root Mean Square Error and correlation coefficient of prediction values for 

different MVR models used with four variables 

 PCR PLSR NLR 
RMSE 0.553 0.556 0.0771 

R2 0.496 0.490 0.962 
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Table 6 Values of different performance criteria for the models  

Model Type of model R2 RMSE AAE (%) 
H-B 

Analytical models 
- - 40.4 

K-C - - 35.2 
NLR2 Nonlinear models 

with two inputs 
0.901 0.121 25.5 

ANN2 0.980 0.075 21.6 
NLR4 Nonlinear models 

with four inputs 
0.962 0.077 14.3 

ANN4 0.990 0.054 9.6 
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Figure 1 ANNs methodology flow chart 

  



39 
 

 

 

 

Figure 2 Distribution of the four input variables 
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Figure 3 The one hidden layer architecture for, [a] ANN2, four neurons and [b] 

ANN4 model, five neurons 
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Figure 4 Flow diagram of prediction steps of the NLR model   
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Figure 5 Predicted results of permeability using Simple Nonlinear Regression (NLR) 

model: (a) NLR2, using 2 inputs and (b) NLR4, using 4 inputs 
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Figure 6 Predicted results of permeability using Artificial Neural network (ANN) 

model: (a) ANN2, using 2 inputs and (b) ANN4, using 4 inputs 

  



44 
 

 

Figure 7 Measured permeability values vs. ANN4 with the two analytical models of 

permeability (K-C is Kozeny-Carman and H-B is Happel and Brenner) 
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Appendix  

Example of permeability prediction: 

Using an Excel spreadsheet and following the steps discussed in the flow diagram 

(Figure 4) it can be found that: 

Step (1):  

• X1 = Sauter Mean Diameter :  4.827 E-6 m 
• X2 = Cake Concentration :   0.383 v/v 
• X3 = Shape Coeff.:    0.700 
• X4 = Fines ratio (x50/x10):   2.630 

Step (2): Normalize all values (inputs and the new output) using Eq. (8)  
• X1=-0.945 
• X2 = 0.202 
• X3 = 1.000 
• X4 = -0.895 

Step (3): Use Eq. (7) to predict the new output (k* = -0.102) 

Step (4): De-normalize the predicted output (k*) using Eq. (9) (k’ = 3.032) 

Step (5): Then anti-log10 (3.032) = 1.076E+03 

Step (6): Finally, k = 1.076E+03 X 1E-16 = 1.076E-13 m2, which is the final predicted 

permeability for these input conditions.  

For comparison, the measured permeability for this material was 1.052E-13 m2, so 

the difference between the measured and the predicted values is small ~2% using 

Eq. (6). 

 


