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A Flight Parameter Sensor Simulation (FPSS) model was developed to assess the

conservatism of the landing gear component loads calculated using a typical hard land-

ing analysis process. Conservatism exists due to factors of safety that are incorporated

into any hard landing analysis process to account for uncertainty in the measurement

of certain �ight parameters. The FPSS model consists of: (1) an aircraft and land-

ing gear dynamic model to determine the `actual' landing gear loads during a hard

landing; (2) an aircraft sensor and data acquisition model to represent the aircraft sen-

sors and �ight data recorder systems to investigate the e�ect of signal processing on
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the �ight parameters; (3) an automated hard landing analysis process, representative

of that used by airframe and equipment manufacturers, to determine the `simulated'

landing gear loads. Using a technique of Bayesian sensitivity analysis, a number of

�ight parameters are varied in the FPSS model to gain an understanding of the sen-

sitivity of the di�erence between `actual' and `simulated' loads to the individual �ight

parameters in symmetric and asymmetric, two-point landings. This study shows that

the error can be reduced by learning the true value of the following �ight parameters:

longitudinal tire-runway friction coe�cient, aircraft vertical acceleration (related to

vertical descent velocity), lateral acceleration (related to lateral velocity), Euler roll

angle, mass, centre of gravity position and main landing gear tire type. It was also

shown that due to the modelling techniques used, shock absorber servicing state and

tire pressure do not contribute signi�cantly to the error.
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Nomenclature

CG = Aircraft Centre of Gravity

CS = Certi�cation Speci�cation

DOE = Design of Experiments

FAR = Federal Aviation Regulations

FDIU = Flight Data Interface Unit

FDR = Flight Data Recorder

FPSS = Flight Parameter Sensor Simulation

GEM-SA = Gaussian Emulation Machine for Sensitivity Analysis

GP = Gaussian Process

mass = Aircraft mass

MEI = Main E�ects Index

MLG = Main Landing Gear

MSE = Normalised Mean Square Error

Port SA = Port main landing gear servicing state

Starboard SA = Starboard main landing gear servicing state

TEI = Total E�ects Index

tire = Tire type

tire press = Tire pressure

VAx
= Aircraft longitudinal velocity

VAy
= Aircraft lateral velocity

VAz
= Aircraft vertical descent velocity

V RTG = Aircraft vertical acceleration

LATG = Aircraft lateral acceleration

Factual = `Actual' landing gear output data

Fsimulated = `Simulated' landing gear output data

θ = Aircraft Euler pitch angle

φ = Aircraft Euler roll angle

ψ = Aircraft Euler yaw angle

3
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µlong = Longitudinal tire-runway friction coe�cient

µlat = Lateral tire-runway friction coe�cient

σ2

Factual
= Variance of the `actual' landing gear output data

σ2

Fsimulated
= Variance of the `simulated' landing gear output data

B = Roughness coe�cients for the GP covariance function

c(·, ·) = Covariance function of the GP

c∗(·, ·) = Posterior covariance function of the GP

d = Number of model input parameters

cov = Covariance

E(·) = Expected value

h(·) = Regression function of the GP

m(·) = Mean function

m∗(·) = Posterior mean function

n = Number of training data points

p(·) = Multivariate probability distribution

σ2 = Scaling factor of the GP covariance function

Si = Scaled main e�ect index of input xi

STi = Scaled total e�ect index of input xi

t(x) = Covariance of x with all training data

Vi = Unscaled main e�ect index of input xi

VTi = Unscaled total e�ect index of input xi

var = Variance

w = Regression function coe�cients

x = Model input

X = Uncertain model input

y = Model output

Y = Uncertain model output

z(xi) = Main e�ect

z(xi,j) = First order interaction

4
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I. Introduction

A static structural overload occurs when a landing gear exceeds its material yield point in any

location. A common aircraft operational occurrence which may result in a landing gear overload

is a hard landing. A hard landing is de�ned by the regulatory authorities in EASA Certi�cation

Speci�cation (CS) 25 and Federal Aviation Regulations (FAR) 25 as a landing with a limit vertical

descent velocity exceeding 10 ft/s at the design landing weight [1, 2]. However, the e�ect of the ver-

tical descent velocity must be combined with other critical enveloping �ight parameters, including:

aircraft gross weight, aircraft centre of gravity location, aircraft orientation (pitch, roll, yaw), rates

of motion (pitch rate, roll rate, yaw rate), ground speed, vertical descent velocity, longitudinal, lat-

eral and vertical acceleration, shock absorber servicing state and the tire-runway friction coe�cient,

to accurately assess the loads in the landing gear.

If the �ight crew suspect that there has been a hard landing, the following analysis process is typ-

ically performed: (i) the �ight crew makes an occurrence declaration; (ii) visual and Non-Destructive

Testing (NDT) inspections are performed on the landing gear by the operator's maintenance crew

to assess for damage to the landing gear and airframe structure; (iii) aircraft �ight parameter data,

such as aircraft acceleration, ground speed and aircraft orientation (pitch, roll), are downloaded

from the Flight Data Recorder (FDR) and reported to the aircraft and landing gear manufacturers,

who then calculate the loads during the occurrence [3]. Only after the data have been analyzed can

it be determined if there has been an overload.

A degree of conservatism typically exists in current hard landing analysis processes to ensure

safety of aircraft operation. This conservatism evolves from factors of safety or conservative as-

sumptions included within the analysis process to account for: (i) uncertainty in measured aircraft

�ight parameters and (ii) unavailable aircraft �ight parameters. For example, on common short and

medium range aircraft, vertical acceleration is typically sampled at 8 Hz. A landing however, takes

less than 125 ms. Thus, a possibility exists that the peak vertical acceleration recorded on the FDR

is less than the actual maximum value. To date, the e�ect of such assumptions on the degree of

5
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conservatism in a hard landing analysis process has not been quanti�ed [4].

A Flight Parameter Sensor Simulation (FPSS) model has been developed to assess the conser-

vatism in a hard landing analysis process [5]. Using a technique of Bayesian sensitivity analysis,

a number of �ight parameters are varied in the FPSS model to gain an understanding of how the

model responds to variations in the inputs, to identify the most in�uential input parameters and to

identify which input parameters have little or no e�ect on the conservatism [6]. In this technique,

an emulator of the model is created by �tting a Gaussian Process (GP) to the response surface

using data from multiple runs of the model as dictated by a Design of Experiments (DOE) so that

the output of the model can be predicted for any point in the input space without having to run

the simulation. Each input parameter is represented as a probability distribution and sensitivity

analysis data is inferred at a reduced computational cost and with little loss of accuracy. Compu-

tational savings can be up to two orders of magnitude compared to using a Monte Carlo method

[7, 8]. Accuracy of the emulator model is dependent on the model and the number of model runs,

and can be quanti�ed through cross-validation with the model runs.

This paper �rst describes the loads of interest when determining the serviceability of the Main

Landing Gear (MLG) structure. The FPSS model is then explained. The theoretical background

of the Bayesian sensitivity analysis is then presented, including a discussion on Gaussian Processes

which are used to develop the emulator, and the main e�ects and sensitivity indices inferred from the

resulting distribution-over-functions. Finally, the results of the sensitivity analysis for symmetric

and asymmetric landings using the FPSS model are shown.

II. Landing Gear Loads

Figure 1 shows a typical aircraft and telescopic port MLG structure, with the sign conventions

used in this paper. Figure 2 illustrates the landing dynamics of the port MLG in a two-point,

symmetric landing. The starboard MLG landing dynamics are identical to the port MLG in a

symmetric landing. On approach, the landing gear wheels are not spinning. However, on contact

with the runway, the landing gear wheels spin-up to the ground speed of the aircraft under the

in�uence of the ground reaction and the tire-runway friction. The resulting drag force deforms the

6
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landing gear aft and stores energy in the structure. When the tire velocity reaches the aircraft

forward speed, the frictional force between the tire and the ground reduces and the release of the

strain energy stored in the rearward deformation produces a spring-back. The landing gear oscillates

until the structural damping reduces the stored energy to zero [9]. Also during this time, there is

an increasing vertical ground-to-tire load, which is a function of the gas spring, oil damping (related

to the square of the vertical descent velocity) and bearing friction. The shock absorber continues

to close until all the vertical energy has been absorbed and then it partially recoils [10]. The shock

absorber travel (SAT), in conjunction with aircraft attitude, landing gear rake angle and landing

loads, creates a bending moment on the landing gear structure which is computed at the lower

bearing. There are no side ground-to-tire loads developed in a symmetric landing. However, CS

25.485 does require side loads to be considered in design to account for landings with some degree

of asymmetry [1].

Fig. 1 Typical Aircraft and Port Main Landing Gear Structure with Sign Convention

In order to calculate the internal landing gear loads and assess the serviceability of the landing

gear structure after a hard landing, the axle response loads are required. The ground-to-tire loads,

discussed previously, act as the forcing function and with the mass and �exibility characteristics

of the landing gear, produce the dynamic response loads at the landing gear axle. The di�erence

between the ground-to-tire loads and the axle dynamic response loads is due to the inertial forces

of the landing gear mass between the ground and the landing gear axle during the impact [11].

An asymmetric landing with aircraft lateral velocity, roll and yaw a�ects the landing dynamics

signi�cantly on the port and starboard MLG compared to a symmetric landing. Figure 3 illustrates

7

Page 7 of 40

Review copy- Do not distribute

Submitted to Journal of Aircraft for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
Fig. 2 Example of Symmetric Port Main Landing Gear Landing Dynamics

the MLG port and starboard loads from an asymmetric landing with only a positive initial aircraft

lateral velocity and no roll or yaw angle. The initial aircraft lateral velocity acts in the starboard

direction and on touchdown, the aircraft decelerates with a lateral acceleration that acts in the port

direction, as shown by the reaction of the side ground-to-tire load acting on each MLG. Although

the MLG wheels touchdown at the same time, the starboard MLG has a higher vertical ground-to-

tire load than the port MLG. For a greater initial lateral velocity on landing, the aircraft lateral

acceleration on impact with the ground increases. The magnitude of the vertical ground-to-tire

load also increases on the starboard MLG, and decreases on the port MLG. However, the drag axle

response load and bending moment do not signi�cantly change as the lateral velocity de�ned in the

initial conditions increases.

In a landing con�guration with an initial negative aircraft roll angle, as illustrated in Figure 4,

the aircraft is rolled with the port wing down so that the aircraft �rst lands on the port MLG and

then on the starboard MLG. Therefore, the port MLG outer wheel touches down �rst, and carries

more vertical load, followed by the port MLG inner wheel, which carries less of the vertical load.

On the starboard MLG, the inner wheel touches down �rst, followed by the outer wheel.

For a greater initial roll angle on landing, the port MLG vertical load increases, while the

starboard MLG load decreases. The fact that the MLG wheels touchdown at di�erent times in

landings with aircraft roll gives the distinctive total drag ground-to-tire curves with two peaks. As

8
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Fig. 3 Example of Asymmetric Main Landing Gear Loads Due to Aircraft Lateral Velocity

the initial aircraft roll angle increases, the total drag ground-to-tire load and the drag axle response

load decreases. This is because the greater the roll angle, the greater the time between the wheels

touching down and the build up of energy in the spin-up and spring-back is reduced.

Figure 5 illustrates the MLG port and starboard loads from an asymmetric landing with an

initial aircraft positive yaw angle, yawed clockwise from the aircraft centreline. In this landing

con�guration, the aircraft decelerates with a lateral acceleration that acts in the starboard direction,

as shown by the reaction of the side ground-to-tire load acting on each MLG. The port and starboard

MLG wheels touchdown at the same time, however the port MLG has a higher vertical ground-to-

tire load than the starboard MLG. For a greater initial yaw angle on landing, the port MLG vertical

load increases, however, the starboard MLG vertical load decreases. The port MLG spin-up and

spring-back drag axle response loads also decrease with increasing yaw angle.

The points of interest for the MLG landing analysis are the drag axle response load and bending

moment at the lower bearing at spin-up and spring-back, and the vertical axle response load at

maximum vertical reaction since these are the most sever loading cases that the MLG experience

9
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Fig. 4 Example of Asymmetric Main Landing Gear Loads Due to Aircraft Roll Angle

Fig. 5 Example of Asymmetric Main Landing Gear Loads Due to Aircraft Yaw Angle

10
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on landing [12]. The side ground-to-tire load is of interest in asymmetric landings, however it will

not be discussed in this paper.

III. Overview of the Flight Parameter Sensor Simulation Model

The FPSS model, shown in Figure 6, consists of: (1) an `Actual' landing model to determine

the `actual' MLG loads during a hard landing, (2) an aircraft Sensor and Data Acquisition System

Simulink model to represent the aircraft sensors and FDR systems to investigate the e�ect of signal

processing on the �ight parameters and (3) an automated Hard Landing Analysis Process model,

representative of that used by airframe and landing gear manufacturers, to determine the 'simulated'

MLG loads. Various hard landing cases were modelled using a representative aircraft and landing

gear dynamic model. For each of the landing cases, it was possible to de�ne �ight parameters such

as: aircraft mass (mass), aircraft centre of gravity location (CG), aircraft Euler pitch (θ), roll

(φ) and yaw (ψ) angles, aircraft longitudinal velocity (VAx
), vertical descent velocity (VAz

), lateral

velocity (VAy
), MLG shock absorber servicing state (Port SA, Starboard SA), tire type (tire), tire

pressure (tire press) and the longitudinal and lateral tire-runway friction coe�cients (µlong, µlat).

These landing cases provide simulation of the `actual' �ight parameters, as well as the `actual'

landing gear loads at spin-up, spring-back and maximum vertical reaction.

Fig. 6 Flight Parameter Sensor Simulation Model

The aircraft sensor and data acquisition model represents the aircraft sensors and FDR systems.

Aircraft �ight parameters such as vertical and lateral accelerations, Euler pitch and roll angle

and aircraft longitudinal velocity are used in the typical hard landing analysis process. A typical

11
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aircraft Indicating & Recording system, Navigation system, Flight Data Interface Unit (FDIU) and

Flight Data Recorder (FDR) was modelled in Simulink to investigate the e�ect of signal processing

(sampling rate, �ltering, analog to digital conversion, transfer/receive delays) on the aircraft �ight

parameters.

Finally, with the �ight parameter data from the FDR, a hard landing analysis process, repre-

sentative of that used by airframe and equipment manufacturers, was modelled and the conservative

assumptions typically made were applied. These assumptions include: aircraft mass, inertia and

centre of gravity location as close as possible to the occurrence case, assumed tire type, correctly

serviced shock absorber (correct �uid volume and gas pressure) and assumed tire-runway friction

coe�cient. The peak aircraft vertical acceleration data from the FDR, as well as the other FDR

parameters at the peak vertical acceleration, are used to model the landing gear loads. Based on the

initial conditions provided by the FDR (Euler pitch and roll angles, aircraft longitudinal velocity),

the aircraft vertical descent velocity was iterated until the aircraft vertical acceleration output from

the hard landing analysis process model matched the peak vertical acceleration from the FDR. In

the Hard Landing Analysis Process model, the MLG side ground-to-tire loads are calculated using

a bookcase calculation method (footnote:Bookcase calculations, as given in CS 25, tend to be more

arti�cial and usually require ground reactions to be balanced by inertia forces and moments. Ratio-

nal calculations use a model that more accurately represents the real physics and dynamics of the

system [9].): a ground manoeuver turn using the lateral acceleration (LATG) at the peak VRTG,

where the side ground-to-tire load is a function of LATG and the drag and vertical ground-to-tire

loads are factored as a function of LATG.

In the FPSS model, the Aircraft and Landing Gear Dynamic model used in the `Actual' Landing

model and the Hard Landing Analysis Process model are the same. Therefore, the `simulated'

landing perfectly models the `actual' landing and there is no error due to modelling. Any di�erences

in the `actual' and 'simulated' landing gear loads are due to the conservative assumptions in the hard

landing analysis process and loss of data content from the FDR systems and processing algorithms.

From the landing gear loads calculated based on those conditions, it was possible to estimate

the conservatism between the `actual' landing gear output (Factual) and the `simulated' (Fsimulated)

12
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landing gear output using a normalised mean-square error (MSE) method [8]:

MSE =
(Factual − Fsimulated)

2

σ2

Factual

× 100 (1)

where σ2

Factual
is the variance of Factual from all of the model runs.

Table 1 provide a summary of the model inputs and outputs for symmetric and asymmetric

landings. As discussed in Section II, the points of interest for the MLG landing analysis are the

drag axle response load and bending moment at the lower bearing at spin-up and spring-back, and

the vertical axle response load at maximum vertical reaction. Therefore the MSE is calculated for

these outputs.

Landing Input Flight Parameters Output Quantity

Symmetric θ, VAx , VAz , Port SA , mass,

CG, tire, tire press , µlong

Spin-up and Spring-back Drag Axle Re-

sponse Load MSE, Spin-up and Spring-

back Bending Moment MSE, Maximum

Vertical Axle Response Load MSE

Asymmetric θ, φ, ψ, VAx , VAz , VAy , Port

SA, Starboard SA , mass,

CG, tire, tire press , µlong,

µlat

Spin-up and Spring-back Drag Axle Re-

sponse Load MSE, Spin-up and Spring-

back Bending Moment MSE, Maximum

Vertical Axle Response Load MSE

Table 1 Summary of Flight Parameter Sensor Simulation Model Inputs and Outputs

IV. Bayesian Sensitivity Analysis Theory

This section presents the theoretical background of the Bayesian sensitivity analysis, including

a discussion on GPs which are used to develop the emulator, and the main e�ects and sensitivity

indices inferred from the resulting distribution-over-functions.

A. Gaussian Processes

Any computer model, such as the FPSS model, can be considered a function of its inputs: f(x).

Although this function is deterministic and governed by known mathematical functions, it is often

complex and may be encoded by a large numerical model which has no closed-form expression for its
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outputs as a function of its inputs. Therefore, f(x) could be considered an unknown function, since

the output is unknown for a given set of inputs until the model has actually been run. If however,

the function (model) is sampled at a number of carefully chosen input points, it is possible to �t a

response surface (footnote: A response surface is the hypersurface of the model output as a result of

varying the inputs [13].) which can predict the output of the model for any point in the input space

without having to run the model. For models that are computationally expensive (i.e. they require

several minutes, hours or days to run), creating a fast-running emulator (a model of a model) is a

useful approach for sensitivity analysis which generally requires multiple runs of the model under

investigation [7]. To be successful the emulator must be general and as little as possible must be

assumed about the emulator function. The emulator should also be able to accurately imitate the

model using as few training points as possible [13].

A particular probabilistic approach for developing an emulator is the use of Gaussian Process

(GP) regression [14�16]. GPs assume that observations f(x1), f(x2),. . . ,f(xn), as well as unobserved

values of f , are distributed joint-normally, i.e. they can be represented by a multivariate Gaussian

distribution. This means that predictions at unobserved values of x are also returned as a Gaussian

distribution. The mean and variance at any point are speci�ed by a mean function and a covariance

function, which are functions of x, as well as a number of hyperparameters. Another way of looking

at a GP is a distribution-over-functions, where the random variable of the distribution is a function

rather than a single number or a �xed-length vector [13].

The covariance function typically has the property that the predictive variance increases for

values of x that are further away from training data. This means that the predictive variance of a

GP is a function of the distance to known points. It is useful to contrast this to linear regression,

which may also give normally-distributed estimates at unobserved points. The di�erence is however

that in linear regression, the data points are assumed to be noisy, whereas a GP exactly interpolates

though the training data. In linear regression therefore, probabilistic predictions usually re�ect

noise in the training data, or parameter uncertainty (especially within the Bayesian framework).

GPs adhere to the Bayesian paradigm, such that a number of prior assumptions are made about

the function being modelled, and then training data (samples from the model) are used to update
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and evaluate a posterior distribution-over-functions. It is assumed that the model is a smooth

function so that if the value of f(x) is known, the value at f(x′) for x close to x′ will be highly

correlated [7]. This assumption allows information to be gained on the response surface at reduced

computational cost.

For any number of d model input parameters, each with n training data points, the prior beliefs

about the corresponding outputs can be represented by a multivariate normal distribution, the mean

of which is a least-squares regression �t through the training data [7]:

m(x) = E{f(x)|w} = h(x)Tw (2)

where h(x)T is a speci�ed vector of q regression functions of x, and w is the corresponding q-

length vector of coe�cients. Here, h(x)T is chosen to be (1,xT ), which represents linear regression.

This is a reasonable assumption since many engineering models display roughly linear behavior

with respect to at least some of the model inputs [13]. Here the covariance between output points

is de�ned by a squared-exponential function of the form [7]:

cov{f(x), f(x′)|σ2} = σ2c(x,x′) = σ2exp{−(x− x′)TB(x− x′)} (3)

where σ2 is a scaling factor of the GP covariance function and B is a diagonal matrix of

length-scales, which represent the roughness of the output (in terms of correlation length-scales as

opposed to di�erentiability) with respect to the individual input parameters. The hyperparameters,

w, σ2, B, are the controlling parameters that de�ne the behavior of the emulator, which allows

the emulator to be general enough for a wide range of engineering problems [13]. The squared-

exponential covariance function is by no means the only covariance function - many others are

detailed in Rasmussen and Williams [17]. The squared-exponential function imposes an assumption

of derivatives of all orders, which may be a strong assumption for a physical model. An alternative

could be the more �exible Matérn class of functions, however within the context of this work, the

squared-exponential functions have the advantage of being su�ciently tractable to provide analytic

expressions for sensitivity indices. Furthermore, the added �exibility of the Matérn functions also
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comes at the cost of having more parameters to estimate. Testing of more sophisticated covariance

functions is a valid avenue of enquiry but is left as future work.

The prior distribution is then de�ned as [13]:

f(x) ∼ GP(m(x), σ2c(x,x′)) (4)

where ∼ means distributed as.

The posterior distribution is then found by conditioning the prior distribution on the training

data on y (the output vector corresponding to the input set), and integrating out the hyperpa-

rameters σ2 and w. This results in a Student's t-process, conditional on B and the training data

[13]:

[f(x)|B,y] ∼ tn−q{m
∗(x), σ̂2c∗(x,x′)} (5)

where m∗(x) and c∗(x,x′) are the posterior mean and covariance function respectively, which

are only dependent on B and y - expressions for these can be found in [7]. Note that as a result

of the integration, the posterior distribution is no longer dependent (conditional) on σ2 and w,

and now incorporates uncertainty about their values. This is where the bene�t of the squared-

exponential covariance function is apparent - the analytical integration avoids approximations via

numerical methods such as Markov Chain Monte Carlo, which introduce their own uncertainty. The

roughness parameters in B are estimated using maximum likelihood estimation, since they appear

to be too di�cult to analytically marginalise. In this respect, the GP is not fully Bayesian, and

uncertainty in B is not accounted for in the posterior distribution. The quality of the emulator is

dependent on the number and distribution of training data points in the input space, and the values

of the hyperparameters.

B. Inference for Sensitivity Analysis

If the input vector, x, is uncertain, X, the �true input con�guration" is considered a random

variable with the distribution p(x) [7]. The output Y = f(X) is then also a random variable

and the distribution of Y is known as the uncertainty distribution. With the emulator de�ned by
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the posterior distribution-over-functions described by Equation 5, several quantities relevant to the

sensitivity analysis can be analytically derived without the necessity of additional model runs: the

main e�ects and interactions, as well as the sensitivity measures including Main E�ects Indices

(MEI) and Total E�ects Indices (TEI). In order to estimate the sensitivity measures, an assumption

is made that the input parameters are independent.

1. Main E�ects

The function f(x) can be decomposed into main e�ects and interactions [18]:

y = f(x) = E(Y ) +

d∑
i=1

zi(xi) +

d∑
i<j

zi,j(xi,j) +

d∑
i<j<k

zi,j,k(xi,j,k) + . . .+ z1,2,...,d(x) (6)

zi(xi) = E(Y |xi)− E(Y ) (7)

zi,j(xi,j) = E(Y |xi,j)− zi(xi)− zj(xj)− E(Y ) (8)

Here zi(xi) represents the main e�ect of xi, which is the e�ect (on the output) of varying that

parameter over its input range, averaged over all the other inputs. The main e�ects of the input

parameters are are normalised onto the unit interval and plotted. Main e�ects plots are graphical

representations that show the expected value of the output obtained by averaging all other inputs,

except the one considered, and provide information on which model inputs the output is sensitive

to and the nature of the input-output relationships [19]. The main e�ects plots do not consider the

interactions with other �ight parameters therefore the plots do not show the value of the MSE at a

particular value of the input parameter. In Equation 8, zi,j(xi,j) is the �rst order interaction between

xi and xj , which describes the e�ect of varying two or more parameters simultaneously, additional to

the main e�ects of both parameters. The terms zi,j,k(xi,j,k),. . . , z1,2,...,d(x) represent higher-order

interactions. E(Y ) is the expected value of the output y considering all possible combinations of

inputs.

The posterior mean values for main e�ects and interactions can be inferred by substituting the

posterior mean from Equation 5 into the conditional expectation:
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E(Y |xi) =

∫
χ
−i

f(x)p(x−i|xi)dx−i (9)

where χ−i is the sample space of x−i, x−i is the subvector of x containing all elements except

xi and p(x) represents the multivariate probability distribution of the input parameters. Although

this results in a series of matrix integrals, a Gaussian or uniform p(x) distribution, combined with

a su�ciently tractable covariance function (such as the squared exponential function used in this

work), allows these to be solved analytically. Expressions for interactions can also be derived with

their respective de�nitions.

2. Variance and Sensitivity Indices

In Reference [7], variance-based methods of probabilistic sensitivity analysis are described in

order to quantify the proportion of output variance for which individual input parameters are

responsible. In particular, sensitivity can be measured by conditional variance:

Vi = var{E(Y |Xi)} (10)

For interpretation, this variance measure can be standardized by dividing the total output

variance:

Si =
Vi

var(Y )
=
var{E(Y |Xi)}

var(Y )
(11)

where Si is the Main E�ect Index (MEI) of xi, a widely-used global sensitivity measure proposed

by Sobol' [18]. MEIs represent the fractional contribution of individual inputs to the uncertainty

(variance) of the model output. A high MEI means the variance of the output will be reduced

considerably if we learn the "true" value of the input �ight parameter. This idea can be extended

to measure conditional variance of interactions of inputs, for example �rst order interactions Vi,j =

var{zi,j(xi,j)}, which is the e�ect of varying two input �ight parameters simultaneously, additional

to the main e�ects of both parameters, and so on for higher order interactions. Therefore, summing
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the main e�ects will not in general total one because of the contributions from the interactions.

However, the total does provide an indication of the degree of the interactions [19].

An additional sensitivity measure gives the variance caused by an input xi and any interaction

of any order including xi and describes the output variance that would remain if one were to learn

the true values of all inputs except xi:

VTi = var(Y )− var{E(Y |X−i)} (12)

After standardization this gives:

STi =
VTi

var(Y )
=
var(Y )− var{E(Y |X−i)}

var(Y )
(13)

where STi is known as the Total E�ects Index (TEI) [20]. The TEI includes the interactions with

every input �ight parameter associated with it and therefore, considering all d TEIs of all variables,

may be counted twice for an interaction between two variables, three times for an interaction between

three variables, etc. Therefore, the TEIs may sum to more than one.

In [7], it is shown how the GP metamodel can be analytically integrated to give estimates of

both Vi and VTi, without the need for a Monte Carlo sampling procedure from the metamodel (as

is used in most metamodel-based sensitivity analyses). The details of these integrals, which are

quite complex, are left to [7]. All the quantities of interest presented here are calculated using the

software package Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) [21].

Note that a number of other approaches to sensitivity analysis exist in the literature that

use GPs and other emulators to perform uncertainty and sensitivity analysis. For example, the

method presented in [22] considers multi�delity computer codes and is implemented in the R package

"sensitivity". In addition, the �tgp� package [23] o�ers a greater �exibility by generalising GPs using

regression trees, allowing emulation of nonstationary models and bifurcating responses [24]. However

for the purposes of this work, the more �standard� GP was considered su�cient, given that there

is no particular reason to suspect bifurcations in the mode here. This assumption appears to be

justi�ed by the cross-validation results in Section VA.
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V. Sensitivity Analysis of Flight Parameter Sensor Simulation Model

The Bayesian sensitivity analysis technique described in Section IV has been used to examine

the sensitivity of models in a variety of disciplines including: Bouc-Wen model of hysteresis [25], soil-

vegetation-atmospheric transfer [19], nuclear radiation releases [14], vehicle crashes, spot welding

[26] and the aortic valve [13]. The Bayesian sensitivity analysis technique is considered to be well-

tested, robust and useful [19].

Using this Bayesian sensitivity analysis technique, a number of �ight parameters are varied

in the FPSS model, described in Section III, to gain an understanding of the sensitivity of the

input �ight parameters to the di�erence in the `actual' and `simulated' loads, calculated as Mean-

Square Error (MSE), due to the signal processing in the Sensor and Data Acquisition model and

the assumptions and inaccuracies in the Hard Landing Analysis Process model. This is a novel

application of the Bayesian sensitivity analysis technique to an aircraft landing gear model and it

is the �rst time the MSE has been used to quantify the conservatism in a model.

Figure 7 provides a summary of the methodology followed in conducting the sensitivity analysis

on the FPSS model using GEM-SA in this paper. The Bayesian sensitivity analysis technique in

GEM-SA is comprised of two stages: the �rst involves creating an emulator of the FPSS model by

�tting a GP to the response surface using data from multiple runs of the model as dictated by a

Design Of Experiments (DOE) so that the output of the FPSS model can be predicted for any point

in the input space without having to run the simulation. The second stage involves representing

each input �ight parameter as a probability distribution and using the emulator built in the �rst

stage to infer sensitivity analysis data.

For symmetric, two-point landings, the nine input �ight parameters to the `Actual' Landing

model include: θ, VAx
, VAz

, µlong, Port SA (Footnote: For symmetric landings, the starboard MLG

mirrors the port MLG therefore only the port MLG servicing state is speci�ed.), tire, tire press,

mass and CG. For asymmetric, two-point landings, the 12 input parameters to the `Actual' Landing

model include: φ, θ and ψ, VAx
, VAy

, (VAz
), µlong, µlat, Port SA, Starboard SA, mass and CG.

The input parameters tire and tire press, that were considered in the symmetric landings, are not

considered for the asymmetric landings because lateral tire data was only available for one tire at

20

Page 20 of 40

Review copy- Do not distribute

Submitted to Journal of Aircraft for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Fig. 7 Methodology Followed in Conducting the Sensitivity Analysis on the FPSS model using

GEM-SA, after [19]

one tire pressure and therefore it was not possible to consider the other tire types or tire pressures.

In order to estimate the sensitivity measures described in Section IV, the probability distribu-

tions for the input parameters are de�ned. The assumption was made that the inputs are indepen-

dent, although in reality �ight parameters such as pitch and ground speed are not independent and

�ight parameters such as roll and yaw may be coupled. But given the limited range considered at

landing, they are relatively independent. The parameters can be speci�ed as either Gaussian or uni-

formly distributed based on how informative the available input parameter data are. In this study,
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the distributions have been de�ned as uniform distributions and the ranges of the �ight parameters,

normalized between zero and one, are based on typical aircraft operating limitations.

To develop the emulator, 400 combinations of input parameters were generated using a maximin

Latin Hypercube DOE in GEM-SA. The FPSS model was then run to provide the corresponding

`actual' and `simulated' landing gear outputs calculated at spin-up, spring-back and maximum

vertical reaction. The outputs of interest are: spin-up and spring-back drag axle response load

MSE, spin-up and spring-back bending moment MSE and maximum vertical reaction vertical axle

response load MSE. The sensitivity analysis was carried out in GEM-SA.

For symmetric landings, the port and starboard MLG give the same results, therefore only the

port MLG results are presented, however, for asymmetric landings, the port and starboard MLG

provide di�erent results, therefore both MLG were considered in the sensitivity analysis.

A. Emulator Accuracy

For each sensitivity study, the emulator is built on the �rst 80% of the training data and the

accuracy of the emulator is evaluated using the remaining 20% of the training data. Since the

emulator calculates a mean function, which passes through the outputs and also quanti�es the

remaining uncertainty due to the emulator being an approximation of the true model, the emulator

accuracy is evaluated graphically using the emulator predictions and their 95% con�dence bands, as

well as the model output data (data not used in training). Figure 8 and Figure 9 shows an example

of the emulator accuracy for the asymmetric landing port and starboard spin-up drag axle response

load MSE. The model test data tended to be within the 95% con�dence bands of the predictions

and errors could be attributed to predicting high values of MSE since there are fewer training points

for the emulator in these regions.

GEM-SA also provides other statistical measures of the emulator accuracy, including �rough-

ness" values for the input �ight parameters, a σ2 value and cross-validation root mean square

(RMS) error. The roughness values, related to the hyperparameter B, estimate the smoothness

of the model inputs and describes how quickly the output responds to changes in each input [19].

Roughness values greater than one indicate non-linear relationships between the inputs and outputs,
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Fig. 8 Asymmetric Port MLG Spin Up Drag Axle Response Load Emulator Accuracy

Fig. 9 Asymmetric Starboard MLG Spin Up Drag Axle Response Load Emulator Accuracy

while roughness values approaching 100 indicate discontinuities and suggest that the emulator is

not working. The σ2 value provides the variance of the emulator after standardizing the output and

provides a measure of the non-linearity in the emulator [19]. Finally, the cross-validation RMS error

is the square root of the mean square error of the emulator predictions at the training points [19].
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The statistical measures of the emulator accuracy for the asymmetric landing port and starboard

MSE sensitivity analyses are presented in Table 2 and Table 3. Since the port and starboard MLG

emulators are trained with di�erent data, the roughness values, σ2 values and RMS errors are

di�erent.

Roughness values for all of the input parameters, for both the port and starboard MLG, are

below 10, except for the input parameter µlong, which had a roughness value of 30.42 for the

starboard spring-back drag axle response load MSE output. Therefore, the emulators generally

had a smooth response to variations in its input and are good approximations to the FPSS model.

While the roughness value for µlong is high, it does not suggest extremely non-linear or discontinuous

patterns. However it does suggest that µlong is one of the sensitive inputs. Roughness values are also

greater than one in some cases for φ, V e
Az
, V e

Ay
and mass, which indicates that these are the most

sensitive input parameters. Roughness values are consistently less than one for input parameters

such as Port SA and Starboard SA, indicating linear relationships between the inputs and outputs.

The σ2 values for each of the SA are low and range from 0.77-2.70 for the port MLG and 0.76-2.83

for the starboard MLG, which means that the parameters only moderately deviate from linearity

[19]. The RMS error is not normalized but is expressed in terms of the output. Therefore, when the

RMS error is taken in context to the data in the emulator accuracy plots, it is acceptable. These

results suggests that the emulator is a good representation of the FPSS model.

B. Main E�ects Plots

The main e�ects plots for the analysis show MSE versus the normalised �ight parameters. The

lines represent mean main e�ects values, averaged over variations in the other parameters and can

be thought of as the expected value of the output with respect to one parameter if the true values

of the other parameters are known. These plots show which of the �ight parameters the MSE is

signi�cantly sensitive to and the nature of the input/output relationships.

The main e�ects plots for the port and starboard MLG are related such that parameters in

the aircraft x and z axes, such as θ, VAx
, VAz

, µlong, Port SA, Starboard SA, mass and CG show

the same trend for both landing gears. However, for parameters such as φ, ψ and VAy
the main
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Flight Parameter Roughness

Drag Axle Response Load Bending Moment Vertical Axle Response Load

Spin-Up Spring-Back Spin-Up Spring-Back Maximum Vertical Reaction

φ 1.25 2.37 1.31 5.37 1.14

θ 0.51 1.94 0.30 1.79 0.96

ψ 0.33 0.53 1.87 2.39 0.05

VAx 0.47 1.77 0.11 0.00 0.04

VAy 1.18 0.80 3.29 5.01 0.58

VAz 1.47 3.38 0.79 0.69 5.29

µlong 2.52 9.95 1.08 0.63 0.29

µlat 0.96 0.73 0.81 0.86 0.09

Port SA 0.21 0.00 0.01 0.15 0.01

Starboard SA 0.03 0.19 0.01 0.25 0.02

mass 0.13 0.30 1.10 1.01 3.62

CG 0.14 0.25 0.13 0.16 1.51

Fitted model parameters

σ2 0.91 0.77 1.76 1.26 2.70

Cross Validation Results

Cross Validation RMS Error [%] 106.86 138.26 248.22 239.51 17.37

Cross Validation RMS Standardized Error 1.33 1.49 1.27 1.33 1.13

Table 2 Asymmetric Port Main Landing Gear MSE Emulator Accuracy

e�ects plots are mirrored. Not surprisingly, the input parameters that were also investigated in the

symmetric landing sensitivity analysis (θ, VAx
, VAz

, µlong, Port SA, mass and CG) show the same

trends in the asymmetric landing sensitivity analysis main e�ects plots. This provides additional

veri�cation that the FPSS model is performing correctly for asymmetric landings.

The symmetric landing main e�ects plots for drag axle response load MSE and bending moment

MSE at spin-up and spring-back show the same trends therefore only the spin-up drag axle response

load MSE main e�ects plots are shown in Figure 10. The symmetric landing maximum vertical

reaction vertical axle response load main e�ects plots are shown in Figure 11. The main e�ects

plot for tire was not illustrated because a discrete uniform distribution was assigned to each tire.

In GEM-SA, this was described by a continuous distribution and the main e�ects plots are not

meaningful.

The asymmetric landing main e�ects plots for port and starboard MLG drag axle response load

MSE, bending moment MSE at spin-up and spring-back, and maximum vertical reaction vertical
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Flight Parameter Roughness

Drag Axle Response Load Bending Moment Vertical Axle Response Load

Spin-Up Spring-Back Spin-Up Spring-Back Maximum Vertical Reaction

φ 0.26 1.80 0.68 5.62 0.35

θ 0.56 0.89 0.33 0.50 1.19

ψ 0.58 0.14 1.00 1.54 0.26

VAx 0.80 2.89 0.61 0.08 0.26

VAy 1.00 0.33 2.86 2.53 0.27

VAz 1.58 6.03 1.31 0.20 3.28

µlong 3.26 30.42 1.53 0.95 0.11

µlat 1.32 0.18 1.08 0.38 0.13

Port SA 0.00 0.00 0.00 0.03 0.28

Starboard SA 0.08 0.07 0.18 0.04 0.14

mass 0.27 0.23 0.42 1.53 5.27

CG 0.23 0.22 0.08 0.08 0.59

Fitted model parameters

σ2 0.90 0.76 1.62 2.83 2.78

Cross Validation Results

Cross Validation RMS Error [%] 85.08 129.75 184.98 205.28 16.21

Cross Validation RMS Standardized Error 1.07 1.45 1.29 1.29 1.22

Table 3 Asymmetric Starboard Main Landing Gear MSE Emulator Accuracy

axle response load MSE show the same trends for the input parameters φ, ψ and VAy
and µlong. The

spin-up drag axle response load MSE main e�ects plots for the asymmetric input �ight parameters

are shown in Figure 12.

1. Aircraft Pitch Angle

The symmetric and asymmetric main e�ects plots show that the spin-up and spring-back drag

axle response load MSE and bending moment MSE increases as the pitch angle increases. Due to

�ltering and sampling, the Sensor and Data Acquisition model tends to contribute an error of the

magnitude of less than one degree, therefore it is not expected that θ would have a large contribution

to the MSE. Part of the relationship between θ and MSE can be attributed to the constraint in

the model that limits the pitch angle to greater than 0 degrees to ensure a two-point landing. If

this constraint is removed, the relationship between θ and MSE tends to be more constant. The

main e�ects plot for the vertical axle response load MSE also shows a constant relationship with θ.

Section VC will show that the contribution to the MSE from θ alone is low, except in the case of
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Fig. 10 Symmetric Port MLG Spin Up Drag Axle Response Load Main E�ects Plots

Fig. 11 Symmetric Port MLG Maximum Vertical Reaction Vertical Axle Response Load Main

E�ects Plots

spring-back bending moment MSE. The �ight parameter θ tends to only be signi�cant in the other

cases when its interactions with other �ight parameters are considered.
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Fig. 12 Asymmetric Port MLG Spin Up Drag Axle Response Load Main E�ects Plots

2. Aircraft Longitudinal Velocity

As VAx
increases, the time required for spin-up, the maximum drag ground-to-load and the

vertical ground-to tire-load increases [27]. While VAx
is an input to the `Actual' Landing model,

ground speed is output by the Sensor and Data Acquisition System model and is typically used in

a Hard Landing Analysis Process model. Ground speed is the resultant magnitude of the velocity

component parallel to the earth's surface and therefore it is a function of the longitudinal and lateral

velocities. While in symmetric landings, the ground speed is only a function of VAx
since there is

no lateral velocity, in asymmetric landings, it is a function of VAx
and VAy

. In the Sensor and

Data Acquisition System model, �ltering and sampling contributes an error of the magnitude of less

than 1 m/s. This is consistent with the fact that ground speed is generally assumed to be constant

in landing simulations. The main e�ects plots for VAx
show that as VAx

increases, the di�erence

between the `actual' and `simulated' loads and moments do not increase linearly. Section VC will

show that the contribution to the MSE from VAx
alone is low and VAx

is only signi�cant for spin-up

and spring-back when its interactions with other �ight parameters are considered.

3. Aircraft Vertical Descent Velocity

The relationship between the MSE and VAz
is nonlinear and tends to increase and level o�

at high vertical descent velocities. Figure 13 illustrates the di�erence between the peak aircraft
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vertical acceleration (V RTG) in the `actual' landing and the peak V RTG from the Sensor and

Data Acquisition System model. At higher vertical descent velocities (and hence higher vertical

accelerations), the possibility increases that the peak vertical acceleration will be missed on the

FDR, due to low sampling rates (8 Hz) in conjunction with greater peak amplitudes. Therefore,

the `simulated' loads will be more under predicted as vertical descent velocity increases and the

di�erence between the `actual' and `simulated' loads will be greater. However, conservatism in

other �ight parameters, such as µlong, ensure that the landing gear loads are conservative.

As discussed in Section II, VAz
is an input �ight parameter, however the aircraft vertical accel-

eration measured by the FDR model is matched in the current hard landing analysis process model

by iterating VAz
. In the FDR model, the vertical acceleration is sampled and �ltered and therefore

any loss of data will have a signi�cant impact on the landing gear loads modelled in the current hard

landing analysis process model. Therefore, the vertical acceleration is one of the most important

parameters in reducing the MSE.

Fig. 13 Di�erence in Peak Aircraft Vertical Acceleration as a Function of Vertical Descent

Velocity due to 8Hz Sampling Rate

4. Longitudinal & Lateral Tire-Runway Friction Coe�cient

Figure 10 illustrates the relationship between MSE and µlong for spin-up and spring-back drag

axle response load bending moment. As the actual µlong for the landing approaches the value
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assumed within the hard landing analysis process, the di�erence between the `actual' and `simulated'

loads is reduced. This is logical considering that if the `actual' landing has a tire-friction coe�cient

that is signi�cantly lower than that assumed in the hard landing analysis process model, this will

greatly contribute to the MSE.

There is a constant relationship between MSE and µlong for vertical axle response load at

maximum vertical reaction. In Section VC it is also shown that µlong has little contribution to the

vertical axle response load MSE.

The tire-runway interface is represented by a global friction potential delineated approximately

by a circle, and the drag and side loads share the potential available in the tire-runway interface [28].

Therefore, in the case of combined slip in asymmetric landings, the drag and side ground-to-tire

load depend on µlong as well as µlat. As µlong and µlat increase (the radius of the `circle' increases),

the drag load and side ground-to-tire load increase.

Due to the bookcase modelling technique that is used in the Hard Landing Analysis Process

model and the relationship between the drag and side load and µlat, the drag axle response load

and bending moment main e�ects plots show that MSE tends to increase as µlat increases. The

MSE has a constant relationship with µlat for the maximum vertical reaction vertical axle response

load MSE.

The MEI and TEI in Section VC show that µlong is a very signi�cant �ight parameter. In its

own right, µlat only tends to be signi�cant when its interactions with other �ight parameters are

considered.

5. Main Landing Gear Shock Absorber Servicing State

In all of the main e�ects plots, the MLG shock absorber servicing state has a constant relation-

ship with MSE. Therefore, the MSE is not sensitive to the shock absorber servicing state over its

range and any shock absorber servicing state will give similar MSE values.

In the case of a symmetric landing, where the port and starboard MLG have the same servicing

states, when the shock absorber is overin�ated, higher loads are transmitted through the landing

gear structure. However, because the shock absorber is sti�er (sti�er spring curve), there is a higher
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aircraft vertical acceleration for the same vertical descent velocity. In the hard landing analysis

process model used in this study, the peak vertical aircraft acceleration is matched by iterating

VAz
. Therefore, if the correctly serviced shock absorber is used in the hard landing analysis process

model while in the `actual' case it is overin�ated, a higher VAz
will be required to match the

vertical acceleration. Due to the fact that the vertical acceleration is being matched, the di�erence

between the vertical and drag axle response loads and the bending moment from the landing with

an overin�ated shock absorber and from the landing with a correctly serviced shock absorber will

be very similar.

When the shock absorber is underin�ated, lower loads are transmitted through the landing gear

structure and there is a lower aircraft vertical acceleration for the same vertical descent velocity.

Therefore, if a correctly serviced shock absorber is assumed, meanwhile in the `actual' case it

is underin�ated, the aircraft vertical acceleration will be higher and the loads in the `simulated'

landing will be higher and therefore, more conservative.

In the asymmetric landings, the port and starboard MLG shock absorber servicing states were

altered independently and the analysis process did not correct for the mis-serviced shock absorber.

However, the main e�ects plots show that the MSE is constant over the range of the port and

starboard MLG servicing states, and the MEI and TEI, discussed in Section VC, indicate that

the shock absorber servicing state is not signi�cant. If another hard landing analysis process was

introduced, that did not match the aircraft vertical acceleration, then an accurate assessment of the

shock absorber servicing state may be more important.

6. Main Landing Gear Tire Pressure

In all of the symmetric and asymmetric main e�ects plots, the MLG tire pressure has a constant

relationship with MSE. This indicates that the MSE is not sensitive to tire pressure over its range

and any value of the tire pressure will give similar output values. Therefore, knowing the tire

pressure is not useful in reducing the MSE.
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7. Aircraft Mass & Centre of Gravity

For symmetric and asymmetric landings, the main e�ects plots for drag axle response load and

bending moment at spin-up and spring-back show that the MSE is generally constant over the range

of mass and the CG. However, the main e�ects plots for the maximum vertical reaction vertical axle

response load MSE shows a non-linear relationship with mass and CG. As expected, as the mass

and CG in the `actual' landing moves further from the mass and CG in the `simulated' landing, the

MSE increases. This trend is more prevalent in the main e�ects plots for the vertical axle response

load MSE than for spin-up and spring-back drag and bending moment MSE and is expected since

the MEI and TEI, presented in Section VC, indicate that mass and CG are very signi�cant to the

vertical axle response load.

8. Aircraft Lateral Velocity

The main e�ects plots show that the di�erence between the `actual' and `simulated' loads

increases on the starboard MLG as VAy
increases. As described in Section II, in landings with

with VAy
that acts in the starboard direction, the MLG wheels touchdown at the same time and

the starboard MLG has a higher vertical ground-to-tire load than the port MLG. As the initial

aircraft lateral velocity and therefore lateral acceleration increases, the magnitude of the vertical

ground-to-tire load increases on the starboard MLG, and decreases on the port MLG. However, the

drag ground-to-tire load and axle response loads do not signi�cantly change as the lateral velocity

increases. In the Hard Landing Analysis Process model, described in Section III, the `simulated'

starboard vertical and drag loads were calculated using a bookcase method and the vertical and

drag loads are factored up as a function of the LATG. Therefore, the `simulated' drag load is being

conservatively overestimated in the Hard Landing Analysis Process model. The same trend is seen

with the bending moment MSE and vertical load MSE. These results are mirrored for the port

MLG, as illustrated in Figure 12.

9. Aircraft Roll Angle

In a landing con�guration with the aircraft rolled with the port wing down (negative roll angle),

the aircraft �rst lands on the port MLG and then on the starboard MLG, as illustrated in Section II.
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As the initial aircraft roll angle increases, the time between the wheels touching down increases and

the build up of energy in the spin-up and spring-back is reduced. However, the spin-up and spring-

back drag axle response load and bending moment main e�ects plots show that as the negative

roll angle increases, the MSE increases. This is because the `simulated' drag load at spin-up and

spring-back is being conservatively overestimated in the Hard Landing Analysis Process model. The

same e�ect occurs on the starboard MLG if there is a positive roll angle.

10. Aircraft Yaw Angle

The main e�ects plot for spin-up and spring-back drag axle response load and bending moment

indicate that for the port MLG, the MSE increases as the positive yaw angle increases. As de-

scribed in Section II, as the initial aircraft yaw angle increases, the port MLG spin-up and spring

back loads decrease. Therefore, the `simulated' port MLG spin-up and spring-back loads are being

conservatively overestimated in the Hard Landing Analysis Process model.

C. Main E�ects Indices and Total E�ects Indices

Table 4 provides the MEI and TEI for the asymmetric landing sensitivity analysis. For brevity,

only the asymmetric landing sensitivity study are given in tabular form, however the symmetric

landing sensitivity analysis results are discussed with the asymmetric landing sensitivity analysis

results. Input �ight parameters with an MEI and TEI values above 10% are bold.

1. Spin-Up

a. Drag Axle Response Load: For both the symmetric and asymmetric landings, the MEI

illustrate that µlong and VAz
contribute the most signi�cantly to the spin-up drag axle response

load MSE. The symmetric landing TEI show that along with µlong and VAz
, VAx

and θ with their

interactions, contribute to the spin-up drag axle response load MSE. For asymmetric landings, φ

is also signi�cant and VAy
is as important as VAx

. The asymmetric landing TEI show that θ, ψ

and µlat and their interactions contribute to the drag axle response load MSE. The symmetric

landing �rst order interactions account for 19.8% of the MSE. The interactions between µlong-VAz

(11.38%), µlong-θ (1.73%), µlong-VAx
(1.68%) and VAz

-VAx
(1.87%) account for approximately 17%
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Flight Parameter Drag Axle Response Load Bending Moment Vertical Axle

Response

Load

Spin-Up Spring-Back Spin-Up Spring-Back Maximum Vertical Reaction

MEI [%] TEI [%] MEI [%] TEI [%] MEI [%] TEI [%] MEI [%] TEI [%] MEI [%] TEI [%]

θ 1.47 5.47 2.92 17.88 1.46 5.77 7.75 28.26 0.93 19.33

VAx 3.41 9.08 7.21 22.08 0.59 2.84 0.50 0.50 0.16 1.25

VAz 8.60 23.40 1.17 19.57 7.24 17.97 0.13 6.70 10.32 52.00

µlong 45.93 61.37 39.16 68.56 18.27 29.98 6.22 14.95 0.30 5.63

Port SA 0.06 1.23 0.05 0.06 0.10 0.26 0.06 2.12 0.15 0.30

Starboard SA 0.01 0.30 0.14 2.13 0.05 0.23 0.36 5.24 0.03 0.62

mass 0.12 1.13 0.09 2.98 1.64 13.56 2.52 14.11 8.91 61.37

CG 2.15 3.42 0.11 2.93 0.93 2.79 0.08 1.59 0.98 26.94

VAy 2.77 9.86 0.97 7.75 8.37 39.92 0.67 42.36 2.07 11.56

φ 6.09 12.26 2.78 15.46 5.35 24.33 9.40 56.74 0.94 24.48

ψ 1.36 4.28 1.27 6.21 3.07 20.26 0.69 24.33 0.48 1.83

µlat 0.82 5.81 2.00 8.39 3.12 19.79 2.21 18.43 0.22 2.36

First order in-

teractions

18.84 19.99 27.84 36.12 48.66

Higher order

interactions

8.36 22.13 21.98 33.29 25.85

Table 4 Asymmetric Port Main Landing Gear MSE MEI and TEI Summarized Results

of the MSE. The asymmetric landing �rst order interactions account for approximately 19% of the

MSE. The greatest interactions are between µlong-V
e
Az

(7.27%), µlong-φ (1.00%), VAz
-VAx

(1.94%)

and VAy
-µlat (1.06%) which account for approximately 11% of the MSE.

b. Bending Moment: The symmetric and asymmetric landing results are similar to the spin-

up drag axle response load MSE: µlong and VAz
are the most signi�cant parameters. However, VAy

and φ are also very signi�cant and the asymmetric landing TEI indicate that along with VAy
and φ,

ψ and µlat and their interactions contribute to the bending moment MSE. The asymmetric landing
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�rst order interactions account for approximately 27% of the MSE. The interactions between µlong-

VAz
(3.00%), VAy

-φ (4.57%), VAy
-ψ (2.57%), VAy

-µlat (3.62%), φ-ψ (1.36%) and ψ-µlat (1.06%)

account for approximately 16% of the MSE.

c. Findings: In both the symmetric and asymmetric landings, the spin-up drag axle response

load MSE and bending moment MSE may be reduced by learning the true value of µlong and VAz
.

However, the asymmetric landings show that to reduce the drag axle response load MSE and bending

moment MSE, it is also important to know the true value of VAy
and φ, and that ψ and µlat have

signi�cant interactions with those parameters.

2. Spring-Back

a. Drag Axle Response Load: The symmetric and asymmetric landing MEI and TEI show

similar results to the spin-up drag axle response load: µlong, VAz
, VAx

, θ and φ are the most

signi�cant parameters, while VAy
, ψ and µlat are also important parameters. However, the TEI

also shows that tire and its interactions have an e�ect on the the spring-back drag axle response

load MSE. The following �rst order interactions account for approximately 18% of the MSE in the

symmetric landings: µlong-VAz
(9.14%), µlong-VAx

(2.94%), µlong-θ (2.84%), µlong-tire (2.0%) and

VAz
-tire (1.19%). In the asymmetric landings, �rst order interactions account for approximately

20% of the MSE. The following interactions account for approximately 10% of the MSE: µlong-VAz

(4.04%), µlong-θ (3.54%), µlong-VAx
(2.15%). In the symmetric landing sensitivity study, tire was

an important parameter and although it was not considered in the asymmetric landing sensitivity

study, by similarity tire is also an important parameter for asymmetric landings. Therefore, µlong,

VAz
, φ and tire are important parameters in the spring-back drag axle response load MSE.

b. Bending Moment: Like the spring-back drag axle response load MSE, µlong, VAz
, VAx

,

θ and tire contribute signi�cantly to the spring-back bending moment MSE. In the symmetric

landings, the following interactions account for approximately 23% of the MSE: µlong-VAz
(5.16%),

µlong-θ (13.31%), µlong-mass (2.04%) and VAx
-θ (2.34%). Therefore, mass is also a signi�cant

parameter for spring-back bending moment MSE. For asymmetric landings, φ is also important and

the following �rst order interactions account for approximately 23% of the MSE: µlat-θ (2.88%),
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VAy
-φ (12.95%), θ-φ (2.27%), φ-ψ (3.78%) and φ-µlat (1.43%). Therefore µlong, VAz

, tire, mass and

φ are the important parameters for the spring-back bending moment MSE.

c. Findings: In order to reduce the spring-back drag axle response load MSE and bending

moment MSE, the true value of µlong, VAz
, φ, VAy

, mass and tire must be learned.

3. Maximum Vertical Reaction

a. Vertical Axle Response Load: The symmetric and asymmetric landing MEI illustrate that

mass and VAz
contribute signi�cantly to the vertical axle response load MSE. The symmetric

landing TEI show that along with mass and V e
Az

, CG, θ and tire with their interactions, contribute

to the vertical axle response load MSE. The symmetric landing �rst order interactions account for

approximately 49% of the MSE. The interactions between mass-VAz
(15.38%), mass-CG (13.63%),

mass-θ (4.10%), V e
Az

-CG (4.02%), VAz
-θ (2.32%), mass-tire (1.92%) account for approximately 41%

of the MSE. The asymmetric landing TEI show that φ and its interactions also contributes to the

vertical axle response load MSE. The asymmetric landing �rst order interactions also account for

approximately 49% of the MSE. The interactions between VAz
-θ (2.22%), VAz

-mass (12.87%), VAz
-φ

(2.19%), θ-mass (3.49%), mass-CG (7.92%) and mass-φ (7.01%) account for approximately 36% of

the MSE.

b. Findings: The maximum vertical reaction vertical axle response load MSE may be reduced

by learning the true value of µlong, VAz
, φ, mass, CG. From the symmetric landing sensitivity study,

it was also seen that tire was an important parameter to learn in order to reduce the MSE.

VI. Summary of Signi�cant Flight Parameters

A summary of the signi�cant �ight parameters is presented in Table 5. Each parameter is rated

as High (H), Medium (M) or Low (L). High identi�es �ight parameters that greatly in�uence the

MSE, Medium identi�es �ight parameters that have some in�uence on the MSE and Low identi�es

�ight parameters that have little or no in�uence on the MSE.
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Flight Parameter Signi�cance (H/M/L)

φ H

θ M

ψ H

VAx M

VAy (LATG ) H

VAz (VRTG ) H

mass M

CG M

tire M

tire press L

Port SA L

Starboard SA L

µlong H

µlat H

Table 5 Summary of the Signi�cant Flight Parameters in Reducing the MSE

VII. Conclusions

The purpose of this paper was to investigate the sensitivity of input parameters varied in

the FPSS model to the di�erence between the `actual' and `simulated' loads in symmetric and

asymmetric, two-point landings, calculated as MSE. The sensitivity analysis provided the following

conclusions:

• Longitudinal runway friction coe�cient, aircraft vertical descent velocity, aicraft lateral ve-

locity and aircraft roll angle contributed the most to the spin-up and spring back drag axle

response load MSE and bending moment MSE.

• Aircraft vertical descent velocity, roll angle, mass, centre of gravity position and MLG tire

type had signi�cant in�uences on the maximum vertical reaction vertical axle response load

MSE.

• While VAx
and θ did not change considerably from the `actual' to the `simulated' landing, the
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interactions with µlong and VAz
contributed to the MSE in all cases.

• The �ight parameters ψ and µlat are only signi�cant when their interactions are considered.

• Due to the Hard Landing Analysis Process modelling technique, VRTG is as signi�cant as

VAz
, and LATG is as signi�cant as VAy

, in reducing MSE.

• It was also shown that over the range in this sensitivity study, and due to the modelling

techniques used in the Hard Landing Analysis Process model used in this study, the shock

absorber servicing state and MLG tire pressure do not contribute signi�cantly to the MSE

and learning the true value of these �ight parameters would not reduce the MSE.

For symmetric and asymmetric two-point landings, the MSE can be reduced by learning the

true value of the following �ight parameters: µlong, VRTG (related to VAz
), LATG (related to VAy

),

φ, ψ, mass, CG and tire.
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