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Abstract—Current Cloud clusters often consist of heteroge-
neous machine nodes, which can trigger performance challenges
such as the task straggler problem, whereby a small subset of
parallel tasks running abnormally slower than the other sibling
ones. The straggler problem leads to extended job response and
deteriorates system throughput. Poor performance nodes are
more likely to engender stragglers, and can undermine straggler
mitigation effectiveness. For example, as the dominant mecha-
nism for straggler alleviation, speculative execution functions by
creating redundant task replicas on other machine nodes as soon
as a straggler is detected. When speculative copies are assigned
onto the poor performance nodes, it is hard for them to catch
up with the stragglers compared to replicas run on fast nodes.
And due to the fact that the performance heterogeneity is caused
not only by static attribute variations such as physical capacity,
but also dynamic characteristic uctuations such as contention
level, analyzing node performance is important yet challenging. In
this paper we develop ML-NA, a Machine Learning based Node
performance Analyzer. By leveraging historical parallel tasks
execution log data, ML-NA classies cluster nodes into different
categories and predicts their performance in the near future
as a scheduling guide to improve speculation effectiveness and
minimize task straggler generation. We consider MapReduce as
a representative framework to perform our analysis, and use
the published OpenCloud trace as a case study to train and to
evaluate our model. Results show that ML-NA can predict node
performance categories with an average accuracy up to 92.86%.

Keywords—Node Performance, Straggler Problem, Machine
Learning, Prediction.

I. INTRODUCTION

Task execution performance is important to both system

managers and service users when applications are developed

on parallel computing platforms such as Hadoop [1]. For the

former, the delayed execution can lead to decreased system

availability and potential SLA (Service Level Agreement)

breakdown; while for the latter, the unpredicted response will

result in poor user satisfaction.

It is common to witness node failures in large-scale pro-

duction systems such as machine crashes, and methods to

deal with node failures have been widely discussed. However,

besides node failures, node performance degradation also calls

for research attention, as it can lead to serious challenges such

as the straggler problem. Straggler problem proposed by [2]

describes the phenomenon when a small subset of outlier tasks

perform extremely slower than the other sibling tasks within

the same parallel job. Speculator is a built-in component in

Hadoop [3] to deal with the straggler problem. Upon straggler

detection, a redundant replica task will be launched on another

node for execution. The result generated by the quickest task

will be adopted while the other task will then be killed.

There are multiple behaviors that can trigger the straggler

generation within cluster environments, including hardware

heterogeneity [4], resource contention [5], background net-

work traffic [6], I/O discord [7], data skew [8] and OS

or application-level related causes [9]. Among the possible

reasons, node performance heterogeneity is an important one.

In this paper, node performance refers to the node’s ability in

terms of executing parallel applications.

Analyzing node performance is critical for straggler miti-

gation, and machine learning techniques pose a bright shade

onto it. Through classifying nodes into different categories and

predicting the corresponding performance category with high

accuracy, the scheduler can select suitable nodes to launch

latency-sensitive tasks, avoid assigning speculative tasks onto

nodes that are likely to be in their weak performance state in

the near future. Our contributions are summarized as follows:

• Analyzed node performance heterogeneity in a produc-

tion cluster. With a case study of the OpenCloud system,

we illustrate the straggler problem as well as how dif-

ferent nodes affect straggler generation. In addition, we

demonstrate the challenge of modeling such heterogene-

ity, and show the necessity of leveraging task execution

trace to measure nodes performance.

• Explored a series of features to describe node perfor-

mance. These features are derived from task number per

node values and statistics of normalized task executions.

The former reflects the contention level while the latter

captures relative processing speed of a node. A technique

of conducting feature calculation in a time-incremental

manner is developed to capture cumulative effects.

• Proposed ML-NA, a Machine Learning based Node per-

formance Analyzer. This multi-stage framework can clas-

sify machine nodes into different categories depending

on their performance through clustering. An automatic



labeling algorithm is developed in order to link the

unsupervised learning with classification. Results show

that, the average accuracy of using ML-NA to predict

node performance category can reach as high as 92.86%.

The rest of the paper is structured as follows: Section

2 presents the background; Section 3 proposes the ML-

NA algorithm; Section 4 presents the prediction results and

corresponding evaluations; Section 5 surveys the related work;

Section 6 discusses the conclusion and the future work.

II. BACKGROUND DESCRIPTION

In this section, the straggler problem will be discussed as

well as the challenge of solving such problem caused by the

node performance heterogeneity. All observations are based

on data analytics results from the OpenCloud cluster.

A. OpenCloud Overview

OpenCloud is a research cluster at the Carnegie Mellon

University [10] that consists of 116 machine nodes running

Hadoop platform. The cluster supports research activities for

different departments within the University. OpenCloud re-

leased its task execution tracelog for public research covering

the first nine months in 2012. There are 6 tables provided,

from which task attempt history table contains the information

of interest, such as jobID, tasktype, taskID, start / shuffle /

sort / finish time of the task attempt (represented as UTC

timestamp in milliseconds), status (success, failed or killed),

and hostname. After filtering, 18,935 successful parallel jobs

consists of 8,734,974 tasks were analyzed within this paper.

In addition, the machine nodes within this cluster are

homogeneous in physical configurations [10], with each has a

2.8 GHz dual quad core CPU (8 cores), 16 GB RAM, 10 Gbps

Ethernet NIC, and four Seagate 7200 RPM SATA disk drives.

However, in reality, due to dynamic operational situations

and different aging conditions, the execution performance of

these machines exhibits a diverse trend. This further results in

the straggler problem that threats the timely and predictable

service response and deteriorates system availability.

B. The Straggler Problem

In parallel computing frameworks such as Hadoop MapRe-

duce [2], a job is divided into multiple subtasks running on

different nodes in order to achieve optimized response times.

In this paper, T i
j represents the ith task from job Jj , and

the cluster is composed of multiple machine nodes Mm. The

scheduler is responsible for assigning tasks onto machines,

while Di
j denotes the duration of T i

j .

It is assumed that tasks from the same job have similar

durations, such as the map tasks in the MapReduce framework.

Theoretically, mappers in the same job should have similar

execution lengths due to identical HDFS block size. However

in practice, after being assigned onto different nodes, these

subtasks vary in their durations. Figure 1 shows three examples

of MapReduce jobs with different sizes in the OpenCloud

cluster, consisting of (a) 366, (b) 805, and (c) 1116 mappers

respectively. The straggler problem occurs when the duration

variation is large enough that the extreme slow tasks under-

mine overall job execution. In this paper, we define stragglers

as tasks with estimated duration 50% larger than the average.

This threshold is consistent with the majority of straggler

mitigation literature such as [4] [6], and can be customized.

Stragglers occur due to resource contention, network con-

gestion, input data skew, and most importantly, node per-

formance heterogeneity. It is observable from Figure 1 that,

with the red line representing the average duration for tasks

assigned on each node from the same job, the ability for those

nodes to execute parallel tasks are quite different. A few nodes

incur more stragglers than the others, despite the fact that they

have the same physical configurations.

C. Challenge: Node Execution Performance Heterogeneity

Node performance heterogeneity is one of the most impor-

tant factors that lead to the straggler problem. This heterogene-

ity is caused not only by physical capacity differences, but

also system perturbations and partial upgrades. This section

illustrates the challenge brought by such heterogeneity towards

effective straggler toleration, and analyzed why the node

performance analyzer is needed in order to mitigate stragglers.

1) Stragglers are not evenly distributed among cluster

nodes: From task durations for different nodes shown in

Figure 1, it is observable that some machines have a shorter

average task processing time than the others, while some are

either with a much longer average duration indicating a slower

Fig. 1. Map Tasks Duration per Node from Job (a) ID=258, (b) ID=231, and (c) ID=136 in the OpenCloud Cluster



execution, or with a larger variation in time of processing

tasks, showing an unstable performance.

Figure 2 (a) illustrates the straggler number per node dis-

tribution in the 9-month time, with machine IDs in each sub-

figure remaining the same. That is to say, the blank machines

in some sub-figures reflect the fact that not all nodes are in

use for the whole time, some are only turned on in certain

months. For example, nodes with ID ∈ (80, 100] are used only

in the 5th month. It is observable that, for each month, there

are some nodes experiencing much more stragglers than the

others (labeled with circles in Figure 2 (a)). Considering the

homogeneous physical configuration of the OpenCloud cluster,

this shows that node performance is not purely dependent on

their capacities. And to note that, the nodes with a significantly

larger number of stragglers change over month, revealing a

dynamic nature of straggler generation.

Related works such as [11] use resource utilization instead

of physical capacity. However, the node performance diversity

is not solely dependent on contention or utilization as well.

Figure 2 (b) shows the total task number per node distribution

over the 9-month time. The number of tasks assigned is used

to partially represent contention level of the node due to the

lack of utilization data. We see that, during each month, the

task number for each node is relatively even. The 7th month

is the only exception, with three obvious busier nodes (labeled

with circles). For the rest months, different straggler numbers

are not due to contention. The node IDs in Figure 2 (b) are

consistent through the 9 sub-graphs, same with Figure 2 (a).

2) The node performance is changing over time: Node

performance in this paper refers to the node’s ability in terms

of executing parallel applications, therefore it is reasonable

to analyze node performance based on task durations. In

Cloud environments, multiple workloads with different de-

signed length co-exist with each other. For example, the job

in Figure 1 (a) is less than 10 seconds while Figure 1 (b)

Fig. 3. Node Execution Performance Changing Trend

takes 450 seconds. That is to say, the raw task duration cannot

directly be used to generate comparable results. To solve this

problem, we proposed normalized execution value for tasks

calculated in Equation (1) using the Z-score normalization.

D̃i
j =

Di
j −Dj

σj

(1)

In this way, the duration variation brought by job types can

be eliminated. D̃i
j reveals the relative speed of tij compared

to other tasks within Jj . A positive D̃i
j value represents a

slower execution because the duration of tij is larger than the

job average, and the increment of the positive D̃i
j indicates

an aggravated straggler behavior tij exhibits. Vice versa, a

negative D̃i
j indicates a shorter response, and the smaller the

negative value, the quicker tij performs.

We then collect all D̃i
j from tasks assigned in each node to

reflect the quickness or slowness derived from different node

performance rather than job heterogeneity. Statistics of D̃i
j

values per node are calculated as the basic metrics to measure

the node performance. Figure 3 gives five nodes as an example.

Each line in the graph represents a node, with y-axis being

the D̃i
j average for the specific month. It is observable that

Fig. 2. (a) Straggler Number per Node Distribution, (b) Total Task Number per Node Distribution over the 9-Month Period



M22 outperforms the rest nodes in the 5th and the 6th month

though exhibiting a smaller negative average D̃i
j , while M67

has a noticeably worse performance among these five nodes

in the 4th month. Besides, there is no constant weak node

throughout the 9-month time. For instance, M67 outperforms

the others in the 9th month after it suffers in the 4th month.

3) Summary: As node performance is important in ensur-

ing application timely response, to analyze its changing trend

and make predictions based on historical patterns are vital

in straggler mitigation. Machine learning techniques such as

classification can be used to address the challenge of modeling

such performance, with features reflected by the normalized

workloads’ durations. In addition, the time series produced by

the trace can be used to intelligently predict the performance

changing trend. By investigating the machine learning based

analyzer, we are able to capture the evolutionary behavior of

nodes’ performance instead of simply using physical capacity

nor contention indicators to determine a static performance.

III. ML-NA: A MACHINE LEARNING BASED NODE

PERFORMANCE ANALYZER

In this section we propose ML-NA, a machine learning

based node performance analyzer. Key processes of feature

selection and automatic labeling are herein discussed.

A. Feature Selection

As we discussed in the previous sections, the node perfor-

mance is typically influenced by multiple features, thus se-

lecting key indicators to represent the node’s ability regarding

parallel job execution is a vital process. In this paper, the

parallel task execution trace is used to generate those key

features. In particular, statistical attributes of the normalized

task duration, task number, and timing attributes are adopted.

1) Statistical attributes: Node performance can be reflected

by the statistical attributes of all tasks running on it within

a certain time period. For example, if all tasks assigned to

node M1 has an average D̃i
j of 2, we can infer that M1 is a

weak performance node because most tasks assigned on M1

are stragglers in their own jobs, characterized by 2∗σj slower

than their own average duration Dj . And we can assume later

tasks that are about to be assigned on M1 in the near future will

have a possible relative speed around 2 ∗ σj times slower as

well. Other statistical attributes such as the standard deviation

of all D̃i
j pertaining to each node can also be used to reflect the

fluctuation range of the node performance, showing a stable

or random possibility of D̃i
j in the certain node.

2) Task number: Apart from the statistical attributes de-

rived from the D̃i
j distribution per node, task number is the

other important feature that we use to describe the node

performance. It implies the node’s contention state and reflects

the impact of such contention toward job execution rapidness.

In addition, the normalized task number compared with all the

other machine nodes in the cluster is used rather than the raw

task number. This is because we intend to constrain the se-

lected features into a similar range, which lays the foundation

for further operations such as the clustering process.

Fig. 4. Clustering Results with Three Features (k = 5)

The three basic meta-features selected to build up the node

performance analysis model are the average and the standard

deviation of all D̃i
js from tasks per node, as well as the

normalized task number. An example of leveraging these three

meta-features to clustering nodes into 5 categories using k-

means [12] is shown in Figure 4. Machine nodes within the

same clusterization group have similar execution performance.

3) Timing attributes: Considering the fact that sometimes

performance degradation is caused by time-cumulative im-

pacts, ML-NA adopted another feature dimension: timing

attributes. To be specific, we divided the trace into 9 month

according to the job submission time. Each month contains 30

days’ data (ignoring the fact that natural months are slightly

different in day numbers). Within each month, we construct

the input into dataset consists of following 91-tuples:

<Mid, avg{D̃
i
jday1

}, σ{D̃i
jday1

}, norm{N taskday1},

avg{D̃i
jday2

}, σ{D̃i
jday2

}, norm{N taskday2}, · · · ,

avg{D̃i
jday30

}, σ{D̃i
jday30

}, norm{N taskday30} >

Within this 91-tuple, avg{D̃i
jday1

} and σ{D̃i
jday1

} repre-

sent the average and the standard deviation of all tasks’

normalized value assigned onto the machine Mid in day1;

norm{N taskday1} stands for the normalized task number

on machine Mid compared with all other nodes within the

cluster in day1. To note that, avg{D̃i
jday2

}, σ{D̃i
jday2

}, and

norm{N taskday2} are calculated based on all tasks submitted

in both day1 and day2 together rather than day2 itself. In

other words, this timing attribute calculation is performed in a

cumulative manner. Similarly for day30, the results are derived

from the whole month’s data rather than a single day.

B. The Automatic Labeling Algorithm

A labeling process is required by ML-NA because the trace

data does not contain node performance indicators, while the

labeled data is needed in order to train the classification model.

Previously to label a weak node is a manual process that

depends on the system administrator. In ML-NA, we proposed

an automatic labeling algorithm that utilizes the generated

features to objectively discriminate weak performance nodes

from the normal ones within the cluster.



1) Clustering: The first step to label the nodes is to put

the nodes with similar performance into the same group. In

this scenario, clustering is the most well-known technique that

can be used, and k-means is one of the simplest whilst very

effective clustering algorithms [12].

The key parameter for launching k-means is to find the

optimal k value: it should be sufficiently large to reduce the

number of nodes within each group, so that we can separate

the minority (weak performance nodes) from the majority (the

normal ones), yet maintaining the best clustering results such

as high calinski-harabaz score [13]. The calinski-harabaz score

measures the covariance within each cluster and the covari-

ance among different clusters. Higher calinski-harabaz score

signifies a superior clustering result. Figure 5 demonstrates the

score variation when k is changing from 2 to 10 using only two

attributes to represent node performance. In this example, for

the clarity of figure description, only two features are included,

while in ML-NA, 90 features (except Mid in the 91-tuple) are

used in order to conduct the clustering.

Table I details the calinski-harabaz scores when k is ranging

from 2 to 10 for each month. In this paper we specify the

maximum clustering number to be 10 when exploring the

optimal k based on the observation that desirable proportion of

weak performance nodes can be sorted out. This number can

be easily customized according to different purposes. From the

table it is observable that most optimal ks are the ones with

the highest score. However, for the 7th, 8th and 9th month, the

optimal k is different. This is due to the optimal k generated by

the score is not big enough to differentiate a proper proportion

of “weak” nodes set (leading to a negative sample percentage

above 25%). Under this circumstance, the second largest score

with a greater k will be chosen.

2) Labeling: After putting the nodes with similar per-

formance into k groups, we then need to determine which

cluster represents the weakest performance group. Conven-

tional labeling needs manual practice conducted by the system

administrator, which suffers from operational inefficiency, and

the subjective may lead to misidentification. To cope with it,

an automatic labeling algorithm is proposed in ML-NA. Two

heuristic ranking criteria are adopted to make this decision:

• [C1]: The weakest performance nodes should have the

Fig. 5. Different K Clustering Results with Two Features

most number of positive avg{D̃i
jdayN

} (N ∈ [1, 30]).

The number of positive avg{D̃i
jdayN

} is the primary

indicator when judging whether a specific group contains

weak performance nodes. According to Equation (1), a

positive D̃i
j signifies a straggler. Therefore, for node Mid,

a positive avg{D̃i
jdayN

} indicates a high likelihood of

straggler occurance. As a result, the number of positive

avg{D̃i
jdayN

} can be used to imply the frequency of the

node to exhibit such slow tendencies in a month time.

• [C2]: If multiple cluster centers have the same number

of positive avg{D̃i
jdayN

}, then smallest σ{D̃i
jdayN

}

suggests the worst performance (N ∈ [1, 30]).
The σ{D̃i

jdayN
} value implies the confidence when pre-

dicting node performance, because it represents a stable

or random status. A small σ{D̃i
jdayN

} indicates a concen-

trated D̃i
j distribution for node Mid. Thus, for nodes that

have already shown a slow tendency (e.g. with maximum

positive avg{D̃i
jdayN

} number according to [C1]), smaller

average σ{D̃i
jdayN

} means a higher chance for this group

to be classified as the weakest type.

The labeling algorithm is presented in Algorithm 1 follow-

ing the above two heuristics. Label “1” represents the negative

TABLE I
THE K VALUE CHOICES

The 1st Month The 2nd Month The 3rd Month The 4th Month The 5th Month

Calinski
Harabasz
Score

2:252.05; 3:219.60; 2:1449.31; 3:968.79; 2:128.80; 3:107.89; 2:428.35; 3:452.37; 2:345.36; 3:257.99;
4:212.24; 5:241.34; 4:778.84; 5:767.33; 4:110.40; 5:153.44; 4:446.41; 5:373.91; 4:280.71; 5:296.65;
6:267.97; 7:357.94; 6:762.84; 7:762.31; 6:200.49; 7:275.37; 6:333.96; 7:302.50 6:297.33; 7:333.09;
8:389.98; 9:447.72 8:761.51; 9:741.02 8:357.01; 9:393.83 8:288.48; 9:285.85 8:324.92; 9:316.74

Optimal K 9 2 9 3 7
Sample(-)% 18.46% 13.70% 3.23% 8.45% 17.53%

The 6th Month The 7th Month The 8th Month The 9th Month

Calinski
Harabasz
Score

2:124.19; 3:121.24; 2:68.39; 3:154.48; 2:90.36; 3:92.16; 2:107.25; 3:123.62;
4:121.23; 5:124.35; 4:124.28; 5:113.03; 4:84.52; 5:77.26; 4:107.18; 5:97.08;
6:133.90; 7:131.06; 6:105.02; 7:98.69; 6:67.87; 7:69.39; 6:95.62; 7:86.36;
8:124.73; 9:119.51 8:97.83; 9:94.52 8:64.08; 9:64.63 8:83.89; 9:81.18

Optimal K 6 4 4 4
Sample(-)% 21.43% 13.21% 12.50% 10.34%



ALGORITHM 1: Labeling Algorithm

Inputs:
Training sets data = {〈 Mid, Avgday1 ,..., Numday30 〉}
Optimal K from K-means process

Output:
Labelled sets{〈 Label, Mid, Avgday1 ,..., Numday30 〉}

1 Categories = kmeans(n clusters = K, data = data);
2 for each center in Categories do
3 for Avgdayj , StDevdayj in center.AttributeList do

4 pos counts = count the number of j, Avgdayj > 0
5 stdev avg = calculate the average of StDevdayj
6 end
7 end

8 WeakIndexList = Categories.indexof
(
max(pos counts)

)
;

9 WeakIndex = WeakIndexList.indexof
(
min(stdev avg)

)
;

10 for each node in data do
11 if Category(node) == Categories.indexof(WeakIndex) then
12 Label = 1;
13 else
14 Label = 0;
15 end
16 node = node.insert(Label);
17 end
18 return data

sample of weak nodes, and “0” indicates the positive sample

of nodes that exhibit normal performance. To note that, the

primary purpose of this paper is to model and predict the

weak nodes to avoid straggler generation, therefore binary

labels are adopted. According to different usage, a set of labels

corresponds to multiple performance levels can be adopted.

IV. NODE PERFORMANCE CLASSIFICATION PREDICTION

ML-NA is a multi-stage learning procedure that predicts

node performance based on classification while labeled data

is fed into the classifier as input. This section details the node

performance category classification and prediction results.

A. Boosting Based Classifier

There are a lot of classification algorithms [12] such as

SVM, Boosting, Decision Tree, Random Forest, and Naive

Bayes, etc. Each algorithm emphasizes specific attributes

from the training data to get the optimal performance. For

example, the Bayesian classifier requires all the attributes to

be independent of each other (the attributes xk should fulfill

Equation (2), with Ci to be a given condition).

P (X|Ci) =
n∏

k=1

P (xk|Ci) = P (x1|Ci)× ...× P (xn|Ci) (2)

Table II shows the precision, recall and accuracy when

adopting different prevailing classification algorithms onto

the OpenCloud datasets with automatic labeling to predict

performance category. Parameters used are the default value

in the Python scikit-learn library [13], and the cross-validation

portion is 1/3. It is observable that the Naive Bayes classifier

performs significantly worse than others. This is because,

in our training set, the features (elements in the 91-tuple

except Mid) are correlated (i.e., they are generated in an

incremental manner according to time). This is consistent

with the aforementioned limitation of the Bayesian classifier.

Within this paper, XGBoost [14] is adopted to realize the

classification analysis.

TABLE II
ALGORITHM COMPARISIONS

Precision Recall Accuracy
Random Forest 89.47% 58.62% 92.86%

SVM 100% 6.9% 86.22%
Ada Boosting 78.95% 51.72% 90.82%
Decision Tree 62.96% 58.62% 88.78%
Naive Bayes 16.67% 27.59% 68.88%

XGBoost 82.61% 65.52% 92.86%

B. Prediction Results and Evaluations

Different parameter settings are tested to train the XGBoost

model, main parameters tuned are learning rate η, evaluation

metric, and gbtree depth. Table III detailed the optimal pre-

diction result from all testing cases, with η being 0.1 and

the maximum depth of the gbtree booster being 12. The

logloss value calculates the negative log-likelihood is adopted

as the evaluation metric. The results of different data sizes

are compared in the form of a sliding window to test the

sensitiveness towards training sizes. For example, (1,2) in

Table III represents the prediction result for node performance

category in the 2nd month through using training data in the

1st month. Additionally, (1+...+8,9) represents the prediction

result for the 9th month by using a combined training data

from the 1st to the 8th month (a much larger training size).

The numbers in Table III are prediction accuracies cal-

culated following Equation (3), where TP stands for true

positive, TN is short for true negative. Similarly, FP and FN are

abbreviations of false positive and false negative respectively.

The average and standard deviation of accuracies for each

training size are recorded in the table as well.

Accuracy =
TP + TN

TP + FN + FP + TN
(3)

Figure 6(a) concludes the minimal, average and maximum

accuracies when predicting each month’s node performance

categories utilizing different training sizes with the optimal

parameter setting. Figure 6(b) shows a example of results from

another parameter setting, with η = 0.3, gbtree depth being 9,

and error represents classification error rate being the evalu-

ation metric. The numbers listed in the figure are the average

values, and it is observable that, the parameter settings in Table

III surpasses the other testing case with much higher prediction

Fig. 6. Node Classification Prediction Accuracy for Each Month, with (a)
Optimal Parameters used in Table III, and (b) Comparable Parameter Settings.



TABLE III
MODEL PREDICTION RESULTS WITH PARAMETER SETS OF η = 0.1, MAX DEPTH = 12, EVAL METRIC = LOGLOSS

(1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) Average StDev
Accuracy 68.49% 93.55% 91.55% 79.38% 78.57% 45.28% 87.50% 86.21% 78.82% 0.15

- (1+2,3) (2+3,4) (3+4,5) (4+5,6) (5+6,7) (6+7,8) (7+8,9) Average StDev
Accuracy - 64.52% 91.55% 82.47% 78.57% 41.51% 83.93% 87.93% 75.78% 0.16

- - (1+2+3,4) (2+3+4,5) (3+4+5,6) (4+5+6,7) (5+6+7,8) (6+7+8,9) Average StDev
Accuracy - - 69.01% 81.44% 75.00% 50.94% 73.21% 91.38% 73.50% 0.12

- - - (1+...+4,5) (2+...+5,6) (3+...+6,7) (4+...+7,8) (5+...+8,9) Average StDev
Accuracy - - - 94.37% 100% 100% 92.45% 98.21% 97.01% 0.03

- - - - (1+...+5,6) (2+...+6,7) (3+...+7,8) (4+...+8,9) Average StDev
Accuracy - - - - 98.59% 100% 98.21% 94.33% 97.78% 0.02

- - - - - (1+...+6,7) (2+...+7,8) (3+...+8,9) Average StDev
Accuracy - - - - - 77.36% 82.14% 94.83% 84.78% 0.07

- - - - - - (1+...+7,8) (2+...+8,9) Average StDev
Accuracy - - - - - - 85.71% 89.66% 87.69% 0.02

- - - - - - - (1+...+8,9) Average StDev
Accuracy - - - - - - - 92.86% 92.86% 0

accuracy. With proper parameter tuning, the prediction results

for most months exceed 85%, and with proper training sizes,

the highest prediction results for most months are above 90%.

Under some cases, the highest accuracy when predicting next

month’s node performance category even reaches 100%.

Despite the peak accuracy ML-NA can achieve, there are

still some low accuracy results under extreme cases. The worst

results occur when predicting node classification for the 2nd

and the 7th month. The reason behind the low accuracy for

the 2nd month is relatively straight forward - the insufficient

training size. When predicting the node categories for the 2nd

month, we can merely collect data from the 1st month. In fact,

the prediction accuracy based on only one month’s training

data tends to be limited for most months. The numbers are

shown in the first row in Table III. Most accuracies are below

80% such as the prediction pair of (1,2), (4,5), (5,6), and (6,7).

For the low accuracy occur in the 7th month, it is due to the

special characteristics of the input data. Figure 7 shows the first

10 lines for the training set, from which we see that, features

avg{D̃i
jday1

}, σ{D̃i
jday1

}, and norm{N taskday1} to avg{D̃i
jday3

},

σ{D̃i
jday3

}, and norm{N taskday3} in the 91-tuple are NaN.

This is due to that, for the first three days of the 7th month,

there are no tasks been submitted to the system, leading to a

blank value for those feature columns. These unexpected NaNs

form a noticeable different pattern, leading to a low prediction

accuracy for the classification model generated by ML-NA.

This result reveals a limitation of the proposed ML-NA

algorithm: it can only predict node performance with high

accuracy when there are jobs running in the system. Sudden

reduce in task numbers may influence the algorithm perfor-

mance. However, we believe this is a loose assumption that

most production cluster can achieve.

Fig. 7. Training/Evaluation Segment for the 7th Month with NaN Attributes

V. RELATED WORK

Mitigating stragglers has become an important challenge

in improving parallel job performance, especially consider-

ing the fact that most production clusters are composed of

heterogeneous machines. The straggler problem is observed

when a small subset of parallelized tasks performing much

slower in comparison with other sibling tasks from the same

job, incurring a significant delay towards final job completion.

Stragglers stem from numerous causes including hardware het-

erogeneity [4], resource contention [5], network traffic [6], I/O

discord [7], data skew [8] and application related sources [9].

There are numerous work that analyzes the straggler influ-

ence toward system performance: Jeffrey et al. [15] demon-

strate that the slowest 5% of completed requests are responsi-

ble for half of the total 99th percentile latency, and there exists

a positive correlation between straggler probability and cluster

size, concluding that the possibility of longer latency will

increase with the growth of system scales. Ananthanarayanan

et al. [6] show that 80% of stragglers exhibit a delay between

150%-250% compared to the median duration, with 10%

exhibiting a larger than 10 times response slowdown.

Among the straggler mitigation techniques, speculation [16]

is the dominant method. It predicts stragglers based on task

progress score and launch redundant copies for re-execution

on different machines. LATE [4] is the most widely used

speculation based method that designed for heterogeneous

environments. It uses estimated duration as the metric to

measure stragglers rather than progress score. MARLA [17]

is also designed for heterogeneous clusters, re-configures

MapReduce through delaying the binding of data to worker

process. Some speculation variations use machine learning in

revealing the correlation between task execution time and node

level statistics such as the CPU/memory utilization. In [11], the

historical data on each node is used to predict the possibility of

stragglers through performing regression, while [18] presents

a slowdown predictor using machine learning to forecast how

much slower a task will run compared to similar tasks. Wran-

gler [19] predicts stragglers using linear modeling based on

cluster resource usage counters, and [20] further enhances the



time-consuming data collection process of Wrangler through

proposing multi-task learning formulations.

Current straggler mitigation techniques are focused more on

application perspective, selecting the best task candidates to

create the replications, however, ignoring the impact of nodes.

In reality, node performance plays a vital role in straggler

generation. Xu et al. [21] report that poor response time in

EC2 is a property of nodes, and this property is both pervasive

throughout EC2 and persistent over time. Therefore, it is

particularly important to avoid scheduling speculative tasks to

the nodes that are about to experience performance fall. [22]

proposes a node performance ranking algorithm that identifies

0.83% of weakest nodes within Google cluster based on job

execution. However, this method is offline analysis and does

not generate a prediction that can guide future task assignment.

In terms of intelligent placement of replicas on nodes, Chen

et al. [7] consider both data locality and data skew, develop a

cost-benefit model based on the load of a cluster. This method

leverages data analytics to identify weak nodes, but it as-

sumes node performance is a static characteristic that remains

constant within the cluster, while transient system conditions

including resource contention level, workload heterogeneity

and user demand will actually influence the performance of

the node to fluctuate over time.

VI. CONCLUSION

Analyzing and predicting node performance is important

in guaranteeing efficient job execution. It facilitates the de-

ployment of tasks by avoiding assigning them to the node

that is likely to be in its weak performance phase in the

near future. For straggler mitigation mechanisms such as

speculative execution, it provides a guidance on the suitable

node candidates that are ideal for launching replications. The

main contributions of this paper are summarized as follows.

Firstly, we analyzed the node performance heterogeneity

based on the OpenCloud tracelog data regarding parallel task

execution. Different from literature that purely focuses on

either physical capacity differences or utilization variations, we

describe and measure the nodes’ performance using straggler

statistics, which directly reflect the influence the heterogeneity

exert on efficient job responses. Secondly, we explored a

series of features to describe node performance and developed

an automatic labeling algorithm to generate accurate and

objective labels for different performance categories. Through

leveraging normalized task execution times and task number

per node values, statistical characteristics and timing attributes,

we calculated the features to capture node execution ability.

Finally, we proposed ML-NA, the node performance analy-

sis framework that classifies machine nodes into categories.

Prediction results show that ML-NA is capable of predicting

node performance categories with an average accuracy up to

92.86%. This can further benefit the scheduler via blacklisting

nodes that are likely to be in their weak performance state in

the following scheduling window.

Besides above contributions, future works including inte-

grating the proposed ML-NA algorithm into cluster scheduling

decision-making components such as the resource manager

in YARN system. And to improve its ability in handling

limitation situation when no tasks are submitted.
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