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Discussion on the paper

Statistical Contributions to Bioinformatics:

Design, Modeling, Structure Learning, and Integration

by Jeffrey S. Morris and Veerabhadran Baladandayuthapani

Jeanine J Houwing-Duistermaat1,2, Hae Won Uh2 and Arief Gusnanto1

1Department of Statistics, University of Leeds, Leeds LS2 9JT, United Kingdom
2Department of Medical Statistics and Bioinformatics, Leiden University Medical Center,

Leiden, The Netherlands

Morris and Baladandayuthapani (M and B) discuss statistical contributions to bioin-
formatics in four different areas: design, modelling, structure learning, and integration.
The authors not only manage to highlight many relevant and important contributions of
statistics to the field of bioinformatics, but also illustrate cases where proper and rigorous
statistical principles are not considered. We like to congratulate the authors with this very
thorough and highly relevant piece of work. To complement the paper, we wish to highlight
several areas of bioinformatics in which statisticians have also made significant contribu-
tions. Moreover we like to share our own experience in working with a novel type of omics,
namely glycomics. We finish with a discussion about the challenges for statisticians to work
in the field of statistical bioinformatics.

Data Cleaning, Filtering and the Effect on Downstream Analysis

Our experience with the statistical analyses of Glycomics datasets measured in epidemio-
logical studies motivated our consortium MIMOmics (www.MIMOmics.eu) which develops
methods for integrated analysis of multiple omics datasets. Firstly we encountered that
statistical analyses of Glycomics data was hampered by our lack of knowledge about high
throughput technology and preprocessing steps which are taken before the data were given
to us. Secondly straightforward association analysis of one omic variable with an outcome
was the state of the art methodology which fails to identify multi omics risk profiles asso-
ciated with complex traits. Also M and B discuss such elementwise modeling approaches
(p 43). While elementwise approaches are straightforward to implement, they ignore the
correlation structure among the elements which results in suboptimal testing and inefficient
estimators. In our opinion it also reduces the insight in the complex biological mechanisms
underlying the traits. Thirdly we wondered what the effect of data cleaning would be
on downstream analysis and whether different statistical approaches needed different data
cleaning procedures.

Glycomics is an emerging novel omics science of a much higher complexity than pro-
teomics (Hart et al., 2010). Although Glycomics changes are said to be a hallmark of vir-
tually any human disease (Walt, 2012), the structural complexity of glycans together with
technological limitations hampered understanding the nature of glycans and their effects
on other biological processes. Only recently high throughput methods for quantification of
N-glycans for a large number of samples have been developed. In theory, data preprocess-
ing minimizes contributions from unwanted biases and experimental variances. An essential
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step is normalization; any omics measurements or abundances need to be placed on compa-
rable scales. Although improper normalization methods can significantly impair the data
(Dillies et al., 2013; Kohl et al., 2012), their impact on a downstream analysis has not been
well thought out. For instance, the mostly used normalization method in Glycomics data
analysis is the Total Area (TA) Normalization. TA scales each sample or row so that the
sum of all glycan intensities in that sample equals 1 (or 100%). This results in a so-called
compositional data (Aitchison, 2003), or sometimes called percentage data. The question
is how appropriate this method is, when applied to highly correlated Glycomics data - the
median correlation coefficients are around 0.7. It is well known that TA results in changes
of the correlation structure. Because of the sum to unity constraint, when the level of
one glycan increases, the level of another must decrease. This, unfortunately, leads to the
problem of losing the possibility to interpret the correlation coefficients between the original
components, commonly referred to as the negative bias problem (Pearson, 1897).

As pointed out by M and B, networks provide a natural way of representing the depen-
dency structure among variables providing more refined biological interpretations. Corre-
lation networks are widely used to explore, analyze and visualize high-dimensional data. It
is not at all clear how to perform a network analysis based on TA normalized data since
this normalization changes the correlation structure. Moreover there is a wish to derive a
directional network in which not only the associations between nodes but also the directions
are given (Krumsiek et al., 2011). Graphical Gaussian Model (GGM) is one of the meth-
ods to construct such directed networks. Causal relations are described by an underlying
directed acyclic graph (DAG). However for TA normalized glycans, the nodes are ratios of
two random variables namely the abundance of one glycan divided by the total abundances
of all glycans. How to construct a DAG for such a variable? How to deal with confounders
and mediators having a causal effect on only one of these variables? Note that also beyond
data cleaning, within the field of glycomics and metabolomics derived traits are popular
variables to study (see for example Reiding et al., 2017). Derived traits are composite
variables of glycans and metabolites which have similar structural and chemical properties.
These traits might have a biological interpretation as single unit, but within a regression
framework interpretation is far from straightforward. An alternative for using derived traits
or TA normalized glycans in a regression framework is to model the joint distribution of
the single variables of such traits.

After cleaning and normalization steps a next necessary step might be filtering. Filtering
might be applied for dimensional reduction purposes, but might also provide more efficient
downstream analyses of the data. For example among tens of thousands of probes in
microarray, not all of them are expected to be expressed at a biologically meaningful level.
Among probes that are expressed at a biologically meaningful level, only some of them are
expected to be differentially expressed between experimental conditions. This is a difficult
issue to deal with since these probes that are expressed at very low level will only add noise
and can even introduce bias. In the end, they can severely harm the sensitivity to detect
truly differential expressed probes. When we can identify them beforehand, we can improve
the situation and expect to increase the sensitivity in detecting differentially expressed
genes.

Currently, there is no general guidelines on how to perform this filtering process. One
thing that the scientists generally agree is that the filtering methods to use is (microarray)
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technology-specific and sometimes experiment-specific. For oligonucleotide arrays, Calza et

al. (2007) proposed a filtering method on prove-level data. They develop a robust linear
model on the probes and identify problematic probes from their array-to-array variation.
They demonstrate that the filtering method increases the sensitivity to detect differentially
expressed probesets.

Finally as also mentionded by M and B in section 6 reseachers often wish to integrate
multiple omics datasets in one model since measurements from different platforms contain
different related biological information. The statistical challenge is to deal with the differ-
ent size, structure, sparsity, scale and measurement error of omics datasets. Within our
consortium we have considered various approaches. With regard to prediction stacking of
omics datasets appears not to perform well. Models based on stacked omics sources might
perform even less well than a model based on a single omic predictor. Whether to use a
parallel or a sequential approach when combining omics datasets depends on the question as
well as on the characteristics of the omics datasets (Rodriguez-Girondo et al., 2017). There
is need to obtain more insight in the relationship between omics datasets. For this purpose,
we have considered partial least square methods (PLS) within MIMOmics. This method
identifies subspaces of the two omics datasets which are highly related. Unfortunately when
omics datasets have a substantial specific part which is often the case, PLS methods do not
provide the necessary insight. An alternative might be O2PLS, which identifies common,
dataset specific and residual subspaces (Trygg and Wold, 2003; El Bouhaddani et al., 2016).

Finding Differential Expressed Genes

Most of the paper of M and B is on preprocessing and modelling of omics data, while
especially data from microarray experiments have motivated statisticians to developed novel
testing strategies. When a scientist conducts a microarray gene expression experiment,
they expect a priori some probes to be significant in the experiment. This assumption
has some implications on the statistical inference. One of the most famous example is the
introduction of the positive false discovery rate (pFDR) by Storey (2002), which operates
under the assumption that some probes are differentially expressed, as an alternative to
the Benjamini and Hochberg’s (1995) false discovery rate (FDR), which operates under the
assumption that none of the probes are differentially expressed.

Further implication of the above assumption is in the seminal work by Efron et al. (2001)
in the empirical Bayes analysis of microarray data. The assumption allows a probabilistic
statement be derived on a test statistic, in particular the posterior probability that a probe
is differentially expressed given its test statistic. The method proposed by Efron et al.

is so important that we can attach a probilistic statement to any test statistic since the
distribution of the test statistics under the null is obtained through permutation. In this
concept the distribution of test statistics under the null distribution is not a point mass at
zero, but a distribution obtained for the dataset at hand. The posterior probability for non
differential expression can be considered as local false discovery rate (fdr), as oppose to the
Benjamini and Hochberg’s global FDR. In the latter, the control of (global) FDR applies
across different experiments, while the former controls FDR locally in the experiment at
hand.

The formulation of Efron et al. (2001) allows an extension to multi-dimensional local
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false discovery rate (Ploner et al., 2006). In the proposed method, the additional second
dimension in the calculation of local fdr is the standard error of the difference between
groups. This safeguards us from probes that appear to be significant simply because the
standard error is underestimated by chance.

When we have tens of thousands of probes in the analysis, the multiplicity problem does
not only in the context of hypothesis testing, but also in effect estimation. Gusnanto et al.

(2005) considers the estimation of log fold-changes between experimental groups as a mean
to identify differentially expressed probes. This is done by assuming that linear models’
parameters are assumed to follow a mixture of three normal distributions, corresponding to
probes that are differentially expressed in both direction and non-differentially expressed.
This enables identification of differentially expressed probes at the same time as the effect
estimation. M and B (p 46) advocate to use functional regression. To detect differential
expressed regions these functions can be regression on outcomes as case-control status. To
deal with the high dimensionality M and B developed Bayesian methods.

Protein Bioinformatics

One of the unsolved main problems in bioinformatics which is ignored by M and B is the
problem of protein structure (folding) prediction. Given a sequence of amino acids, are we
able to identify the three-dimensional structure of the protein? The problem arises from
the fact that it can take a long time and is very expensive to determine a three-dimensional
structure of a single protein using e.g. X-ray crystallography.

Many of methods proposed in the protein structure prediction are using deterministic
physical principles from scratch. In particular, it involves global minimisation of an energy
function (Dill et al., 2007). Other proposed methods works with previously solved structures
or ’template’ (Floudas et al., 2006). The latter approach is based on the fact that the number
of protein structure motif is limited and far less than the number of known proteins.

The contribution of statistics in this topic is by approaching the problem from proba-
bilistic point of view. The key underlying aspect is protein geometry. The main part of the
protein is its backbone which can be considered as a sequence of amino acids that occupy a
three-dimensional space. A protein structure can be represented by either a configuration of
unlabelled points (atoms) in three dimensions or by the two dihedral angles (conformational
angles). These dihedral angles are the two angles created between successive amino acids in
the backbone. From known structures, we can have a collection of dihedral angles and their
corresponding amino acids from e.g. the RSCB protein database (Berman et al., 2000).

The method proposed by Boomsma et al. (2008), for example, assumes that the dihedral
angles from selected library of protein structures to follow a bivariate von Mises distribution.
They then model the sequential dependencies along the backbone by using a dynamic
Bayesian network (a generalization of a hidden Markov model), which emits angle pairs,
amino acid labels, and secondary structure labels (whether the sequence is part of alpha
helix or beta sheet). This model samples directly structures that are compatible with a given
sequence and resample parts of a structure while maintaining consistency along the sequence
of amino acids. They claim that the model makes it possible to evaluate the likelihood of
any given structure. This method is shown to work well for local structure prediction.
A book titled Bayesian Methods in Structural Bioinformatics, edited by Hamelryck et al.
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(2012) has been published that documents further Bayesian methods for protein structure
prediction.

Final Remarks

M and B discuss two examples where spurious associations were identified due to inap-
propriate experimental design and statistical analysis. We like to emphasize that many
statisticians are not equipped to analyse this type of omics data either, which is in line with
our own experience when we started to analyze Glycomics datasets. It is also illustrated
by a paper which had to be withdrawn from Science due to inappropriate analysis of an
unmatched case control study with regard to Affymetrix and Illumina arrays. This work
is later published in Plos One (Sebastiani et al., 2012). Generally, biostatisticians working
with clinical data have no or little experience with noisy omics datasets. Many programmes
in biostatistics do not offer this topic in their curriculum. Many chemists also have no idea
how much data cleaning steps might influence downstream analysis and therefore do not
inform statisticians. Within our recently funded training program ”Innovative Methods for
Future Datasets” we will train early stage researchers in high throughput and statistical
methodology jointly. We believe that this initiative will fill the current gap. For the cur-
rent generation of statisticians it is however essential that all the work which is needed to
obtain clean data is recognized. If not, involvement of statisticians in the analyses of omics
datasets will be hampered, because statisticians would prefer to work in a clinical setting.

Another problem with omics datasets is data sharing. We had to postpone submission
of several methodological papers because the clinical paper had to be published first. This is
one of the reasons to reuse freely available datasets from repositories. Unfortunately inter-
esting clinical outcomes are often not available and a good description of the study design is
often lacking. Selection of participants might bias the results. For example the family data
available for the participants of the genetic analysis workshop 2017 (www.gaworkshop.org)
are partly multi case families, but details about the selection process were not provided.
Especially when high dimensional datasets are analysed without corrections for outcome
dependent sampling, an increase in False Discovery Rate might be expected. Some work
has been done for analysis of secondary phenotypes (omics data) in case control studies
(Monsees et al., 2009), but this work is not well known within the omics field. Recently we
extended this work to a flexible method for correction of selection of families (Tissier et al.,
2009) by joint analysis of the primary and the secondary (omics) outcomes.

To conclude, we agree with the conclusion of M and B that recent developments in
biology and medicine provide great opportunities for the statistical community to play a
fundamental role in pushing the science forward, as we equip other scientist with the tools
the need to extract the valuable information they contain. The opportunity to work at
all levels of omics data analysis, from upstream to downstream, are still wide open. How-
ever, analysis closer to the upstream needs more attention from biostatisticians. This will
inevitably become critical when future development in biological and medical technologies
becomes a reality. To this end, the challenges in data cleaning need to be fully addressed
and acknowledged and the characteristics of the measured datasets as well as details of the
study design needs to be taken into account when analyzing the data. For many studies
it is our recommendation to involve multiple statisticians to cover the required clinical,
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epidemiological and bioinformatic expertise for appropriate statistical analyses of the data.
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