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Fast optical preparation, control, and read-out of single quantum dot spin
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We propose and demonstrate the sequential initialization, optical control, and read-out of a single
spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization
of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation
between the hole and charged exciton states, which is conditional on the initial hole spin state. The
spin-selective creation of the charged exciton provides a photocurrent read-out of the hole spin state.

PACS numbers: 78.67.Hc, 42.50.Hz, 71.35.Pq

The ability to sequentially initialize, control and read-
out a single spin is an essential requirement of any spin
based quantum information protocol [1]. This has not yet
been achieved for promising schemes based on the opti-
cal control of semiconductor quantum dots [2]. These
schemes seek to combine the picosecond optical gate
speeds of excitons [3, 4, 5, 6], with the potential for mil-
lisecond coherence times of quantum dot spins [7, 8, 9],
by optically manipulating the spin via the charged exci-
ton. This results in a system where the potential number
of operations before coherence loss could be extremely
high, in the range 104−9, and in a system compatible with
advanced semiconductor device technologies. A number
of important milestones have recently been reached, but
these focus on the continuous initialization of an electron
[10, 11] or hole spin [12], detection of a single quantum
dot spin [13, 14], or optical control of ensembles of 106−7

spins [15, 16].

In this letter, we demonstrate sequential triggered on-
demand preparation, optical manipulation, and picosec-
ond time-resolved detection of a single hole spin confined
to a quantum dot, thus demonstrating an experimen-
tal framework for the fast optical manipulation of single
spins. This is achieved using a single self-assembled In-
GaAs quantum dot embedded in a photodiode structure.
The hole spin is prepared by ionizing an electron-hole pair
created by resonant excitation. A second laser pulse then
drives a coherent Rabi oscillation between the hole and
positive trion states, which due to Pauli blocking is con-
ditional on the initial hole spin state, key requirements
for the optical control of a spin via the trion transition.
Due to Pauli blockade, creation of the charged exciton
provides a photocurrent read-out of the hole spin state.

First we shall describe the principle of operation. The
qubit is represented by the spin states of the heavy-hole
(J = 3

2
), where logical states 0(1), are the spin up (down)

states (mJ = ± 3
2
). Figure 1 shows an idealized quantum

dot, embedded in an n-i-Schottky diode structure. An
electric-field is applied, such that the electron tunnelling

h =1+

X
+

+

Q+

h =0-

X
+

-

I

s-

(a) Neutral exciton  (b) hole

V
I

I

V
I

V

s+

a cos( )- Q/2

a sin( /2)- Q

a+

(c) trion (d)

(inset)

(i)

(ii)

V ñêñê

ê ñê ñ

s+

s-s+

FIG. 1: Illustration of operating principle. Preparation: (a)
Resonant excitation of the 0 − X0 transition creates a spin
polarized electron-hole pair. Filled (open) arrows are elec-
tron (hole) respectively. (b)Under applied electric-field the
electron tunnels from the dot, leaving a spin-polarized hole.
Read-out: (c) A circularly polarized π-pulse creates a charged
exciton only if the hole is in the target spin state. (d) Carriers
tunnel from the dot, the creation of a charged exciton result-
ing in a change in the photocurrent proportional to the occu-
pation of the target hole spin state. Inset: Control (i) Energy-
levels of heavy-hole/charged exciton system which acts as two
decoupled 2-level atoms: h± − X+

± . (ii) Driving a Rabi ro-

tation with σ+ circular polarization addresses the h− − X+

−

transition only.

rate is much faster than the hole tunnelling rate. The
experiments use a sequence of two circularly polarized,
time-separated laser pulses, with a time-duration shorter
than the electron tunnelling time, labelled the ‘prepara-
tion’ and ‘control’ pulses. Figure 1 illustrates the steps
(a-d) involved in the preparation, and read-out of the
hole spin.

Preparation:(a) The circularly polarized preparation
pulse resonantly excites the ground-state neutral exci-
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ton transition (0−X0), driving a Rabi rotation through
an angle equal to the pulse-area of π [17]. This creates
a spin-polarized electron-hole pair with near unit proba-
bility. (b) Under the action of the applied electric-field
the electron will tunnel from the dot, resulting in a pho-
tocurrent proportional to the final exciton population of
up to one electron per pulse, which for a 76-MHz repeti-
tion rate is 12.18 pA [3, 4]. Since the electron tunnelling
rate is much faster than for the hole, the electron tunnels
from the dot leaving a spin polarized hole.

Control: (inset) To control the h−X+ transitions, the
following control scheme is used. Because the spin life-
times are long compared with the duration of the control
laser pulse, the heavy-hole/charged-exciton 4-level sys-
tem acts as two decoupled 2-level atoms, as illustrated
in fig. 1(inset). The optical selection rules are a result
of Pauli-blocking, with each hole spin-state coupling to a
single auxiliary state: |h±〉 − |X+

±〉. For a laser on reso-
nance with the h−X+ transition the control Hamiltonian
is [17]:

Ĥ =
~

2









0 Ω+ 0 0
Ω+ 0 0 0
0 0 0 Ω−

0 0 Ω− 0









where Ω± are the Rabi frequencies of the circular po-
larization components of the control laser, and the ba-
sis is |ψ〉 = (|h−〉, |X

+
−〉, |h+〉, |X

+
+ 〉). The control laser

pulse implements the unitary operation Û(Θ+,Θ−) =
exp ( i

~

∫
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where Θ± =
∫

Ω±dt are the pulse-areas of the circularly
polarized laser components. Control of the phase of the
hole spin could be achieved as follows. A σ+ polarized
control laser addresses one transition only. For an initial-
state of |ψ〉 = (a−, 0, a+, 0) ≡ (a−, a+), a σz-gate impart-
ing a relative phase-shift of π between the hole spin states
would be implemented when Θ− = 0, Θ+ = 2π:

Û → σ̂z =

(

1 0
0 −1

)

The phase-shift arising from a 2π Rabi-rotation has
been verified in four-wave mixing experiments on the neu-
tral exciton of an interface dot [6]. Further discussion of
this control scheme can be found in refs. [17, 18].

Read-out: (c-d) Creation of the charged exciton results
in a change in the photocurrent signal, and hence a read-
out proportional to the probability that the hole is in the
target spin state at that instant in time.
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FIG. 2: Photocurrent vs laser detuning. (lower) Single circu-
lar polarized π-pulse, with 0−X0 peak. (middle,upper) Two
pulse spectra, with preparation-pulse resonant with 0 − X0

transition, with short (long) time-delay. The upper trace is
offset for clarity. Note the emergence of the h − X+ line at
longer time-delays for cross-polarized excitation.

Full details of the device can be found in ref. [19],
where inversion recovery measurements on this dot con-
firm that the neutral exciton coherence is limited by elec-
tron tunnelling. Due to the electron-hole exchange inter-
action the exciton transitions are linearly polarized and
have a fine-structure splitting of h/(230 ± 10 ps). Reso-
nant excitation in step (a) with circular polarization cre-
ates a spin-polarized exciton. A combination of the fine-
structure beat, and the time for the electron to tunnel
leads to some loss of spin polarization. However, at the
reverse bias of 0.8 V used in the experiment, the electron
tunnelling rate (Γ−1

e
= 35− 40 ps) is fast compared with

the period of the fine-structure beat, minimizing any loss
of spin orientation, and is slow enough to observe weakly
damped Rabi oscillations (see later). At the same time
the slow hole tunnelling rate (Γ−1

h
∼ ns) is much faster

than the repetition rate of the laser ensuring the dot is
initially in the crystal ground-state.

Figure 2 presents one and two color photocurrent spec-
tra to show the preparation and detection of a single
hole spin. The lower trace of fig. 2 presents the case
of single pulse excitation. A single peak corresponding
to the neutral exciton transition (0 − X0) is observed,
with lineshape determined by the Gaussian pulse shape
(FWHM=0.2 meV).

In the case of two color excitation, a preparation pulse
with pulse-area π is tuned to the 0−X0 transition, to cre-
ate a neutral exciton with a probability close to one. The
photocurrent is then recorded as a function of the detun-
ing of the control-pulse, which also has a pulse-area of π.
The middle traces of fig. 2 show two-color photocurrent
spectra for a time-delay of 7 ps, much shorter than the
electron tunnelling time. For co-polarized pulses there
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is a dip at the (0 − X0) transition, since the pulse-pair
is now equivalent to a 2π-pulse. For the cross-polarized
case there is only a very weak (0 −X0) feature, but im-
portantly there is an additional peak at a detuning of
+1.32 meV, corresponding to the heavy-hole to charged
exciton transition (h − X+) [20]. As the time-delay in-
creases the electron tunnels from the dot, and the heavy-
hole population grows, as seen in the upper traces of
fig. 2. At a time-delay of 133 ps, which is much longer
than the 35-40 ps electron tunnelling time, the exciton
is completely ionized, resulting in a weak polarization
insensitive (0 − X0) peak, and a stronger polarization
sensitive h−X+ peak.

The (0−X0) and the (h−X+) features in the two pulse
spectra have the opposite selection rules. For (0 −X0),
the Coulomb interaction shifts the energy of the biexci-
ton by −2.16 meV and out-of-resonance with the spec-
trally narrow laser pulse preventing the absorption of the
cross-polarized control-pulse. In the case of the positive
trion, absorption of a co-polarized pulse is forbidden by
the Pauli exclusion principle, since it would result in two
holes of the same spin, as shown in fig. 1(inset). By
contrast cross-polarized excitation of the positive trion
results in a change in photocurrent proportional to the
occupation of the target hole spin state. The energy sep-
aration between the X0 and X+ transitions is in close
agreement with PL measurements.

From the amplitudes of the h − X+ peaks for cross
(4.2 pA) and co-polarized (0.88 pA) excitation at a time-
delay of 133 ps, we deduce that when there is a hole, there
is at least an 83% probability of the hole occupying the
desired spin state. At 133 ps, there is also a 0−X0 peak,
indicating an approximately 20% probability of the dot
occupying the crystal ground-state, implying that no hole
of either spin has been prepared, possibly due to radiative
recombination of the neutral exciton. This demonstrates
steps a-d in fig. 1, showing preparation, and detection of
a single spin.

Figure 3(a) presents time-resolved measurements from
which the heavy-hole population can be deduced. The
preparation-pulse creates a neutral exciton, whilst the
control-pulse of pulse-area π, resonant with h − X+,
probes the population of the target hole spin state. For
cross-circular excitation an exponential rise is observed
as the electron tunnels from the dot, and the heavy-
hole population increases until saturation (as illustrated
in figs. 1(b)). The hole population has an exponential
rise time of 40-ps, consistent with the electron tunnelling
time [19]. After the fast initial rise the hole population
slowly decays with a lifetime in excess of 600-ps. Due to
the electron-hole exchange interaction of the neutral ex-
citon, the hole ends up with the opposite spin about 20%
of the time, resulting in a slower rise of the co-polarized
signal [21]. This is the first time-resolved measurement
of a single quantum dot spin with sub-nanosecond time
resolution.
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FIG. 3: (a) Time-resolved measurements of heavy-hole pop-
ulation. Photocurrent vs time-delay between pre-pulse, and a
control-pulse resonant with the h−X+ transition. (b)Rabi ro-
tation of the h−X+ transition, where creation of the charged
exciton is conditional on the heavy-hole spin state. The π-
pulse provides a read-out of the hole spin state. (c) Polariza-
tion dependence (Ω−, Ω+) ≡ Ω[cos(α), sin(α)] of the h − X+

Rabi rotation. (H) Inverse period of h−X+ Rabi rotation vs
polarization angle α of the control pulse, for a σ− preparation
pulse. The line shows the | sin(α)| dependence confirming the
independence of the h± − X+

± transitions. (N) Amplitude of
Rabi rotation for σ+-polarized control-pulse, versus the po-
larization angle of the preparation pulse.

To demonstrate control of the h − X+ transition, as
depicted in fig. 1(inset), we study the Rabi rotation
of the transition. Figure 3(b) shows the photocurrent
versus pulse-area of the control pulse, at a time-delay
of 133 ps. Two pulses are incident on the sample: the
preparation-pulse, and a control pulse of variable pulse-
area resonant with the h−X+ transition. A background
photocurrent linear in power has been subtracted [3, 4].
For cross-circular excitation more than two periods of a
weakly damped Rabi oscillation are observed. For co-
circularly polarized excitation, the Rabi rotation is sup-
pressed. The results in fig. 3(b) demonstrate a Rabi
rotation of a charged exciton conditional on the initial
spin state. Previous reports of a Rabi oscillation of a
charged exciton were for uninitialized spins, in both an
ensemble of quantum dots [15], and for an excited state
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charged exciton of unknown charge [22].

To confirm that the 4-level h−X+ system behaves as
two decoupled two-level optical transitions, which are ro-
tated by Û when excited by the control laser, we studied
the polarization dependence of the h−X+ Rabi rotation.
In the first experiment a σ− preparation pulse is used
to create an initial state which is predominantly |h−〉:
|ψ〉 ≈ (1, 0, 0, 0). The Rabi rotation is then measured as
a function of the polarization of the control pulse, de-
fined as: (Ω−,Ω+) ≡ Ω[cos(α), sin(α)]. The amplitude
of the Rabi rotation is almost constant, but the inverse
period is equal to the | sin (α)| amplitude of the σ+ com-
ponent of the Rabi frequency of the control pulse, as seen
in fig. 3(c). This demonstrates that the |h∓〉 state only
interacts with σ± polarized light.

In the second experiment, the polarization of the con-
trol pulse is fixed at σ−, and the Rabi rotation is mea-
sured as a function of the polarization of the preparation
pulse. The period of the Rabi rotation is constant, but
the amplitude exhibits a sin2 (α) dependence reflecting
the occupation of the |h−〉 state, as shown in fig. 3(c).
This demonstrates that the polarization of the prepara-
tion pulse can be used to control the initial populations
of the hole spin states |h±〉, in the mixed state. The
distinct | sin (α)| and sin2 (α) dependencies of these mea-
surements, further confirm that Û is a good approxima-
tion of the action of the control pulse.

Armed with tools for the sequential initialization and
read-out of a single spin, a number of future experiments
are now possible. For example, a magnetic field in the
Voigt configuration may be used to achieve an arbitrary
phase-shift on a single spin [23]. To observe the preces-
sion of the hole spin a preparation and read-out pulse
sequence would be applied. The data presented here
strongly suggests that when a third circularly polarized
control pulse with a pulse-area of 2π is applied, an op-
eration Û(0, 2π) ≈ σ̂z will induce a relative phase-shift
of π between the hole spin states, resulting in a phase-
jump in the spin precession. The phase-shift can then be
controlled using the detuning of the laser [24].

To summarize, using a photodiode structure we
demonstrate sequential initialization, coherent optical
control, and photocurrent read-out of a single hole spin.
This work establishes an experimental platform for in-
vestigating optical control of single quantum dot spins,
which marries the ultrafast coherent control of excitons
with the long coherence times of spin based qubits.

This work was funded by EPSRC UK GR/S76076 and
the QIPIRC UK. J. B. B. O acknowledges financial sup-
port from CAPES Brazil. Following submission of this
work, Mikkelsen et al [25] reported the coherent preces-
sion of a single electron spin.
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S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz,
P. M. Petroff, and R. J. Warburton, Nature 451 441
(2008).

[13] J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz,
L. A. Coldren, and D. D. Awschalom, Science, 314 1916
(2006).

[14] M. Atature, J. Dreiser, A. Badolato, and A. Imamoglu,
Nat. Phys. 3 101 (2007).

[15] A. Greilich, R. Oulton, E. A. Zhukov, I. A. Yugova,
D. R. Yakovlev, M. Bayer, A. Shabaev, AI. L. Efros,
I. A. Merkulov, V. Stavarache, D. Reuter, and A. Wieck,
Phys. Rev. Lett. , 96, 227401 (2006).

[16] Y. Wu, E. D. Kim, X. Xu, J. Cheng, D. G. Steel,
A. S. Bracker, D. Gammon, S. E. Economou, and
L. J. Sham, Phys. Rev. Lett. 99 097402 (2007).

[17] M. A. Nielsen and I. L. Chuang Quantum computation

and Quantum information (Cambridge University Press,
Cambridge, 2000), p279, p303 and p319.

[18] A. Nazir, B. W. Lovett, S. D. Barrett, T. P. Spiller, and
G. A. D. Briggs, Phys. Rev. Lett. 93 150502 (2004).

[19] R. S. Kolodka, A. J. Ramsay, J. Skiba-Szymanska,
P. W. Fry, H. Y. Liu, A. M. Fox, and M. S. Skolnick,
Phys. Rev. B 75 193306 (2007).

[20] M. E. Ware, E. A. Stinaff, D. Gammon, M. F. Doty,
A. S. Bracker, D. Gershoni, V. L. Korenev, Ş. C. Bădescu,
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