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Abstract

Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because

of differential deflection of electrons and ions by the magnetic field in the shock front. The electron ener-

gization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both

magnetized and non-magnetized relativistic electron-ionshocks. It is proposed that the synchrotron emis-

sion from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma ray

burst afterglows.
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I. INTRODUCTION

Electron energization is usually considered as a secondaryproblem at heliospheric shocks,

where most attention is paid to ion heating and reflection. Inastrophysical shocks, however, these

energized electrons emit the observed radiation, and are frequently the only source of information

about the remote astrophysical process. Gamma ray burst (GRB) afterglow is believed to be syn-

chrotron emission from electrons accelerated in the shock that develop during the interaction of the

expanding ultra-relativistic plasma into the interstellar medium (ISM) [1]. Estimates (e.g., Ref. 2

and references therein) suggest that the required average energies of electrons reach a sizable part

of the relativistic ion energy, and that the magnetic field inthe emission region should be highly

amplified, however, the origins of the electron heating and the magnetic field amplification remain

poorly understood. In this paper we propose a single mechanism that accomplishes both, and is

driven by the preferential deflection of electrons versus ions, when the former are lighter than the

latter, by a local increase in the magnetic field.

The mechanism of electron heating in heliospheric shocks iswidely understood as follows [3]:

Electrons are decelerated more easily than ions, either by growing coherent magnetic fields in

quasi-perpendicular shocks or by small scale magnetic structures in quasi-parallel shocks. The

developing charge separation, however small it is, resultsin the build up of a cross-shock potential

which is a substantial fraction of the incident ion energy. It is this cross-shock potential which

decelerates ions when they become demagnetized in a thin transition layer of a quasi-perpendicular

shock. In quasi-parallel shocks the parallel component of the magnetic field does not effect the

ion motion along the shock normal, so that ions effectively become demagnetized just ahead of

the transition. The same cross-shock potential which decelerates ions should accelerate electrons

along the shock normal thus transferring energy from ions toelectrons. The efficiency of the

process is reduced by the electron drift in the magnetic fields, during which they lose energy by

drifting down an electric potential. The final step of the process, electron thermalization, can be

achieved by turbulent scattering following plasma instabilities.

The mechanism of the prompt electron heating in steady statemagnetized shocks is well-known

[4]: electrons become demagnetized in the shock front if theramp width is smaller than their

convective gyroradius, or when the cross-shock electrostatic field becomes sufficiently inhomo-

geneous to drag them across the magnetic field. In heliospheric shock these conditions are rarely

satisfied since shocks are rarely this narrow. Moreover, only that part of the cross-shock potential
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which cannot be eliminated by transformation into a de Hoffman-Teller frame [5] can be effec-

tively used for electron energization. However, the profiles become steeper with the increase of

the Mach number [6] so that the conditions for demagnetization may be achieved more easily. The

transition layer of quasi-perpendicular non-relativistic shocks consists of several distinct regions

[7], the steepest magnetic field increase is a ”ramp” (whose width is less than the ion inertial length

li = c/ωpi, ω2

pi = 4πnue
2/mi) and a large magnetic overshoot (whose width is of the order of the

downstream ion gyroradius). The overshoot height is found experimentally to increase with the

increase of the Mach number [8]. The ratio of the ramp width tothe ion convective gyroradius

∼ li cos θ/(Vu/Ωu) ∼ 1/M , whereθ is the angle between the shock normal and the upstream mag-

netic fieldΩu = eBu/mic is the upstream ion gyrofrequency, andM = Ωu/ωpe is the Alfvenic

Mach number. In perpendicular shocks the ramp width can be assmall asle = c/ωpe [9].

Theory of electron heating in quasi-parallel shocks has been developed s less elaborately, partly

because of the lack of coherent structure in these shocks. Observations [10] imply that the domi-

nant electron heating process is the same as in quasi-perpendicular shocks and appear to illustrate

the importance of the DC effects of the coherent forces for the physics of electron heating in

shocks.

GRB-generated forward shocks in the ISM are ultra-relativistic Γ ≥ 20. These shocks are

parameterized byσ = B2

u/4πnumic
2γu ≪ 1 (this is written in the shock frame but is invariant).

They are very high Mach number shocks, since the corresponding Mach numberM = 1/σ.

Based on numerical simulations, it is widely believed that such shocks may be formed due to

the development of Weibel instability [11] into ion currentfilaments surrounded by regions of

enhanced magnetic field. The filaments are elongated along the flow direction, with the magnetic

field nearly perpendicular to the shock normal. The magneticfield around the filaments reaches

nearly equipartition values but the magnetic filling factoris low. The width of a magnetic region is

expected to be of up to tens of electron inertial length whilethe length of the region over which the

surrounding magnetic field is high is determined by the ion scale. Although there is no gyration

in these structures high magnetic fields at small scales makethem play the role of a perpendicular

magnetized shock front in what concerns electron energization.

In this paper we suggest that differential momentum transfer to ions and electrons, typical for

steady perpendicular shock and filamentary shock as well, results in the buildup of a strong poten-

tial drop, comparable to the upstream ion energy. The electrons are demagnetized and receive a

significant fraction of the original ion kinetic energy directly from the dc electric field. The accel-
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erated electron energy is converted either into gyration energy (by the coherent magnetic field in

magnetized shocks) or random motion energy (by small scale magnetic fields in Weibel mediated

shocks) thus resulting in the collisionless heating. In both cases a region of strongly enhanced

magnetic field is developed in the shock front, where the heated electrons should efficiently emit

synchrotron radiation. We show that although the details ofthe mechanism differ in magnetized

and non-magnetized shocks, the underlying physics is very similar, and the eventual efficiency

does not depend on the magnetization. GRB afterglows may be explained, at least in part, by

radiation from these heated electrons.

In proposing a mechanism for electron heating based on charge separation we do not mean to

deny the existence of other mechanisms, e.g. decay and merging of magnetic islands, which can

operate even with equal masses of both species. However, because the Weibel shock is otherwise

required to ”wait” for a bootstrap process in which electrons are heated by magnetic field but mag-

netic field growth is limited by electron temperature [12], we suggest that in the case of realistic

mass ratios even a modest degree of charge separation can help to jump start the collisionless

shock process.

II. MAGNETIZED SHOCKS.

As will be seen below magnetized shocks are more restrictivein producing efficient electron

heating, yet the basic features of the mechanism are typicalfor non-magnetized shocks as well

(with suitable modifications). Therefore, we start our analysis with quasi-perpendicular magne-

tized shocks.

Relativistic shock propagating obliquely in ISM becomes nearly perpendicular in the shock

frame, because of the Lorentz transformation,θshock = θISM/γu ≪ 1 (hereγu ≫ 1 is the Lorentz-

factor of the shock relative to ISM or, alternatively, the Lorentz-factor of the incident plasma flow

in the shock frame). The de Hoffman-Teller frame, which has the velocityVu tan θ along the

shock front, does not exist forVu ≈ c and tan θ > 1/γu. In what follows we consider first a

quasi-stationary perpendicular magnetized shock front where the fields are given byBz = B(x),

Ex(x), andEy = const.
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A. Demagnetization conditions.

The condition for the demagnetization by inhomogeneousEx is the statement that the acceler-

ating electric field straightens the trajectory faster thanthe magnetic field bends it. The condition

can be derived in the simplest way by approximating the inhomogeneous electric field with a lin-

ear slope while ignoring the magnetic field variations in theelectron equations of motion. Then

the motion is described byv − v0, x − x0 ∝ exp(λt). Imaginaryλ (λ2 < 0) corresponds to the

particle gyration in the magnetic field (magnetic bending prevails) while andλ2 > 0 results in

the exponential acceleration across the magnetic field, that is, demagnetization [4]. Relativistic

generalization of the calculations in Ref. 4 is straightforward (see Appendix B) and gives

−γ(1 + γ2v2

y/c
2)(e/me)

dEx

dx
> Ω2

e, (1)

whereΩe = eB/mec. If (1) is satisfied, electrons are efficiently accelerated across the magnetic

field and acquire most of the cross-shock potential at the demagnetization region. The condition is

local and cannot be satisfied in the whole shock transition layer, since−dEx/dx > 0 is required.

Thus, the electrons can be demagnetized while crossing a part of the magnetic inhomogeneity, after

which they may return to be magnetized and the acquired energy is immediately converted into

their gyration energy. Alternatively, electrons become demagnetized if the inhomogeneity scale of

the magnetic field(1/B)(dB/dx) is smaller than the convective electron gyroradiuscγe/Ωe.

The above demagnetization condition is derived in a simplified assumption that the magnetic

field is constant. While this is not the case inside the shock,numerical analyses [4] have shown

remarkable agreement with application of the non-relativistic version of (1) at the upstream edge

of the ramp, and (1) should be considered an estimate.

Demagnetization is required for an electron to utilize the cross-shock potential, otherwise elec-

trons simplyE × B drift, and the energy gain due to the potential (Ex) is balanced by the energy

loss because of the motion alongEy. Once the drift is substantially suppressed a net energy gain

is achieved [4]. The energy gain is determined by the potential drop across the demagnetization

region. When magnetization is restored no further energization occurs. The acquired energy is

converted into the electron gyration energy where demagnetization disappears. Further collision-

less ”randomization” occurs through gyrophase mixing in the nonstationary and inhomogeneous

fields of the shock front, thus resulting in the collisionless heating [3]. Maxwellization is not

required for the existence of the shock.
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B. Magnetic structure and cross-shock electric field.

For the purpose of description we consider a one-dimensional and steady shock. The basic

equations of the two-fluid hydrodynamics for this shocks aregiven in Appendix A. The cross-

shock electric field can then be estimated using the momentumconservation:

∑

Txx +
B2 − E2

8π
= const, Txx = 〈pxvx〉. (2)

Here〈. . .〉 means averaging over the distribution function and the summation is over both species.

The discussion below is based on the basic picture justified by observations [6], simulations [13],

and theory [14], that the front steepening stops at the widthmuch smaller than the convective ion

gyroradius which ensures ion demagnetization inside the shock transition layer, and the assump-

tion that this basic picture applies to relativistic magnetized shocks. As a consequence, ions are

only slightly deflected within the transition layer (ramp) while almost all current necessary for the

magnetic field increase is produced by electrons, which (partially) experienceE × B drif. The

latter allows one to estimate the electron velocity asvy ∼ (c/4πnue)(dBz/dx). Before electrons

are substantially heated the magnetic force should be balanced by the electric force so that

Ex ≈ − 1

8πnu

d

dx
B2

z ,⇒ enu∆φ ≈ ∆B2/8π, (3)

where we have taken into account approximate quasineutrality and neglected the change of the ion

density. Forσ ≪ 1 even slight deceleration of ions causes strong enhancementof the magnetic

field, which results in the development of the cross-shock potential which, in turn, further decel-

erates ions. A spontaneous small enhancement of the upstream magnetic field causes exponential

development of the magnetic field increase at the typical electron length scale (see below). The

corresponding electric field given by (3).

Upon crossing this narrow region of the magnetic field increase and potential development ions

begin to gyrate. Assuming the gyrating ions to be a cold beam,it is easy to see that the momentum

flow Txx in the particles is very small where the ions have gyrated by 90 degrees and are moving

nearly perpendicular to the flow (x) direction. If the shock is to be quasi-stationary, this must

be taken up by some combination of magnetic and electron pressure. For a weakly magnetized

shock, magnetic pressure balance would imply a magnetic field far larger than that dictated by

shock jump conditions. Electron pressure would require significant cross shock potential. The two

quantities are connected by equation (3), so the argument implies both magnetic overshoot and a
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large cross-shock potential. Since the shock may be unsteady, this argument does not constitute a

rigorous proof of either, however, it shows that ion reflection is likely to cause extremely chaotic

conditions in which pressure balance without strong cross shock potential and magnetic overshoot

would seem to require implausibly fine tuning.

In order to know whether electrons are indeed demagnetized one has to know the spatial profile

of the shock. Two fluid hydrodynamics predicts [14] that a perpendicular magnetosonic wave

steepens down to the slope determined by the electron inertial lengthle. Following the general

principles of [14], we seek nonlinear wave solutions that are asymptotically homogeneous, that

is, n → n0, vx → v0, Bz → B0, vy → 0, whenx → −∞. In this caseEy = v0B0/c. In the

usual quasi-neutrality approximation charge-separationis weak throughout the wave profileδn =

(1/4πe)(dEx/dx) ≪ n. Further derivation is given in Appendix C and results in the equation
(

c2

ω2
pe

)

1

N

d

dx

γe

N

db

dx

=
(1 + σ)(b − 1) − σb(b2 − 1)/2β2

0

1 − σ(b − 1)

(4)

whereN = n/n0 = v0/vx, N = (1−σ(b−1))(1−σ(b2−1)/2β2

0
)−1 andb = B/B0. The obtained

expression is similar to those obtained previously for nonlinear stationary waves in pair plasmas

[15]. It is easy to see that the equations predicts the slope scale ofl̃e = c
√

γe/ωpe. The ratiõle/re =

(me/mi)
1/2

√
γeσ

−1/2 ≪ 1 for typical parameters of gamma-ray bursts. Therefore, electrons are

expected to be demagnetized. It has to be understood, however, that the above small scale requires

corresponding electron drift along the shock normal to ensure the current necessary to sustain the

slope. Trajectories of demagnetized electrons are straightened along the shock normal and their

drift is substantially suppressed, so that the ramp steepening does not proceed to scales much

smaller than those required by the demagnetization condition. From the expression forN and

Eq. (4) one can see that the amplitude of the magnetic compression reaches the valuesb ∼
1/
√

σ for strongly nonlinear structures in a low-σ plasma, in agreement with the estimates made

independently earlier in this paper.

To summarize, the basic points are the following: a) electrons become demagnetized if the

typical inhomogeneity scale becomes smaller than the electron convective gyroradiusc
√

γe/ωpe

or the cross-shock electric field slope is sufficiently steepto satisfy (1), whichever happens first;

b) the cross-shock electric fieldEx is related to the magnetic field as in (3), so that the potential

increases withB2; c) the magnetic field, and hence the cross shock potential, increase to high

values because magnetic pressure has to compensate the decrease of ionTxx as described by (2)
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); d) large-amplitude magnetosonic waves steepen down to the scalesc
√

γe/ωpe, as described

by (4), which follows directly from the assumptions of electron drift and quasineutrality; f) the

magnetic field in these structures increases up toB/Bu ∼ 1/
√

σ before the singularityvx = 0 is

reached; g) according to (3) the cross-shock potential is a substantial part of the incident ion energy,

and h) the estimates above show that electrons have to be demagnetized (width is less than their

convective gyroradius or (1) is satisfied). While not constituting a rigorous proof, these arguments

show the plausibility and self-consistency of the proposedscenario of electron demagnetization

by inhomogeneous cross-shock electric field and consequentheating. While the above scenario

is described in terms of a monotonic magnetic field and potential increase across the ramp, it is

likely that in real shocks the ramp itself breaks into sub-structures and the electron heating occurs

as a series of electric spikes [16]

III. NON-MAGNETIZED SHOCKS.

Non-magnetized shocks are characterized by a very weak (or zero) upstream magnetic field

so that the upstream convective gyroradii of both species exceed the system size and coherent

magnetic braking is impossible. Weibel instability [11] produces magnetic filaments ahead of the

main transition [17]. Strong electron heating appears to benecessary for Weibel mediation atσ ≤
η(Te/mic

2)3 [12] whereη is a dimensionless number less than unity. Otherwise, Weibel turbulence

is predicted to be rather small scale and weak, so that ion scattering is relatively inefficient. Small

scale magnetic filaments, where the magnetic field is alignedperpendicular to the shock normal in

tubes or sheets, scatter forward going electrons more readily than ions (as does the perpendicular

magnetic field enhancement for magnetized shocks), even if the electrons are not fully magnetized.

Any deflection reduces the speed along the shock normal, thusthe inflowing electrons are slowed

relative to the inflowing ions by the turbulent field. The structure is no longer one-dimensional and

stationary so that (A5)-(A6) are not applicable directly and (A1)-(A2) should be used. However,

assuming that electrons are scattered essentially randomly but small scale fields of the filaments,

and neglecting ion scattering, one can average the equations over the perpendicular dimensions

and time scales smaller than the ion transit time. Let us consider a single particle motion in the

filamentary structure, taking the latter as given. The equations of motion read (for any species)

d

dt
px = qEx + qx̂ · (vtr × Btr), (5)
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d

dt
ptr = qEtr + qvx(x̂ × Btr), (6)

wheretr denotes⊥ x̂. Here we assume thatEtr andBtr are small scale rapidly (in space and

time) fluctuating fields [17], whileEx contains a global coherent electric field also. Denoting by

. . . averaging over rapid fluctuations, we assume thatEtr = 0, Btr = 0, vtr = 0, but Ex 6= 0,

vx 6= 0, E2
tr 6= 0, B2

tr 6= 0, andv2
tr 6= 0. In the lowest order approximation the particle flow is

alongx and scattering can be treated perturbatively:

ptr ≈ (qEtr + qvx(x̂ × Btr))τ (7)

whereτ is a characteristic ”collision” time. Approximatingvx ≈ c, substituting (7) into (5) and

averaging over rapid fluctuations, one has

vx
d

dx
px = qEx +

q2τ

mγ
[x̂ · (Etr × Btr) − B2

tr], (8)

which is written for ions and electrons as well. Here we substituted(d/dt) → vx(d/dx).

Simulations [11] show that the generated magnetic field patterns are advected toward the shock

front at speeds intermediate between the incoming plasma and the rest-frame plasma. In this case

the electric fields are substantially weaker than the magnetic fields in the shock frame, so that the

x̂ · (Etr × Btr) term can be neglected relative to the last term which is nothing but the magnetic

braking due to filaments. We now involve the smallness ofτ expected from the Weibel instability.

The fastest growing modes have a scale length between the electron and ion inertial length [12].

This means that in considering electron scattering, which we propose as a physical origin of charge

separation, the ion scattering term which is∝ τ/mi is small relative to the electron scattering term

which is∝ τ/me. Thus, while the two terms in the right hand side of the electron equation (8)

may be comparable for electrons, the last term is neglected for ions. Therefore, the ion motion is

described by

vi,x
d

dx
pi,x = eEx (9)

and forvi,x = c (negligible scattering of relativistic ions), one has

c∆pi,x = −e∆φ, φ = −
∫

Exdx, (10)

in complete analogy with what happens to ions in a magnetizedshock ramp: ions are deceler-

ated by the potential which builds up due to charge separation caused by more efficient magnetic

braking of electrons.
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With the same approximation, the electron energy changes asfollows:

d

dt
(mec

2γe) = −eExvx − eEtr · vtr (11)

≈ −eExvx + e2
qτ

meγe
[E

2

tr − x̂ · (Etr × Btr)]. (12)

Unless the last term just happen to cancel the first term on theright hand side, the electrons acquire

energy which is of the order of the potential drope∆φ. Since this is the potential which decelerates

ions,e∆φ ∼ miγ0c
2, therefore,

∆(mec
2γe) ≈ e∆φ ∼ miγ0c

2, (13)

so that electrons acquire energy comparable to what the ionslose. Although we have not rigor-

ously proved that this cancelation is impossible, we may note that in highly turbulent nonlinear

environment the second term is likely to be a highly erratic function of space and time and it

does not seem likely that its average would cancel the first term. That the first term should be of

significant size is based on the fact that electrons are more easily scattered than the ions by the

electromagnetic turbulence and this naturally results in the systematic charge separation during

the early stages of a Weibel shock. The efficiency of energy transfer is higher than in magnetized

shocks where only about a half of the potential can be acquired by electrons. This is because the

electrons remain almost completely demagnetized throughout the whole region where ions decel-

erate. Yet the electrons do not acquire all the momentum lostby ions, because of their scattering.

Part of the momentum is transferred to the electromagnetic field. The pressure balance in this case

takes the form

∑

〈pxvx〉 +
B2

tr + E2
tr − E2

x

8π
= const (14)

Simulations [11, 17] show that filaments are convected by plasma and merge, so that both the local

and average magnetic field density increase toward the shocktransition layer. This is consistent

with (14): when approaching the transition the ion momentumdecreases, as well asE2
tr (the latter

because of the growth of the typical width of a filament), whileB2
tr should increase. Similarly to

what happens in magnetized shocks, magnetic braking of ionsis necessary to convert the energy of

the directed flow into thermal energy and decelerate the ion flow down to sub-relativistic velocity.

As a result, the magnetic field is expected to achieve locallythe equipartition values. This is also

the region where the electron scattering by the magnetic field becomes strong. Once the electrons
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and ions completely thermalize the magnetic pressure should drop to much lower magnitudes. A

transient region of a drastic local enhancement of small scale magnetic field forms.

Summarizing, all basic features found earlier in magnetized shocks (differential magnetic brak-

ing, buildup of a potential and electron acceleration alongthe shock, magnetic field increase to

equipartition values, conversion of the directed flow energy into thermal energy) are also present

in non-magnetized shocks; in the latter, the latter local inhomogeneous magnetic fields play the

role of the large scale magnetic background of the former. Respectively, the spatial scales of the

corresponding ”ramp” and ”overshoot” are different and determined by ion gyroradius in magne-

tized shocks, and by the filament merging in Weibel shocks.

IV. SYNCHROTRON EMISSION.

Having proposed that electrons acquire a substantial part of the incident ion energy due to the

cross shock potential prior to entering a region of a strong magnetic field, we can now estimate

synchrotron emission from this region. The main radiating region in magnetized shocks is the

overshoot, behind which the magnetic field drops to low values. The radiating region in non-

magnetized shocks should include the filamentary region before and behind the magnetic density

peak as well. The below estimates are valid for magnetized and non-magnetized shocks as well.

Let a shock propagate with the Lorentz factorγ0 into interstellar medium with the densitynism

and magnetic fieldBism, with σ = B2

ism/8πnismmic
2 ≪ 1. In the shock frame the upstream

density and magnetic field arenu = nismγ0, Bu = Bism. The electron energy in the overshoot

is a fraction of the incident ion energy, that is,γe = f1γ0/µ. The overshoot magnetic field is

B2

o/8π = f2numic
2γ0. The electron density in the overshoot follows the ion density which re-

mains of the same order as the upstream density,ne ∼ nu. At the lower end of the energy

spectrum,the electrons emit synchrotron emission with thecharacteristic frequency and power (in

the shock frame), respectively,ωm = (eBo/mec)γ
2

e , Pm = (4/3)σT cγ2

e(B
2

o/8π), whereσT is

the cross-section of Thomson scattering. In the observer’sframe the characteristic frequency is

ωobs = γ0ωm, and the emission from unit perpendicular area becomes(dP/dS)obs = γ2

0
PmNs,

whereNs = nero is the invariant surface density of electrons. Herero is the effective length of the

radiating region. The observed frequency and emission per unit perpendicular area are

ωobs =
(

8πe2/me

)1/2

n
1/2

ismγ4

0
f 2

1
f

1/2

2
µ−5/2, (15)
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(dP/dS)obs = 2σT mic
3f 2

1
f2γ

7

0
n2

ismµ−2ro. (16)

The largest uncertainty is inro since there is no satisfactory theory of the relativistic shock structure

(neither magnetized nor non-magnetized). In a magnetized shock the effective overshoot width is

determined by the ion gyroradius in the enhanced magnetic field, mic
2γ0/eBo, times number of

ion loops necessary for gyrophase mixing. The maximum overall length is expected to be of the

order of the ion downstream gyroradius or less, that is,ro . f3mic
2γ0/Bu, wheref3 may be

substantially smaller than unity. Respectively,(dP/dS)obs ≈ 109erg/cm2s · (n2

1
/B3)γ

7

10
f 2

1
f2f3,

where we normalized with the typical parameters for interstellar medium:n1 ≡ nism/1cm−3,

B3 ≡ Bism/3µG. For a typical gamma-ray burstγ0 = 10 − 30 several hours after the burst, and

γ10 ≡ γ0/10. In Weibel mediates shocks the overshoot width is determined by the ion inertial

length [17]. In this case the enhanced magnetic field is strongly inhomogeneous, so that the ef-

fective radiating width isro = f4(c/ωpi), wheref2 andf4 together take into account the filling

factor of about 10-15%. Simulations [17] show that in Weibelmediated shocks the peak mag-

netic density region is of the width of∼ 50(c/ωpi), but the region whereB2/8π ∼ 0.1numic
2γ0

may be by an order of magnitude larger. The effective emission region may appear even substan-

tially wider if the magnetic field decays as power law [18]. Modestly estimating for these shocks

f1 ∼ 1, f2f4 ∼ 102, one finds(dP/dS)obs ≈ 106erg/cm2s · n3/2

1
γ7

10
. For the isotropic equivalent

emitting area1034cm2 the total emitted power isP ∼ 1043erg/s(n2

1
/B3)γ

7

10
f 2

1
f 2

2
f3 in the mag-

netized case andP ∼ 1040erg/sn
3/2

1
γ7

10
for non-magnetized shocks, emitted at the frequencies

ωobs ∼ 1017s1 n
3/2

1
γ4

10
f 2

1
f

1/2

2
. In both magnetized and non-magnetized shocks the magneticfield

behind the overshoot drops down,Bd ∼ Bo

√
σ. Respectively, the radiation frequency drops by

the same factor, while the emission power drops by the factor1/σ.

This radiation from a thin region of enhanced magnetic field may be a significant fraction

of the total afterglow emission. Consider the ratio of the afterglow from the magnetic region

and from the entire downstream region. The fraction of the proper hydrodynamic time scale,

τh ∼ R/γ0c, that an electron spends in the effective overshoot region,is given byτo/τh which

is ∼ f3ru/cτh ∼ f3mic
2γ0/eBismR for the magnetized overshoot and∼ f4/ωpiτh ∼ for non-

magnetized shocks. The ratio of the magnetic energy densityin the overshoot region to the average

magnetic energy downstream is∼ 1/σ. Electron energies may remain comparable due to effective

turbulent collisions. The relative afterglow outputs fromthe overshoot region and downstream is

12



then∼ f 2

2
τo/τhσ, whereR ∼ cTobsγ

2

0
, Tobs being the observer time, so that

Povershoot

Pdownstream
∼ f 2

2
f3 · 10−4

(B/3 µG)(Tobs/105 s)σ
≫ 1 (17)

for a magnetized shock and

Povershoot

Pdownstream
∼ f 2

2
f4 · 10−8

n
1/2

1
(Tobs/105 s)σ

≫ 1 (18)

for a non-magnetized shocks. For realistically lowσ the emission power from the enhanced mag-

netic field region formally exceeds the emission power in therest of the downstream region. And

the typical frequencies are much greater as well.

The cooling energyγc is given by the conditionPm(γc)ro/c ∼ mec
2γc and therefore

γc ∼ µ/σT γ2

0
ronismf2 which corresponds to the cooling frequency in the observer’s frame

ωc ∼ ωobs(µγc/f1γ0)
2 ∼ 1018s−1(B2

3
f 2

1
/n1f2f3) for the magnetized shocks, and much higher for

demagnetized shocks, which means that radiative cooling does not affect the described processes.

V. CONCLUSIONS

We have shown above that efficient electron heating in relativistic collisionless shocks can be

generated by a cross-shock potential, developing because of the preferential deflection of electrons

by the magnetic field. The cross-shock potential, which accelerates electrons across the shock

front, is of the order of the incident ion energy, independently of whether the magnetic braking is

caused by a coherent (for magnetized shocks) or small scale (for Weibel shocks) magnetic field.

Deceleration of ions together with momentum conservation eventually lead to strong enhancement

of the magnetic field in a small region of the shock front. Thismagnetic field enhancement ensures

final thermalization of ions and electrons. Synchrotron emission from electrons from this enhanced

magnetic field region seems to be able to explain the observedafterglow emission from gamma-ray

bursts, within uncertainty of our knowledge of plasma parameters there.

At scales below the ion gyroradius, the most likely scale forWeibel turbulence, differential

scattering of ions and electrons by magnetic filaments can cause charge separation and strong

electric fields in the shock plane as well as a long the shock normal, so it may be non-trivial to

distinguish a systematic cross-shock potential from a purely stochastic electric field. Nevertheless,

we suggest that a good way to test the idea of a systematic cross shock potential is to compare

the electric field patterns for simulated pair shocks with shock simulations having a realistic ion

13



to electron mass ratio. The mechanism we suggest, which is based upon qualitatively different

scattering of electrons and ions, works only for large mass ratios. For pair shocks, on the other

hand, electrons and positrons can be separated by small scale magnetic fluctuations, but there is

no systematic charge separation along the shock normal. If the systematic, cross shock potential

drop for electron-ion shocks is comparable to the stochastic component, it would demonstrate the

effect we are proposing.
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APPENDIX A: TWO-FLUID HYDRODYNAMICS OF RELATIVISTIC SHOCK S

Basic equations of two-fluid relativistic hydrodynamics read

∂

∂t
ns +

∂

∂xi

(nsvs,i) = 0, (A1)

∂

∂t
Ts,i0 +

∂

∂xj

Ts,ij = nsqs(Ei + ǫijkvs,jBk/c), (A2)

wheres denotes the species,i, j, k = 1, 2, 3, andTi0 andTij are the components of the energy-

momentum tensor:

T0i = 〈cpi〉, (A3)

Tij = 〈vipj〉. (A4)

Here〈(. . .)〉 denotes averaging over the distribution function.

In the one-dimensional stationary case the equations reduce to

nvx = const, (A5)

∂

∂x
Tix = nq(Ei + ǫijkvs,jBk/c). (A6)
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These equations should be completed with Maxwell equation with

ρ =
∑

s

nsqs, (A7)

jk =
∑

s

nsqsvs,k (A8)

APPENDIX B: ELECTRON DEMAGNETIZATION

It is known [4] that in narrow nonrelativistic shocks electrons become demagnetized and effi-

ciently heated due to the cross-shock potential. In order tofind out whether such demagnetization

is possible in relativistic shocks we reproduce the derivation of Ref. [4] with relativistic correc-

tions. Namely, let us assume that a relativistic electron enters an inhomogeneous electric field

Ex = (dE/dx)x, while the magnetic field inhomogeneity will be neglected. It has been shown [4]

that electron demagnetization occurs when two initially close trajectories diverge exponentially.

Let us consider two close orbitsx1(t), y1(t) andx2(t), y2(t), each of which is a solution of the

equations of motion

d

dt
(mvxγ) = −eEx − evyB/c, (B1)

d

dt
(mvyγ) = −eEy + evxB/c. (B2)

The equations for the differencesδx = x2 − x1, δy = y2 − y1, δvx = v2x − v1x, δvy = v2y − v1y

can be easily obtained taking into account thatδγ = γ3(vxδvx + vyδvy):

d

dt
[γ(1 + γ2v2

x/c
2)δvx + γ3(vxvy/c

2)δvy] = − e

m

dEx

dx
δx − Ωδvy, (B3)

d

dt
[γ(1 + γ2v2

y/c
2)δvy + γ3(vxvy/c

2)δvx] = Ωδvx, (B4)

where we assumed for simplicity thatB = const. HereΩ = eB/mc andEy = const. In the

local approximation the obtained equations are linear equations with constant coefficients and

substitutionδx, δvx, δvy ∝ exp(λt) gives

[λ2γ(1 + γ2v2

x/c
2) + (e/m)(dEx/dx)]λ−1δvx = −[Ω + λγ3(vxvy/c

2)]δvy, (B5)

λγ(1 + γ2v2

y/c
2)δvy = [Ω − λγ3(vxvy/c

2)]δvx, (B6)

so that eventually

λ2γ2(1 + γ2v2/c2) = −γ(1 + γ2v2

y/c
2)(e/m)

dEx

dx
− Ω2. (B7)
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The local criterion of instability would read

− (e/m)
dEx

dx
> Ω2/γ(1 + γ2v2

y/c
2). (B8)

For electrons entering the shock without gyrationvy = 0 andvx ≈ c, so that one gets trajectory

divergence when

− e

m

dEx

dx
− Ω2

γ
> 0, (B9)

with the divergence rate of

λ = γ−3/2

[

− e

m

dEx

dx
− Ω2

γ

]1/2

. (B10)

The demagnetized electrons are accelerated by the electricfield Ex across the magnetic field up to

the point where the demagnetization condition ceases to be satisfied. At this point electrons begin

to gyrated and all acquired energy is converted into their gyration energy. Beyond this point the

only energy gain is due to the adiabatic conservation of the magnetic moment in the increasing

magnetic field.

APPENDIX C: NONLINEAR WAVES AND RELATIVISTIC SOLITON

We consider a stationary perpendicular wave,∂/∂t = 0, ∂/∂y = ∂/∂z = 0, in the framework

of the two-fluid hydrodynamics of cold relativistic electrons and protons (s = e, i for electrons

and ions respectively):

msvsx
d

dx
(γsvsx) = qs(Ex + vsyBz/c), (C1)

msvsx
d

dx
(γsvsy) = qs(Ey − vsxBz/c), (C2)

γs = (1 − v2

sx/c
2 − v2

sy/c
2)−1/2, (C3)

nsvsx = const, (C4)

Ey = const, (C5)

dBz

dx
= −4π

∑

s

qsnsvsy/c = 4πe(nevey − niviy)/c, (C6)

dEx

dx
= 4π

∑

s

qsns = 4πe(ni − ne). (C7)

It is worth mentioning that in the non-relativistic limit these equations have the solution in the

form of the magnetosonic soliton [14] with the width∼ c/ωpe, whereω2

pe = 4πne2/me and the

16



amplitude depending on the Mach number. It should be noted also that∼ c/ωpe is the dispersion

length of linear perpendicular magnetosonic waves.

Following the general principles of [14], we are seeking fornonlinear wave solutions which

are asymptotically homogeneous, that is,n → n0, vx → v0, Bz → B0, vy → 0, whenx → −∞.

In this caseEy = v0B0/c. We shall consider weakly nonlinear waves in the sense that deviations

from quasi-neutrality (charge-separation) are small throughout the wave profile

δn =
1

4πe

dEx

dx
≪ n. (C8)

This assumption will be verified a posteriori. In this casene = ni = n ⇒ vix = vex = vx, and

nvx = n0v0 = const. Within this approximation we immediately get

meγevey + miγiviy = 0, (C9)

nv0vx(meγe + miγi) +
B2

z

8π
= nv2

0
(me + mi)γ0 +

B2

0

8π
, (C10)

nv0(meγe + miγi) +
v0B0Bz

4πc2
= nv0(me + mi)γ0 +

v0B
2

0

4πc2
, (C11)

(C12)

whereγ0 = (1 − v2

0
/c2)−1/2, and further

(meγe + miγi) = (me + mi)γ0 −
B2

0

4πn0c2
(b − 1), (C13)

vx

v0

=
1 − σ(b2 − 1)/2β2

0

1 − σ(b − 1)
, (C14)

whereσ = B2

0
/4πn0(mi + me)c

2γ0, β0 = v0/c, andb = Bz/b0. It is easy to see thatvx is a

monotonically decreasing function ofb in the range1 ≤ b < 1 + 1/σ.

Using (C9) and (C6) one obtains

(meγe + miγi)viy

meγe
= − c

4πne

dBz

dx
. (C15)

In what follows we shall make the assumption that the energy content in ions is always much

higher than in electrons, that is,

miγi ≫ meγe, (C16)

so that approximately

miγiviy = −cmeγe

4πen

dBz

dx
. (C17)
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Following the path outlined in the non-relativistic analysis [14] we substitute (C17) into (C2) for

ions to obtain

− vx
d

dx

( meγe

4πe2n

) dBz

dx
= v0B0 − vxBz, (C18)

or, after normalization,
(

c2

ω2
pe

)

1

N

d

dx

γe

N

d

dx
b

=
(1 + σ)(b − 1) − σb(b2 − 1)/2β2

0

1 − σ(b − 1)

(C19)

whereN = n/n0 = v0/vx.

In the asymptotically homogeneous point one has
(

c2

ω2
pe

)

γ0

d2

dx2
ξ = (1 + σ − σ/β2

0
)ξ, (C20)

whereξ = b − 1 ≪ 1. This point is unstable whenβ2

0
> σ/(1 + σ), in which case [14] the

solution should be of a soliton type (non-periodic wave). The electron Lorentz-factorγe cannot

be represented as a function ofb, so that (C19) cannot be converted to a quasi-potential equation .

However, we can use the fact thatγe > 0 to define a new coordinatedw = Ndx/γe, so that
(

c2

ω2
pe

)

d2

dw2
b = γe

(1 + σ)(b − 1) − σb(b2 − 1)/2β2

0

1 − σ(b − 1)
. (C21)

The derived equation is valid provided that the flow does not come to a halt,vx > 0, that is,

b < bc =
√

1 + 2β2

0
/σ < 1 + 1/σ. (C22)

Whenb increases the right hand side remains positive untilb(b − 1) = 2β2

0
(1 + σ)/σ. For

σ ≪ 1 andγ0 ≫ 1 this means that the sign changes whenb =
√

2/σ ≫ 1. At this point the

denominator1− σb ≈ 1. It is well-known [15] that there are no soliton solutions for σ ≪ 1 in the

pair plasma, whereγe = γi = 1 − σ(b − 1). For a soliton solution to exist

∫ bm

1

γe
(1 + σ)(b − 1) − σb(b2 − 1)/2β2

0

1 − σ(b − 1)
db = 0 (C23)

has to be satisfied forbm < bc. Although complete analysis is impossible here it is likelythat a

soliton solution would not exist for too lowσ for the electron-ion plasma as well.

For the analysis of the solution behavior it is sufficient to know thatγ0 ≤ γe . γi(mi/me). It

is easy to estimate the typical inhomogeneity scalce asls ∼ (c/ωpe)γ
1/2

e . Forσ ≪ 1 (typical for

gamma-ray bursts) the highest achievable magnetic field amplitude would grow asbmax ∼ 1/σ1/2,
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thus ensuring strong magnetic compression. Sinceσb ≪ 1 always, the electron current can be

estimated as follows:

nevey ∼ n0ec

1 − σb2/2
, (C24)

where we assume that electrons remain relativistic: sincevx becomes sub-relativistic,vey ∼ c.

Then the typical length of the magnetic field variation is
∣

∣

∣

∣

B

(dB/dx)

∣

∣

∣

∣

∼ B0b(1 − σb2/2)

4πen0

∼ c

ωpe

(Mσ)1/2b(1 − σb2/2) (C25)

whereM = mi/me. The maximum length is achieved whenb ∼ 1/
√

σ and1−σb2/2 ∼ 1, where

l ∼ c/ωpi. For smallerb ∼ a/
√

σ, a ≪ 1, the lengthl ∼ a(c/ωpi), while for highest possible

b ∼ 1/
√

σ and1 − σb2/2 ∼ √
σ, and the length becomesl ∼ (c/ωpe)(Mσ)1/2.

It has to be understood, however, that the obtained expressions provide only an indication of the

character of the wave steepening. Indeed, strong magnetic compression and narrow width ensure

that ions behave nonadiabatically and begin to gyrate strongly in the vicinity of the magnetic field

maximum. The ion gyration makes the cold hydrodynamical approximation invalid. Thus, the

derived equation (C19) provides a satisfactory estimate ofthe wave profile only at the upstream

edge of the shock ramp [14], which nevertheless is quite sufficient for physical conclusions to be

made.

Using (C1) one can find

1

2

d

dx
[(m2

i γ
2

i + m2

eγ
2

e)v
2

x] = −e(miγi + meγe)
dϕ

dx
. (C26)

Taking into account the above approximationmeγe ≪ miγi, and the expressions (C13) and (C14),

one gets
eϕ

mic2γ0

=

∫ b

b0

(

σb

β2

0

) (

1 − σ(b2 − 1)/2β2

0

1 − σ(b − 1)

)

db. (C27)

For the above approximation the potential from the asymptotically homogeneous point to the point

whered2b/dw2 = 0 is easily evaluated aseφ ≈ 0.5mic
2γ0.
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