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Adaptive perception: learning from sensory predictions

to extract object shape with a biomimetic fingertip

Uriel Martinez-Hernandez and Tony J. Prescott

Abstract— In this work, we present an adaptive perception
method to improve the performance in accuracy and speed of a
tactile exploration task. This work extends our previous studies
on sensorimotor control strategies for active tactile perception
in robotics. First, we present the active Bayesian perception
method to actively reposition a robot to accumulate evidence
from better locations to reduce uncertainty. Second, we describe
the adaptive perception method that, based on a forward
model and a predicted information gain approach, allows to
the robot to analyse ‘what would have happened’ if a different
decision ‘would have been made’ at previous decision time.
This approach permits to adapt the active Bayesian perception
process to improve the performance in accuracy and reaction
time of an exploration task. Our methods are validated with a
contour following exploratory procedure with a touch sensor.
The results show that the adaptive perception method allows
the robot to make sensory predictions and autonomously adapt,
improving the performance of the exploration task.

I. INTRODUCTION

Robots are expected to perform not only a variety of tasks

through the interaction with the environment, but also doing

them safely and accurately [1]. Safe interaction with the

environment can be achieved using the sense of touch that,

commonly underrated, provides an important and sophisti-

cated nonverbal communication channel [2], [3]. Cognitive

capabilities for perception and learning, together with touch,

can provide intelligent systems capable to observe and adapt

their decisions and actions to improve their performance [4].

This perception-action loop offers a promising framework

for autonomous systems, however, computational methods

for its implementation are still under development.

In this work, a computational method that allows a robot

to actively perceive, make decisions and adapt based on the

observation of its actions is presented. This work extends our

previous work on active sensing for robot control [5]. First,

the Bayesian formulation for active perception and sens-

ing is described. This approach, together with a sequential

analysis method, permits to iteratively accumulate evidence

and make decisions while dealing with uncertainty from

sensor measurements [6]. It has been shown that probabilistic

approaches permit robots to perform better for a diversity of

stimuli and in the face of sensor limitation [7], [8].
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Fig. 1. Adaptive perception process that, together with an active Bayesian
formulation, allows a robot to learn the sensory predictions based on the
observation of its past actions to adapt during an exploration task.

For adaptive perception, we extend the Bayesian for-

mulation with a propose method for learning of sensory

predictions. The learning process is based on a forward

model and a modified predicted information gain (PIG)

approach [9]. First, the PIG approach gives to a robot the ca-

pability to observe and analyse ‘what would have happened’

if a different action ‘would have been made’ at previous

time for an specific task. Second, the output from this

observation is used by a forward model to learn the sensory

predictions that allows to adapt the Bayesian formulation.

Then, adaptation process is achieved by the combination of

sensory predictions with the initial prior, which is inspired

by the way in that humans combine sources of information

to adapt to make accurate decision and actions [10], [11].

A layered architecture is used to implement our Bayesian

formulation and adaptive perception method. This architec-

ture is composed of layers for sensing, perception, decision-

making, active control and adaptive perception. Layered

architectures have shown to be needed for intelligent and

autonomous robotics [12], [13]. Validation of our work is

based on a contour following exploratory procedure to extract

object shape using a biomimetic fingertip sensor. First,

real-time experiments show a better performance achieved

by active perception, over a passive approach, to extract

object shape. Second, adaptation of the Bayesian perception

process, by the use of sensory predictions, demonstrates to

be able to improve the accuracy and reaction time of the

exploration task over the non-adaptive active perception.

Overall, this work demonstrates that adaptation of the ac-

tive perception process is needed to develop robust systems,

but also to improve their cognitive capabilities to perform

better perception, learning and decision-making processes

during the interaction with the changing environment.



II. METHODS

A. Tactile sensor

For this work, we use a biomimetic fingertip sensor that

resembles a human fingertip given its rounded shape and

dimensions (Figure 2). This tactile sensory system, which

is part of the iCub humanoid, allows to perform tasks

such as perception, exploration and telepresence through the

interaction with the environment [14], [15].

This sensor is built with a capacitive technology containing

an array of twelve taxels (tactile elements) of ∼4 mm diam-

eter each. These taxels cover the inner core of the fingertip

with a flexible printed circuit board (PCB). Then, a dielectric

layer of silicone foam of ∼2 mm is placed above the PCB.

The flexible and conductive outer layer is composed of a

carbon black-silicone material, which allows deformations

of the surface of fingertip sensor, analogous to those that

occur with the human fingertip. The twelve capacitive mea-

surements read from the taxels are digitised locally using

a capacitance-to-digital converter (CDC) placed in the PCB

of the tactile sensor. These measurements obtained with a

sample rate of 50 Hz are digitised with 8 bit resolution (0–

255 values). Thus, the digital measurements are sent to a

computer through a CAN-bus to be processed by our method

for perception and control describe in Section II-D.

B. Robotic platform

An exploratory robotic platform was constructed to pro-

vide mobility to the fingertip sensor. The platform is com-

posed of two different robots: 1) a Cartesian robot arm

(YAMAHA XY-x series) with 2-DoF in the x- and y-axes,

and 2) a Mindstorms NXT Lego robot with 1-DoF. The NXT

robot is mounted on the Cartesian arm in a proper manner

to generate systematic movements in the x-, y- and z-axes.

The tactile sensor, attached to the exploratory robotic

platform, performs precise positioning movements in the x-

and y-axes with an accuracy of ∼20µm. The NXT robot

does not allow highly precise movements, but these are good

enough to perform movements along the z-axis. As result, the

biomimetic fingertip sensor is capable to perform exploratory

movements based on taps or palpating, and controlled by

tactile feedback (Figure 2). The configuration of the robotic

platform and the degrees of freedom do not allow rotations

around the z-axis of sensor. Therefore, the fingertip sensor

keeps the same orientation during all the experiments.

A tactile exploration based on taps or palpating was chosen

for two reasons. First, to reduce damage to the sensor,

otherwise, a sliding motion could deteriorate the outer layer

after repeating the experiments several times. Second, to pro-

vide an exploration through repetitive palpations, useful for

robotic system that are not able to slide their sensors. Third,

humans typically perform palpating exploratory procedures

in situations where damage may occur (e.g. on a hot or sharp

surface) or for inspection (e.g. medical diagnosis).

C. Data collection

Tactile datasets, composed of angle and position classes,

were systematically collected for validation. These datasets

(A) (B) (C)

(D) (E)
Fig. 2. Tactile sensory system and exploratory robotic platform. (A)
Flexible PCB and taxels of the iCub fingertip sensor. (B) Fingertip sensor
covered with dielectric silicon foam. (C) Dimensions of the biomimetic
sensor. (D) Robotic platform to explore in x-,y- and z-axes. (E) Fingertip
sensor mounted on the robotic platform for exploration tasks.

are used for training and testing our method with a contour

following task. The surface of a plastic object attached to a

table was used as stimulus. The data were collected with a

palpating procedure over the object along its radius; starting

from a flat surface, then passing through the edge, and

finishing on air (see Figure 3). Each tap performed by the

sensor had a duration of 2 sec, collecting a dataset of 12×100

digitised pressure measurements (sampling frequency 50 Hz

and 12 taxels). The palpating movements were performed

along an 18 mm distance with 0.2 mm steps, generating a

total of 90 taps for each edge orientation. Then, position

classes are formed by grouping 5 taps per class, thereby

obtaining a total of 18 position classes of 1 mm span each.

The data collection procedure was performed around the

plastic object at 5 deg steps, generating 72 angle classes that

cover a range of 360 deg. In total, a large dataset with 1296

classes (72 angle × 18 position classes) was formed. The

complete process was repeated two times to generate two

datasets, one for training and one for testing. Figure 4 shows

an example of the data collected at 0 deg along 18 mm from

the plastic object used as stimulus.

Fig. 3. Biomimetic fingertip sensor palpating over a plastic object used as
stimulus for data collection. Tactile data were collected around the complete
object two times, yielding a dataset for training and one for testing.
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Fig. 4. Sample of tactile data at 0 degrees. (A) Normalised pressure data
along 18 mm (90 taps). Sensor data from tactile contacts on (B) the flat
surface, (C) edge and (D) air. (E) Arrangement of taxels in the fingertip.

D. Adaptive Bayesian perception

The proposed method for adaptive perception in au-

tonomous tactile exploration is composed of two modules:

1) an active Bayesian perception approach, and 2) a forward

model for learning of sensory predictions.

1) Active Bayesian perception: Our study is based on

previous works on active perception applied to exploration,

recognition and human-robot interaction using various stim-

uli [16], [17], [18]. Bayesian approaches have also shown

their benefits, combined with other machine learning meth-

ods, for analysis of multimodal and big datasets [19].

The Bayesian perception, together with a sequential anal-

ysis method, recursively updates the posterior probabilities

from the prior probabilities and the likelihoods obtained

from a measurement model of the touch data. Here, sensor

measurements are represented by z and perceptual classes

are represented by cn ∈ C. Each class cn corresponds to

a (xl, wi) pair where xl and wi are the position and angle

respectively. The Bayesian update process is as follows:

P (cn|z1:t) =
P (zt|cn)P (cn|z1:t−1)

P (zt|z1:t−1)
, (1)

where the posterior is defined by P (cn|z1:t), the likelihood

and prior are P (zt|cn) and P (cn|z1:t−1). We assumed the

prior at time t = 0 uniformly distributed for all classes

P (cn) = P (cn|z0) = 1/N . The normaliser P (zt|z1:t−1)
ensures to have all hypotheses summing to 1. Each tap

performed by the tactile sensors provides a time series of

digitised pressure values from the K taxels (12 taxels).

The measurement model is built with a nonparametric ap-

proach based on histograms from the training datasets. These

histograms are uniformly constructed over 100 bins, and

they are used to evaluate a tactile contact zt at time t to

estimate the likelihood of a perceptual class cn ∈ C. The

measurement model is obtained as follows:

P (s|cn, k) =
h(s, k)

∑

s h(s, k)
(2)

where h(s, k) is the number of observed values in the his-

togram of taxel k. These values are normalised by
∑

s h(s, k)
to ensure proper probabilities that sum to 1. The, the like-

lihood of contact zt given a perceptual class cn is obtained

by the evaluation of Equation (3) over all taxels as follows:

logP (zt|cn) =

Ktaxels
∑

k=1

Ssamples
∑

s=1

logP (s|cn, k)

KtaxelsSsamples

. (3)

The updating process performed by Equation (1) is re-

peated until a belief threshold βdecision = [0, 0.05, . . . , 1] is

exceeded to allow the robot to make a decision as follows:

if any P (wi|z1:t) > βdecision

then wdecision = argmax
wi

P (wi|z1:t),
(4)

where wdecision is the angle perceived by the touch sensor.

Active perception is performed by the gradual repositioning

of the robot sensor, from its estimated current location xloc

to a preset target position xtarget. This permits a gradual

improvement in perception and is performed as follows:

xloc = argmax
xl

P (xl|z1:t), (5)

x← x+ π(xloc), π(xloc) = xtarget − xloc, (6)

where π(xloc) updates the value x which is the new position

for the sensor. This process permits the robot to decide

‘where to move next’ to extract better information to improve

perception. The layered architecture in Figure 5 shows the

modules that compose the active Bayesian perception process

(green colour lines), which has been validated in previous

experiments with various stimuli [5], [13], [18].

2) Adaptive perception from sensory predictions: The

adaptation of the tactile perception process is based on

sensory predictions to update and adapt the prior used for the

Bayesian perception method. A forward model is proposed

to estimate the predicted probability during an exploration

task. The forward model is defined as follows:

Ppredicted = P (xl, wi +∆|zt) (7)

where P (xl, wi+∆|zt) is the predicted probability estimated

by shifting the angle class wi of the posterior probability

using the parameter ∆. This parameter is learned during

the exploration task to adapt the perception and control of

the robot. For online learning of this parameter, we use a

Predicted Information Gain (PIG) approach [9]. This method

allows the robot to observe ‘what would have happened’ if a

certain action ‘would have been made’ from the previous

decision time. For the PIG method, we use Θ̂ to denote

the estimated observations from the Bayesian perception

process, while the set of actions and states is denoted by

a = {a1, a2, . . . , aN} and s = {s1, s2, . . . , sN} with N the

number of angle classes. This method is defined as follows:
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Fig. 5. Layered architecture that implements the active Bayesian perception and adaptive perception processes. (left) Active Bayesian perception flowchart
(green colour lines) composed of sensory, perception, decision, active and control layers. (right) Adaptive perception process (blue colour lines) composed of
the predicted information gain (PIG), the forward model and weighted combination of sources of information. The adaptive perception process is integrated
with the modules of the Bayesian perception approach to adapt, based on sensory predictions, and improve the performance of a tactile exploration task.

PIG = γ
∑

s∗

Θ̂a,s,s∗DKL(Θ̂
a,s,s∗

a,s ||Θ̂a,s) (8)

where the estimated observations for the current state s by

choosing action a are denoted by Θ̂a,s. The hypothetical

observations s∗ for each action chosen in previous state s
are represented by Θ̂a,s,s∗

a,s . The hypothetical outcomes s∗

that the perception process would have been provided by

choosing action a in state s are Θ̂a,s,s∗ . This formulation

is normalised by the parameter γ. The Kullback-Leibler Di-

vergence (DKL) operation measures the difference between

two distributions and provides the amount of information

that would have been lost for each action performed from

the previous decision time. The output from the PIG method

updates a transition matrix Γτ to obtain the most probable

value of the parameter ∆, as follows:

Γτ = ηΓτ−1PIG (9)

where the transition matrix from decision time τ and τ − 1
are Γτ and Γτ−1, while η is the normaliser parameter. The

transition matrix Γτ is updated as follows:

Γτ = η

((

τ − 1

τ

)

Γτ−1 +

(

1

τ

))

PIG (10)

The PIG value can be seen as a reward value in [0, 1],
which is recursively updated according the accuracy of ac-

tions made by the Bayesian perception approach along time.

Then, the largest probability is assigned to ∆ as follows:

∆ = argmax Γτ . (11)

The parameter ∆ is employed in Equation (7) to estimate

the predicted probability. Then, adaptation of the perception

process is obtained by the initialisation of the Bayesian

method with a weighted combination of predicted and uni-

form probabilities, as follows:

P (cn|z0) = αPpredicted + (1 − α)Pflat(cn) (12)

where the uniformly distributed prior is Pflat(cn), the pre-

dicted distribution is Ppredicted, and P (cn|z0) is the updated

prior to adapt the active Bayesian perception method. In this

study, we use α = 0.5 to assign the same weight to both

source of information, and evaluate the effects of the sensory

predictions in the active perception process during a tactile

exploration task. Learning and adapt the parameter α is an

aspect that we plan to investigate in future works. Figure 5

shows the adaptive perception process (blue colour lines)

integrated with the active Bayesian perception modules.

III. RESULTS

This section presents the results from the active Bayesian

perception and adaptive perception methods implemented

with a contour following task, and using real tactile data

from the fingertip sensor collected as shown in Section II.

A. Validation of passive and active perception

First, we validate active and passive perception with a

contour following task, using data collected from a circular-

shaped object (see Figure 3). The Bayesian perception

method was implemented with the set of decision thresholds

βdecision = [0.0, 0.05, . . . , 1] to compare their performance

for different levels of confidence. The traced contours from

the circular object are shown in Figure 6. These results

were presented in our previous work on active sensorimotor

control [5], but we show them here for the purpose of

comparison with the proposed adaptive perception method.

Figures 6A,B show that passive perception, with low

(βthreshold = 0.2) and high (βthreshold = 0.9) decision
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Fig. 6. Traced contours from passive (red circles) and active (green circles) perception processes of a circular-shaped object. (A),(B) Results from passive
perception using low (βthreshold = 0.2) and high (βthreshold = 0.9) belied thresholds. (C) Similar behaviour observed by active perception with low
(βthreshold = 0.2) decision threshold. (D) Successful extraction of object shape using active perception with high decision threshold (βthreshold = 0.9).

threshold, is not able to extract the shape of the explored

object. This is related to the inability of the sensor to move

towards better locations to improve perception. A similar

behaviour is observed with active perception and low de-

cision threshold in Figure 6C. This shows that the capability

of the sensor to actively move to improve perception is

affected by the low decision threshold, making fast but

low accurate decisions. In contrast, active perception with

high decision threshold allow the sensor to successfully

extract the object shape as shown in Figure 6D. In this

case, the sensor is able to not only intelligently move

towards better locations to improve perception, but also, it

has enough time to accumulate evidence, reduce uncertainty

and improve decision accuracy. Angle and position accuracy

results for active perception are shown by the blue colour

curves in Figures 7A,B, while decision times are shown

in Figures 7C,D. These results show the benefits of active

over passive perception for a tactile exploration task. The

performance achieved in accuracy and speed from active
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Fig. 7. Active Bayesian and adaptive perception from a contour following
exploration task. (A),(B) Angle and position accuracy show an improvement
in angle classes when the perception process is adaptive. (C),(D) Reaction
time shows a small improvement in angle classes using adaptive perception.

perception can be improved by adaptation of the Bayesian

perception process using sensory predictions. The results of

the implementation of adaptive perception with the tactile

exploration tasks are presented in the next section.

B. Validation of adaptive perception

In this section, we validate the adaptive perception method

with a contour following task using real tactile data. We also

compare the performance in accuracy and reaction time for

both active and adaptive perception processes.

For training and testing we used data collected from the

object shown in Figure 3 and the set of belief threshold

βthreshold = [0.0, 0.05, . . . , 1] to control the decision-making

process. The adaptive perception process for contour fol-

lowing is as follows: First, the Bayesian perception process

is initiated with a uniform prior for decision time τ = 0.

Second, the robot makes a decision to be actively moved

according to the perceived angle class. Third, the robot uses

the PIG approach to observe its current state and estimate

‘what would have happened’ if a different action ‘would have

been chosen’ at decision time τ − 1 Equations (8)-(10). The

outcome is employed for online learning of the parameter

∆, which is used by the forward model in Equation (7) to

obtained the sensory predictions. The goal of the sensory

predictions is to adapt the perception process based on the

observations of previous decisions made and current states.

This adaptation process updates the prior for new decision

times by the weighted combination of the uniform distribu-

tion Pflat and the sensory predictions Ppredicted. Here, the

weighting parameter α = 0.5 allows to assign the same

time (#  taps)
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weight to both information sources and observe the effects

of sensory predictions in the adaptive perception process.

The results in accuracy and reaction time from the contour

following task, using adaptive perception are presented by

the green colour curves in Figure 7. The results from

the active perception method (blue colour curves) are also

shown for comparison of performance. Plots (A) and (B)

show the smallest angle and position errors from adaptive

perception with 2.8 degrees and 1.8 mm for βthreshold = 0.5
and βthreshold = 0.99 respectively. These results show an

improvement over the 4 degrees error achieved by active

perception. In contrast, positions errors did not show an

improvement over active perception. We argue that this is

because predictions made by the forward model are for angle

classes only. Plots (C) and (D) show the results in reaction

time for angle and position classes. We observe that adaptive

perception was able to improve the reaction time for angle

classes, requiring a smaller number of samples to make

a decision. These improvements in accuracy and reaction

time were expected given that the perception process does

not need to start from zero or uniform prior knowledge.

Instead, rich information from previous decision times is

used to adapt and improve the Bayesian perception approach.

Figure 8 shows how the error achieved by the forward model

initially presents large variability, but this is improved after

some exploration and decisions made. This suggests that the

forward model is able to successfully learn the parameter ∆
after some exploration. The learning process also depends

on the confidence βthreshold used in our Bayesian perception

method for accumulation of data and decision-making.

Overall, this work has shown two main results. First,

active perception permits to a robotic fingertip to improve

its performance during a tactile exploration task. Second,

sensory predictions, learned by decisions made over time,

can be used to adapt the active perception process and

achieve a better performance in accuracy and reaction time.

IV. CONCLUSIONS

Humans make decisions and actions using multiple source

of information, which allow them to improve and adapt their

accuracy. In this work, an adaptive perception method, inte-

grated in a active Bayesian perception approach, is proposed

to improve accuracy and reaction time of an exploration task

performed with a biomimetic fingertip sensor. The adaptive

perception method employs sensory predictions learned by a

forward model and predicted information gain approach. This

approach allows to the robot to estimate ‘what would have

happened’ if a certain decision ‘would have been made’ at

previous time, and use this information to adapt the Bayesian

perception method. Our methods are validated with a contour

following exploration procedure. First, the results show that

active perception is able to achieve a better performance for

exploration task over passive perception. Second, we observe

that using sensory predictions, learned from decisions made

over time, allows to adapt the perception process of the

Bayesian method, improving the tactile exploration task in

both accuracy and reaction time.

All in all, this method that takes inspiration from the

way that humans adapt and combine information over time,

shows to be suitable to develop of autonomous robots capable

to safely interact and adapt during the exploration of the

unstructured and changing environment.

REFERENCES

[1] P. Haazebroek, S. Van Dantzig, and B. Hommel, “A computational
model of perception and action for cognitive robotics,” Cognitive

processing, vol. 12, no. 4, p. 355, 2011.
[2] J. Dargahi and S. Najarian, “Human tactile perception as a standard for

artificial tactile sensinga review,” The International Journal of Medical

Robotics and Computer Assisted Surgery, vol. 1, no. 1, pp. 23–35,
2004.

[3] U. Martinez-Hernandez, “Tactile sensors,” in Scholarpedia of Touch.
Springer, 2016, pp. 783–796.

[4] J. L. Krichmar, “Design principles for biologically inspired cognitive
robotics,” Biologically Inspired Cognitive Architectures, vol. 1, pp.
73–81, 2012.

[5] U. Martinez-Hernandez, T. J. Dodd, M. H. Evans, T. J. Prescott, and
N. F. Lepora, “Active sensorimotor control for tactile exploration,”
Robotics and Autonomous Systems, vol. 87, pp. 15–27, 2017.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[7] U. Martinez-Hernandez, I. Mahmood, and A. A. Dehghani-Sanij,
“Probabilistic locomotion mode recognition with wearable sensors,” in
Converging Clinical and Engineering Research on Neurorehabilitation

II. Springer, 2017, pp. 1037–1042.
[8] U. Martinez-Hernandez, A. Damianou, D. Camilleri, L. W. Boor-

man, N. Lawrence, and T. J. Prescott, “An integrated probabilistic
framework for robot perception, learning and memory,” in Robotics

and Biomimetics (ROBIO), 2016 IEEE International Conference on.
IEEE, 2016, pp. 1796–1801.

[9] D. Y. Little and F. T. Sommer, “Learning in embodied
action-perception loops through exploration,” arXiv preprint

arXiv:1112.1125, 2011.
[10] R. Shadmehr, M. A. Smith, and J. W. Krakauer, “Error correction,

sensory prediction, and adaptation in motor control,” Annual review

of neuroscience, vol. 33, pp. 89–108, 2010.
[11] K. A. Hansen, S. F. Hillenbrand, and L. G. Ungerleider, “Effects of

prior knowledge on decisions made under perceptual vs. categorical
uncertainty,” Frontiers in neuroscience, vol. 6, 2012.

[12] R. A. Brooks, Cambrian intelligence: The early history of the new AI.
Mit Press Cambridge, MA, 1999, vol. 44.

[13] R. Brooks, “A robust layered control system for a mobile robot,” IEEE

journal on robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.
[14] A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, and

G. Metta, “Methods and technologies for the implementation of large-
scale robot tactile sensors,” Robotics, IEEE Transactions on, vol. 27,
no. 3, pp. 389 –400, 2011.

[15] U. Martinez-Hernandez, L. W. Boorman, and T. J. Prescott, “Multisen-
sory wearable interface for immersion and telepresence in robotics,”
IEEE Sensors Journal, vol. 17, no. 8, pp. 2534–2541, 2017.

[16] U. Martinez-Hernandez, A. Rubio-Solis, and T. J. Prescott, “Bayesian
perception of touch for control of robot emotion,” in Neural Networks

(IJCNN), 2016 International Joint Conference on. IEEE, 2016, pp.
4927–4933.

[17] U. Martinez-Hernandez, N. F. Lepora, and T. J. Prescott, “Active haptic
shape recognition by intrinsic motivation with a robot hand,” in World

Haptics Conference (WHC), 2015 IEEE. IEEE, 2015, pp. 299–304.
[18] U. Martinez-Hernandez, T. Dodd, T. J. Prescott, and N. F. Lepora,

“Active bayesian perception for angle and position discrimination with
a biomimetic fingertip,” in Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 5968–
5973.

[19] A. Rubio-Solis and G. Panoutsos, “Fuzzy uncertainty assessment in rbf
neural networks using neutrosophic sets for multiclass classification,”
in Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference

on. IEEE, 2014, pp. 1591–1598.


