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Abstract: The aim of this study was to develop a preclinical

in vitro method to predict the occurrence and severity of

edge loading condition associated with the dynamic separation

of the centres of the head and cup (in the absence of impinge-

ment) for variations in surgical positioning of the cup. Specifi-

cally, this study investigated the effect of both the variations in

the medial–lateral translational mismatch between the centres

of the femoral head and acetabular cup and the variations in

the cup inclination angles on the occurrence and magnitude of

the dynamic separation, the severity of edge loading, and the

wear rate of ceramic-on-ceramic hip replacement bearings in a

multi-station hip joint simulator during a walking gait cycle. An

increased mismatch between the centres of rotation of the fem-

oral head and acetabular cup resulted in an increased level of

dynamic separation and an increase in the severity of edge

loading condition which led to increased wear rate in ceramic-

on-ceramic bearings. Additionally for a given translational

mismatch, an increase in the cup inclination angle gave rise to

increased dynamic separation, worst edge loading conditions,

and increased wear. To reduce the occurrence and severity of

edge loading, the relative positions (the mismatch) of the

centres of rotation of the head and the cup should be consid-

ered alongside the rotational position of the acetabular cup.

This study has considered the combination of mechanical and

tribological factors for the first time in the medial–lateral axis

only, involving one rotational angle (inclination) and one trans-

lational mismatch. VC 2017 The Authors Journal of Biomedical Materi-

als Research Part B: Applied Biomaterials Published by Wiley

Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1897–

1906, 2018.
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INTRODUCTION

Hip joint replacement is considered one of the most suc-
cessful orthopaedic surgeries, however, failures still occur.
Revisions due to wear in hard-on-hard bearings and mate-
rial fatigue in hard-on-soft bearings of hip bearings have
been associated with edge loading.1–4 Edge loading can be
defined as the condition where the contact area between
the head and the cup is located on the rim chamfer of the
acetabular cup. The occurrence of edge loading is a multi-
factorial phenomenon. Such factors include implant surgical
positioning, implant design, surgical and patient factors
such as cup and stem migration after surgery, and varia-
tions in patients’ anatomy, biomechanics and soft tissue ten-
sion. While edge loading is multi-factorial, it is possible to
consider two different modes, one involving impingement
and lever out of the head from the cup and a second which

does not involve impingement, but involves separation of
the centres of the head and cup, which in the extreme may
lead to subluxation. Impingement can occur in many
patients and prostheses and can be associated with discrete
activity. Analysis has been performed which describes the
effect of rotational position of the cup, cup coverage and
head size and stem design on impingement.5–7 Edge loading,
due to separation can occur in many patients, and most
importantly is common in activities such as standard walking,
and as such may occur frequently in some patients.8–10 Sepa-
ration and edge loading without impingement is the focus of
this study. In previous tribological studies, it was reported
that edge loading due to separation can result in increased
wear in hard-on-hard bearings and increased deformation in
polyethylene bearings.11–20 In all these previous studies the
level of dynamic separation was fixed as an input, in effect

Correspondence to: M. Al-Hajjar; E-mail: M.Al-Hajjar@leeds.ac.uk
Data files associated with the results in this article are available from the University of Leeds Repository (DOI: https://doi.org/10.5518/250)48

This article was published online on 23 September 2017. An error was subsequently identified. This notice is included in the online and print

versions to indicate that both have been corrected 28 October 2017.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.

VC 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. 1897

https://doi.org/10.5518/250
http://creativecommons.org/licenses/by-nc/4.0/


edge loading was studied with a predetermined level of
severity. In this study, surgical positioning was considered as
the input and the level of dynamic separation, severity of
edge loading and wear as the outputs of the study.

The implant surgical position comprises the position of
the femoral head and stem and the acetabular cup in six
degrees of freedom. Variations in surgical positioning of the
acetabular cup, for example, can be rotational (i.e., around
the three axes of rotations) or translational along three axes
(i.e., the medial–lateral, the anterior-posterior and the
superior-inferior axes).21 In rotational positioning, a steep
cup inclination angle condition could result in the contact
area intersecting with the edge of the acetabular cup caus-
ing increased stress.22–24 The coverage angle of the acetabu-
lar cup and the direction of the load will also determine at
what level of rotational positioning that edge loading will
occur. Variations in translational positioning encompass the
position of the head centre relative to the cup centre and
joint centre. Failure to restore the centres of rotation of the
femoral head and acetabular cup will result in edge loading
due to microseparation conditions.11

Microseparation (or separation if it is greater than one
millimetre) is a dynamic condition where the centres of
rotation of the femoral head and the acetabular cup migrate
away from each other during a proportion of the gait cycle
(or any other activity). This can result in the femoral head
directly contacting the rim/chamfer of the acetabular cup
under loading. Fluoroscopy studies have provided the evi-
dence of this mechanism, of dynamic separation, which has
occurred consistently in a proportion of the patient popula-
tion,8,25,26 and can occur frequently in standard activities
such as walking. Microseparation was first described and
simulated in vitro by Nevelos et al.,11 who replicated stripe
wear features that had been observed on revised in vivo
ceramic-on-ceramic implants. In vitro studies involving posi-
tioning the acetabular cup at a steep inclination angle were
not successful in replicating the stripe wear features that
were observed on those retrievals.27 Nevelos et al.11 applied
variation in translational positioning which resulted in a
controlled dynamic microseparation (0.5 mm) during the
gait cycle, where the centre of rotation of the acetabular
cup migrated away from the centre of rotation of the femo-
ral head. Stripe wear was replicated on the femoral head
with an associated wear area at the rim of the acetabular
cup. Moreover, the size distribution of the wear debris gen-
erated under this in vitro method matched the bi-modal
wear debris size distribution collected from the peripros-
thetic tissue surrounding the revised implant with stripe
wear features.1,2,28,29

Many in vitro studies have been published studying the
wear rate and effect of important parameters when the head
and the cup are concentric such as the effect of protein con-
centration in lubricants,30–32 third body contamination,33 kine-
matic conditions,34,35 lubricant temperature,36 load profile,37

and material degradation38,39 under standard simulator condi-
tions. The effect of edge loading on the wear rates of joint
replacement bearings with different cup inclination angles has
been investigated when a defined level of microseparation
has been prescribed as an input.11–20,27,40–42 For polyethylene

acetabular cups under edge loading, the contact stress
increases at the rim of the acetabular cup which could lead to
excessive deformation and fatigue of the material.23 Simulator
studies have shown that the wear of ceramic-on-ceramic bear-
ings were not affected under a steep cup inclination angle of
658.17,27 However, introducing edge loading through dynamic
microseparation as a consequence of mismatch in the centres
of rotation of the femoral head and acetabular cup, resulted
in increased wear rates and stripe wear mechanisms seen
clinically. This increase was from below 0.1 mm3/million
cycles under standard gait to 0.13 mm3/million cycles for
BIOLOXVR delta and 1.85 mm3/million cycles for BIOLOXVR

forte.11,12,14,17 Metal-on-metal bearings, on the other hand,
were affected by variations in surgical positioning in both
rotational and translational axes. Many studies have shown
that edge loading due to steep cup inclination angle can lead
to significant increase in wear rates from below 1 mm3/mil-
lion cycles under standard condition to 1–4 mm3/million
cycles under adverse edge loading conditions with elevated
metal ion levels.19,41,43 Edge loading due to fixed level of
microseparation has caused a further increase in the wear for
metal-on-metal bearings (2–9 mm3/million cycles) to levels
seen in some cases on failed prostheses.16,19,41 Simulator
studies have also shown how variations in the acetabular
metal cup design feature such as the coverage angle could
lead to variations in their clinical outcome.16,19

These previous studies were undertaken by applying
and controlling a fixed level of dynamic separation displace-
ment of approximately 0.5 mm between the centres of the
femoral head and acetabular cup which allowed direct com-
parisons between different materials under such a fixed
adverse condition. However, they did not investigate the
effect of cup positioning on the level of dynamic separation
and severity of edge loading. Clinically, both the likelihood
and the level of separation between the centres of the femo-
ral head and acetabular cup during an activity will be
affected by a number of clinical, patient and design varia-
bles, including the level of initial surgical mismatch between
the centres of rotation of the femoral head and acetabular
cup and combinations with other factors such as the orien-
tation of the acetabular cup, soft tissue tension and the bio-
mechanics of the patient. Hence it is necessary to define the
surgical positioning as the input to the study and the level
of dynamic separation, severity of edge loading and wear
and deformation as outputs. The aim of this study was to
develop a more realistic preclinical in vitro method to pre-
dict the occurrence and severity of edge loading condition
associated with variations in surgical positioning. It was
also aimed to determine the effect of the variations in the
medial–lateral surgical translational mismatch between the
centres of the femoral head and acetabular cup and varia-
tions in the cup inclination angles on the occurrence and
magnitude of the dynamic separation, the severity of edge
loading, and the wear rate of ceramic-on-ceramic hip
replacement bearings.

MATERIALS AND METHODS

The hip replacement bearings used in this study were
36 mm diameter BIOLOXVR delta (zirconia platelets
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toughened alumina) ceramic-on-ceramic bearings (DePuy
Synthes Joint Reconstruction, Leeds, UK) where the liner
was inserted into a titanium metal shell (PinnacleVR , DePuy
Synthes Joint Reconstruction, Leeds, UK) and the head was
locked onto a stainless steel stem with a 12/14 taper (C-
StemVR AMT, DePuy Synthes Joint Reconstruction, Leeds, UK).
The ceramic-on-ceramic bearings had a nominal diametrical
clearance of 100 mm. The acetabular shell was cemented
into a metallic cup holder at the desired inclination angle
and the femoral stem was cemented vertically into a metal-
lic holder with 208 of anteversion. The Leeds II Anatomical
Physiological Hip Joint Simulator was used in this study. It
is a six-station machine capable of applying two indepen-
dently controlled axes of rotations and dynamic axial load.

This study was conducted in three stages. The first stage
was a biomechanical test aimed to determine the magnitude
of the medial–lateral dynamic separation between the femo-
ral head and the acetabular cup and the magnitude of the
load reached under edge loading as a result of variations in
component positioning in the medial–lateral axis, including
acetabular cup inclination angle (rotational positioning) and
level of mismatch between the centres of rotation of the
femoral head and acetabular cup (translational positioning)
illustrated in Figure 1. The second stage was another bio-
mechanical study to further assess the severity of edge load-
ing for specific conditions. The third stage aimed to assess
the wear of ceramic-on-ceramic bearings under different
levels of severity of edge loading due to variations in com-
ponent positions. For all stages, a standard simulator gait
cycle34 was used which comprises twin peak vertical load
(70 N swing phase load and 2.5 kN peak load), flexion–
extension (1308 to 2158) and internal–external rotation
(6108). The lubricant used was 25% new-born calf serum
(protein concentration of 15 g/L) supplemented with 0.03%
of sodium azide to retard bacterial growth. For the wear
study stage, the serum was changed every approximately
330,000 cycles.

The biomechanical testing (stage 1) was completed
using one station of the Leeds II hip joint simulator. Three
different acetabular cup inclination angles were considered.
These were equivalent to in vivo angles of 458, 558, and
658.41 The 458 cup inclination angle is currently considered
a target inclination angle during surgery whereas 558 and
658 angle are considered steep cup inclination angles. Four
different levels of translational mismatches between the
centres of rotation of the femoral head and acetabular cup
were considered, a medial displacement of the centre of
acetabular cup of 1, 2, 3, and 4 (mm) relative to the centre
of the femoral head. This resulted in 12 different combina-
tions and each condition was run for a total of 1000 cycles
and repeated three times. In order to represent translational
mismatch the femoral head and acetabular cup were set up
concentrically on the machine, then the cup was moved
medially away from the femoral head by the desired mis-
match amount (1, 2, 3, or 4 mm); this introduced a superior
translation of the acetabular cup as well as a medial transla-
tion due to the spherical shape of the acetabular cup. A
spring with a spring constant of 100 N/mm was then posi-
tioned horizontally in the medial–lateral axis to hold the
cup in position at the desired translational mismatch. This
resulted in the femoral head and acetabular cup being con-
centric when high vertical load was applied and the hori-
zontal spring was compressed by the same amount as the
initial medial–lateral mismatch in component centres used
as an input (Figure 2).

The measurements (outputs) recorded in the biome-
chanical study were the dynamic separation displacement
between the centres of the femoral head and acetabular cup
during the gait cycle; the maximum vertical load at 0.1 mm
of medial–lateral separation between the centres of rotation
of the femoral head and the acetabular cup during reloca-
tion, and the severity of edge loading condition [(1)), Figure
3]. The vertical dynamic load was measured using a 4.5 kN
load cell, the medial–lateral load measured using a 1 kN
load cell and, the medial–lateral displacement of the acetab-
ular cup was measured using a linear voltage differential
transducer, LVDT. LabView software was used to acquire the
data simultaneously from the load cell and LVDT. The dis-
placement, maximum load at the rim, and severity of edge
loading means and 95% confidence limits from the three
repeats for all 12 conditions were determined and statistical
analysis were completed using two-way ANOVA with signifi-
cance taken at p < .05.

Severity of Edge Loading5

ðt
t0
F xð Þ:dt1

ðt
t0
F yð Þ:dt (1)

where F(x) is the medial–lateral, F(y) is the axial load, and
t0–t is the duration of edge loading.

Six of the 12 conditions used in stage one were chosen
to further assess the severity of edge loading and station
variation with a larger sample number (n 5 6). The condi-
tions were the combinations of 458 and 658 acetabular cup
inclination angles and 2, 3, and 4 (mm) medial–lateral
translational mismatch.

FIGURE 1. Schematic showing the acetabular cup positioned at a par-

ticular inclination angle and translational mismatch.
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These six conditions were then used to assess the wear
performance (third stage of the study) of ceramic-on-
ceramic bearings. Each wear test ran for a total of three mil-
lion cycles and six repeats were completed for the six cho-
sen conditions. Gravimetric analyses of the femoral heads
and acetabular cups were completed before the testing com-
menced and at one million cycle intervals. The gravimetric
analysis was done using a micro balance (Mettler-Toledo
XP205, UK) which had a readability of 0.01 mg. The compo-
nents were cleaned in a consistent manner according to
internal protocols and were acclimatised in a temperature
and humidity controlled environment in the balance room

prior to weighing. The wear rate was calculated from the
difference in weights measured at every measurement point
and converted into volume by multiplying by the density of
the ceramic material (0.0044 g/mm3). The mean values for
severity of edge loading and wear rates with 95% confi-
dence limits were determined and Student’s t test was used
as a statistical analysis with significance taken at p < .05.

The femoral heads were measured geometrically at the
end of the three million cycles using a coordinate measuring
machine (CMM, Mitutoyo, Legex 322, Japan). Over 9,000 data
points were collected on the surface of each the femoral
head and the data cloud were exported to RedLux software

FIGURE 2. Schematic illustrating the state of the spring when the head and cup are separated (left) and during concentric conditions (right).

FIGURE 3. A graph showing a typical load ‘F(y)’ and dynamic separation output indicating the magnitude of dynamic separation, the duration of

edge loading and area under load curve to determine the severity of edge loading condition.
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(RedLux, Southampton, UK) to plot a three-dimensional rep-
resentations of the wear area. The location, orientation, size,
and depth of the wear scar were determined. Surface rough-
ness was measured over the wear area on the femoral heads
using a two dimensional contacting profilometry (Talysurf
PGI 800, Taylor Hobson, UK) and compared to pretest rough-
ness values. The mean Ra was determined for all femoral
heads and Student’s t test was used to determine if a signifi-
cant increase in roughness was obtained under each condi-
tion. The microstructure of the damage caused under severe
edge loading was observed using a scanning electron micro-
scope (SEM, Carl Zeiss EVO MA15, Germany).

RESULTS

The results from the biomechanical test (stage one of this
study) demonstrated that as the input translational mis-
match increased from 1 to 2 mm to 3 to 4 mm, the magni-
tude of dynamic separation, the maximum load recorded at
the rim during edge loading and the severity of edge load-
ing increased (Figures 4–6, respectively). This increase was
significant for all groups for the dynamic separation maxi-
mum load at the rim and, for the severity of edge loading
(p < .01). The levels of dynamic separation recorded were
in excess of 0.5 mm (the level fixed in the previous studies)

in half (six) of the position configurations considered in this
study. There was no significant difference in the severity of
edge loading between 1 and 2 mm and between 3 and
4 mm translational mismatch conditions. Furthermore, as
the acetabular cup inclination angle increased from 458 to
558 to 658, the magnitude of the dynamic separation dis-
placement, the maximum load recorded at the rim and the
severity of edge loading also increased (Figures 4–6, respec-
tively).There was no significant difference (p 5 .38) in the
severity of edge loading between the 458 and 558 cup incli-
nation angle. However, increasing the inclination angle to
658 caused significant (p < .01) increase in severity of edge
loading.

Stage three of this study (the wear study) showed that
increasing the translational mismatch of components’ centres
of rotation from 2 to 3 to 4 (mm) resulted in an increased
wear rate of ceramic-on-ceramic bearings for both the cup
inclination angles (Figure 7), with the 658 cup inclination
angle having significantly higher wear rate than the cup incli-
nation angle condition of 458 (p 5 .02, p 5 .02, and p < .01,
respectively). The mean wear rates (695% CL) for the 2, 3,
and 4 mm translational mismatch conditions with the cup
inclination angle at 458 were 0.07 6 0.04, 0.11 6 0.02, and
0.32 6 0.04 mm3/million cycles, respectively. The mean wear

FIGURE 4. Mean magnitude of dynamic separation 695% confidence

limits (n 5 3) at different surgical positions including acetabular cup

and femoral head translational mismatch and acetabular cup inclina-

tion angles.

FIGURE 5. Mean maximum load recorded at the rim during edge

loading 695% confidence limits (n 5 3) at different surgical positions

including acetabular cup and femoral head translational mismatch

and acetabular cup inclination angles.

FIGURE 6. Mean severity of edge loading 695% confidence limits

(n 5 3) at different surgical positions including acetabular cup and

femoral head translational mismatch and acetabular cup inclination

angles.

FIGURE 7. Mean wear rate 695% confidence limits (n 5 6) of ceramic-

on-ceramic bearings against the initial medial–lateral translational

mismatch of the centres of the femoral heads and acetabular cups

under the six different conditions.
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rates for the 2, 3, and 4 mm conditions with the cup inclina-
tion angle at 658 were 0.14 6 0.05, 0.30 6 0.16, and
1.01 6 0.17 mm3/million cycles, respectively. The wear rate
was found to correlate positively (R2 5 0.98) with the sever-
ity of edge loading for the 458 and 658 cup inclination angles
(Figure 8). Large variation in the severity of edge loading
between the three repeats was obtained under the 658 cup
inclination angle and 3 mm translational mismatch condition
(Figure 6). This level of positioning appeared to lie on a
threshold at which the severity of edge loading significantly
increased.

Under all six conditions studied in the wear tests, stripe
wear, a consequence of edge loading, was observed visually
without any aid on all femoral heads with a corresponding
wear area at the rim of the acetabular cups. However, the

severity of the stripe wear was difficult to quantify without
the CMM. The orientation, location, and depth of the wear
stripe varied on the femoral heads under the different con-
ditions investigated (Figure 9). The penetration depths of
the wear stripe significantly increased as the level of
dynamic separation and the severity of edge loading
increased (p < .01, Figure 10). The combination of steep
inclination angle with large level of translational surgical
mismatch caused the femoral head to stay on the edge of
the acetabular cup longer during the gait cycle. This
resulted in a more severe edge loading condition leading to
a deeper wear area. In some instances, squeaking originat-
ing from the bearings was also heard under these severe

FIGURE 8. Mean wear rate 695% confidence limits (n 5 6) of ceramic-

on-ceramic bearings against the mean severity of edge loading 695%

confidence limits (n 5 6).

FIGURE 9. Three dimensional reconstruction of the femoral heads showing the location, orientation and depth of the stripe wear formed on

each of the ceramic femoral heads under the different testing conditions of 2, 3, and 4 mm of translational mismatch in the centres of the femoral

head and acetabular cup and two inclination angles of 458 and 658 (n 5 6).

FIGURE 10. The mean penetration depth 695% confidence limits

(n 5 6) of the wear stripe on all femoral heads under the different

testing conditions of 2, 3, and 4 mm of translational mismatch in the

centres of the femoral head and acetabular cup and two inclination

angles of 458 and 658.
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conditions. This observation was more prevalent and persis-
tent under the 658 cup inclination angle with 4 mm transla-
tional mismatch of the components centres of rotation.
Under all edge loading conditions, the mean surface rough-
ness Ra, over the wear stripe significantly increased (Table I,
p < .01) and SEM images showed grain removal at the sur-
face (Figure 11).

DISCUSSION

Stripe wear on retrieved ceramic femoral heads was reported
by Nevelos et al.1 This wear mechanism was not replicated
in vitro when hip bearings were tested under the standard
simulator condition where the centres of rotation of the fem-
oral head and acetabular cup were concentric. Steep cup
inclination angle conditions did not cause the formation of
stripe wear on the femoral head.27 Nevelos et al.11 modified
their simulator protocol to apply a mismatch between the
centre of rotation of the femoral head and the acetabular cup
causing sliding motion between the femoral head and acetab-
ular cup in the medial–lateral axis, a methodology termed
“microseparation”. Under this methodology, the acetabular

cup moved medially and superiorly relative to the femoral
head during the swing phase of the gait cycle without losing
contact causing edge loading at heel strike. Nevelos et al.11

and subsequent studies investigating the effect of edge
loading due to microseparation conditions on the wear of dif-
ferent bearing combinations used a fixed level of microsepa-
ration of approximately 500 mm in the medial–lateral axis.
This methodology, although yielding useful data, has the limi-
tation that it only determined the effect of a predetermined
level of (microseparation) edge loading on the wear. It did
not provide information on the likelihood or the magnitude
of its occurrence associated with variations in position or
design. In this study however, the input to the experimental
setup was the surgical mismatch between the centres of rota-
tion of the femoral head and acetabular cup in the medial–
lateral axis and the rotational (inclination) positioning. The
outputs of the study were the dynamic microseparation as
well as the load acting on the rim and the wear. Under some
conditions, the resultant dynamic separation between the
femoral head and acetabular cup was in excess of 1 mm thus
requiring us to refer to this condition in this study as

TABLE I. Mean Roughness Ra for Unworn and Worn Ceramic Femoral Head Components Under All Conditions Tested in

Stage Three of the Study

Unworn

Medial–Lateral Translational Mismatch (mm)

2 3 4

Cup Inclination Angle (8)

45 65 45 65 45 65

Mean Ra (mm) 0.006 0.012 0.011 0.016 0.018 0.019 0.018
95% confidence limit 0.001 0.002 0.002 0.004 0.007 0.003 0.007

FIGURE 11. Scanning electron microscope image of the wear stripe on the femoral head at three million cycles of testing under 658 cup inclination

angle and 4 mm translational component mismatch.
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“separation” and not “microseparation”. It is also important
to highlight that no loss of contact between the femoral head
and acetabular cup occurred under any of the conditions
applied and the separation referred to, is the separation
between the centres of rotation of the femoral head and the
cup as the head slid over the rim of the acetabular cup.
There is no precise clinical data relating the effect of the sur-
gical offset on the medial–lateral force during the swing
phase load. Indeed, the magnitude of the medial–lateral force
during the swing phase when the bearing is concentric is
subject to considerable variation and uncertainty. A 100 N/
mm spring was chosen to compare with previous studies,11

where wear and damage had been compared to retrievals in
ceramic-on-ceramic bearings.

Under this newly developed simulation method, the
occurrence and severity of edge loading can be determined
under a wide range of clinically relevant conditions (surgical
positions) and each condition can be investigated in isola-
tion or in combination with other factors. These factors can
be the orientation of the cup (inclination, version, and tilt),
the mismatch between the centres of rotation of the cup
and head in medial–lateral, anterior–posterior, and supe-
rior–inferior directions, the variations in soft tissue tension,
the different kinetics and kinematics of the patients and
implant designs. However, in the current study, only the var-
iations in inclination angle and mismatch between the
centres of rotation of the femoral head and acetabular cup
in the medial–lateral axis were considered.

The level of mismatch between the centre of rotation of
the femoral head and acetabular cup increases the severity
of edge loading and this increase is indicated by the level of
dynamic separation, time the head spent on the rim during
the gait cycle and also the load reached while the head was
still on the rim of the acetabular cup. Higher levels of
dynamic separation resulted in higher loads at the rim. This
will lead to higher stress under edge loading22 conditions
contributing to material fatigue and higher wear.

Under translational mismatch, increasing the inclination
angle also resulted in significant increase in the medial–lat-
eral separation displacement and the wear of ceramic-on-
ceramic bearings highlighting the benefits of avoiding steep
cup inclination. The cup positioned at a lower inclination
angle of 458 resisted the resultant medial motion caused by
the mismatch between the centres of rotation of the head
and the cup, better than that of the cups positioned at 658

due to the additional bearing surface that the load has to
overcome as illustrated in Figure 12, resulting in lower lev-
els of dynamic separation.

All conditions in this study with a mismatch of the head
and cup centres of 2 mm or greater generated edge loading
and wear stripe on all femoral heads, and a corresponding
wear area on the rim of the cups. The position and orienta-
tion of the highest penetration in the wear stripe changed
with different rotational and translational positions. A
greater wear scar depth and stripe wear area were mea-
sured with increased mismatch in the head and cup centres
of rotations. The severity of edge loading and damage was

greater in this study than that of previous tests,18 and some
severely damaged areas were detected with the SEM.

Surface roughness measurements only indicated an
increase in roughness over the wear area under edge load-
ing. It could be possible that the areas of severe wear were
masked as it was difficult to completely evaluate the stripe
wear when taking single traces.

During gait, the hip joint forces act in all three axes, so
the direction in which the head translates with respect to
the cup will depend on the patients’ biomechanics as well
as the implant position. Different patient activities also
result in varying directions of applied load and motions,44

thus will present different scenarios of edge loading. Future
studies will also consider variations in the swing phase load
as well as the effect of different spring rates. In surgery,
translational and rotational positioning can vary in six
degrees of freedom. In this study a standard gait cycle was
applied and only the variation of two degrees of freedom
were considered. Other conditions may also lead to dynamic
separation and edge loading such as translational mismatch
in the anterior–posterior and superior–inferior axis and
both version and tilt of the cup. These will be studied in the
future as more variables are added to the experimental
system.

The translational surgical variations of the head and cup
centres that occur in vivo are very difficult to measure and
identify. However the levels of dynamic separation during
gait that have been recorded using fluoroscopy stud-
ies8,10,45,46 reported a significant patient to patient variation
which fell in the range simulated in this study.

This study only tested and compared ceramic-on-
ceramic bearings, but the same principle should apply to all
hard-on-hard bearings, thus it can provide an explanation
for the higher than expected wear rates which have resulted
in high revision rates of metal-on-metal bearings. Regarding
hard-on-soft (that is, polyethylene) hip replacement, rim

FIGURE 12. Schematic showing the acetabular cup at two inclination

angle conditions highlighting the additional bearing surface with the

cup at lower inclination angle resisting the medial load due to transla-

tional component mismatch.
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cracking has been observed in retrievals,47 thus rim loading
can occur and may lead to fatigue of the material as it was
loaded against the metal backing. This new simulation
methodology can predict the severity of edge loading and
potential consequences for fatigue life as a function of surgi-
cal position. Furthermore, polyethylene liners, unlike liners
used in hard-on-hard bearings frequently have an extended
superior lip to improve stability and resistance to disloca-
tion. This methodology can be used in the future to assess
the relative benefits of such design changes.

Evidence of edge loading is frequently observed in
retrievals. Earlier methodologies could only indicate the
effect of a fixed predetermined level of microseparation and
edge loading. This study shows clearly the occurrence and
severity of edge loading is highly dependent on the compo-
nent positioning and conditions used for testing in a hip
joint simulator. The relationships between the variation in
component positioning and severity of edge loading and
wear have been described for the first time. The approach
used in this study can now be adopted to advance and
enhance preclinical testing of hip prostheses.

CONCLUSION

An advanced physiological in vitro simulator method, that
can predict the occurrence and severity of edge loading and
the wear of different hip replacements made from different
materials and designs due to variations in component posi-
tioning, developed in this study, can be used as a preclinical
testing technique to better predict the efficacy and reliabil-
ity of new hip replacement bearings. This study demon-
strated how variations in rotational and translational
component positioning affect the occurrence and severity of
edge loading under a set of kinematic conditions in a hip
joint simulator. It provides an indication which supports the
rationale for aligning the head and cup centres and correctly
positioning the cup inclination angle during total hip joint
replacement.

Lower wear was found with the cup inclination angles
at 458 which showed greater resistance to dynamic separa-
tion as a result of surgical joint centre mismatch in the
medial–lateral axis under a set of kinematic conditions.
When a higher mismatch was employed, the level of
dynamic separation increased, and thus the wear. This study
suggests that optimal surgical position should not only con-
sider the rotational position of the acetabular cup but also
the relative positions of the centres of rotation of the femo-
ral head and the acetabular cup.
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