Infective endocarditis is a life threatening disease with 30% one year mortality that affects 3-10 per 100 000 population per year—the average general practitioner will see one case every 20 years. Infective endocarditis occurs when bacteria enter the bloodstream through the mouth, gut, or skin, and replicate within the heart to form a “vegetation,” which is usually adherent to one of the valves (fig 1, fig 2). Specific patient subgroups are at increased risk of infective endocarditis as a result of damaged cardiac endothelium, abnormal blood flow, intracardiac prosthetic material, immunosuppression, or recurrent bacteraemia (box 1). Streptococci which colonise the mouth are the causative organism in 20%-40% of patients with infective endocarditis, and poor oral hygiene is a known risk factor. Invasive dental procedures that disrupt gingival integrity allow oral bacteria to access the circulation, which can lead to infective endocarditis in at-risk patients. Strategies that prevent bacteraemia or bacterial adherence might be expected to reduce the risk of infective endocarditis.

Oral antibiotic prophylaxis has been used for more than 50 years as a preventative strategy in at-risk patients undergoing invasive dental procedures. The efficacy of antibiotic prophylaxis has been confirmed in animal models, however the clinical evidence base is weak and its use has been challenged in the last decade. Nonetheless, guidelines from the European Society of Cardiology and the American Heart Association/American College of Cardiology committees continue to advocate antibiotic prophylaxis for those at highest risk. Controversially, in 2008 the UK National Institute for Health and Care Excellence (NICE) advised complete cessation of antibiotic prophylaxis to prevent infective endocarditis. In this article, we outline the evidence for and against antibiotic prophylaxis, the controversy surrounding its use, and ongoing research in the field. We provide a framework for clinical practice in the context of uncertainty.

What is the evidence of uncertainty?
Do invasive dental procedures cause infective endocarditis?
Invasive dental procedures cause bacteraemia, which is a necessary precursor to infective endocarditis, but it is unclear if dental interventions cause infective endocarditis. In a prospective Dutch cohort of 427 cases of infective endocarditis, only 31 (11%) had undergone an invasive procedure (medical or dental) within the preceding 30 days. In a French case control study of 171 infective endocarditis cases and matched controls, there was no substantial difference in the number of dental procedures in the preceding three months (odds ratio 1.2, 95% confidence interval 0.7 to 2.1). In a similar case control study of 273 cases and matched controls, an invasive dental procedure was undertaken during the three months before infective endocarditis diagnosis in 36 cases (13.2%) and 27 controls (9.9%) (odds ratio 1.6, 95% confidence interval 0.8 to 3.4), suggesting no statistically significant risk associated with dental intervention. More recently, a retrospective analysis of 739 patients in Taiwan found no increased likelihood of exposure to dental procedures in the three month period before infective endocarditis hospitalisation, compared with a control period when infective endocarditis did not develop. These studies suggest that invasive dentistry is not the trigger for most cases of infective endocarditis, however the studies were conducted in populations already using antibiotic prophylaxis, which might mask an association. All studies were underpowered to address the question.

If invasive dental procedures are not the main trigger, an alternative explanation is that community acquired infective endocarditis might arise from low level bacteraemia occurring...
What you need to know

Patients with prosthetic heart valves, previous infective endocarditis, and some types of congenital heart disease are at highest risk of infective endocarditis.

Invasive dental procedures cause bacteraemia, which can be complicated by infective endocarditis in those at increased risk of the disease.

Antibiotic prophylaxis reduces the incidence of bacteraemia, but high level studies confirming that this reduces the incidence of infective endocarditis are lacking.

Warn high risk patients undergoing high risk dental interventions of the risk of infective endocarditis. Offer these patients antibiotic prophylaxis, and discuss with them the risks and benefits of this option.

Where patients are at moderate risk, encourage preventative measures, such as maintaining good oral hygiene and infection control, and discourage tattooing or piercing.

Box 1: Risk factors for infective endocarditis

Cardiac

- Prosthetic heart valve*
- Previous infective endocarditis*
- Congenital heart disease*
- Rheumatic heart disease
- Degenerative valve disease
- Cardiac transplant with valvulopathy
- Implantable electronic cardiac device (pacemaker or defibrillator)
- Hypertrophic cardiomyopathy

Non-cardiac

- Haemodialysis
- Diabetes mellitus
- Injected drug use
- Indwelling venous catheters
- Immunosuppression
- Poor oral hygiene

*at highest risk
† see specific subgroups in

as bacteria translocate across the relatively permeable oral mucosa in the course of everyday activities, such as chewing, flossing, or tooth brushing (especially in those with poor oral hygiene or periodontal disease). The cumulative burden of this “everyday” bacteraemia is several orders of magnitude greater than rare episodes of “surgical” bacteraemia that result from dental procedures. This could explain why many cases of infective endocarditis arise in the absence of a preceding dental intervention.

In the context of this uncertainty, a French population based cohort study published in this edition of the *The BMJ* is timely.

Among 138 876 adults with prosthetic heart valves, there was no statistically significant increase in the risk of oral streptococcal infective endocarditis in the three month period after an invasive dental procedure (risk ratio 1.25, 95% confidence interval 0.82 to 1.82, P=0.26) compared with controls exposed to non-invasive dental procedures. Findings were similar in the large subset of 21 471 patients undergoing procedures without antibiotic prophylaxis (49.9% of all invasive dental procedures; risk ratio 1.57, 95% confidence interval 1.05 to 2.63, P=0.03).

This description of a large, representative, population at risk of infective endocarditis is a valuable addition to the evidence base. The apparently discordant findings between analyses might be explained by unrecognised differences between the overall cohort and infective endocarditis cases: for example, oral hygiene and dental status were unknown on account of the limitations of coding. The case crossover analysis is likely to better control for individual patient risk factors and suggests that invasive dental procedures are associated with oral streptococcal infective endocarditis in some patients. Importantly, however, both analyses support the concept that most cases of infective endocarditis arise independently of invasive dental procedures.

If invasive dental procedures cause infective endocarditis in some patients, does antibiotic prophylaxis reduce the risk?

Antibiotic prophylaxis has been shown to reduce bacteraemia in multiple studies: a recent meta-analysis of 21 trials of antibiotic prophylaxis in patients undergoing dental intervention showed a substantial reduction in the incidence of post procedural bacteraemia (risk ratio 0.53, 95% confidence interval 0.49 to 0.57, P<0.01). It is not clear, however, whether reduction in the incidence of bacteraemia translates into reduction in the incidence of infective endocarditis.
No randomised controlled trial of antibiotic prophylaxis for prevention of infective endocarditis has ever been conducted. The evidence base evaluating antibiotic prophylaxis is therefore derived from observational data. Meta-analysis of three case-control studies showed no statistically significant association between cases and failure to use antibiotic prophylaxis (odds ratio 0.59, 95% confidence interval 0.27 to 1.30, P=0.14). However, these studies were underpowered to address this question and were at high risk of intrinsic bias, so the overall level of evidence is weak. Many of the patients within these studies were not high risk and would not be eligible for antibiotic prophylaxis according to current guidelines. The study published in this issue found that the crude incidence of infective endocarditis in the three months after an invasive dental procedure was lower in patients taking antibiotic prophylaxis (78.1 [95% confidence interval 1.6 to 154.6] v 149.5 [95% confidence interval 56.8 to 242.2] per 100 000 person years). These rates were not statistically significantly different, however, possibly because of the small number of cases in each group. In a moderate size retrospective cohort study, a protective effect of antibiotic prophylaxis was identified in high risk patients with a prosthetic heart valve undergoing invasive procedures (a proportion of which were dental). Similarly, a population based cohort study found a protective effect of antibiotic prophylaxis in individuals with cardiac conditions, using extrapolated estimates of the incidence of infective endocarditis after protected or unprotected dental procedures.

An alternative observational approach has been to examine changes in the incidence of infective endocarditis after guideline amendments to restrict the use of antibiotic prophylaxis. In 2008, NICE recommended the cessation of antibiotic prophylaxis in the UK for all patients. Subsequent follow-up showed an 88% reduction in the use of antibiotic prophylaxis and an increase in the incidence of infective endocarditis above the projected historical trend (corresponding to an additional 35 cases in England per month). This study, however, lacked microbiological data to confirm that this change was secondary to an increase in oral streptococci infective endocarditis. Similar studies in Europe and the USA have shown varying results, but in the context of continued antibiotic prophylaxis in high risk patients (table 1). In July 2016, NICE updated its guidance to indicate that antibiotic prophylaxis is not recommended “routinely” and that “this amendment should make clear that in individual cases antibiotic prophylaxis may be appropriate.”

What are the risks and benefits of antibiotic prophylaxis?

There are legitimate concerns that the risks and low cost-effectiveness of antibiotic prophylaxis might outweigh the benefits. Widespread use of antibiotic prophylaxis might contribute to antibiotic resistance, although this has not been linked specifically to single dose antibiotic prophylaxis, and the risk of anaphylaxis might exceed the protective effect of antibiotic prophylaxis. However, recent analysis of UK adverse event reporting identified only two adverse events per year and no deaths from antibiotic prophylaxis with single dose amoxicillin, and clindamycin antibiotic prophylaxis (used in penicillin allergic patients) resulted in twice as many adverse events and one death every three years. Risk benefit analysis suggests that reinstatement of antibiotic prophylaxis for those at moderate or high risk of infective endocarditis would be associated with beneficial clinical effects overall. Moreover, such a change would lead to cost savings of £5.5-£8.2 million and health gains of >2600 quality adjusted life years in England per annum.

Is ongoing research likely to provide relevant evidence?

Infective endocarditis rarely arises after a dental intervention, so conducting a randomised controlled trial is challenging. It is unclear whether even an international multicentre trial would be able to recruit sufficient numbers of patients in a pragmatic timescale. In the last decade, national funding agencies in both the USA and UK have balked at the projected cost. Since the standard of care recommended by the European Society of Cardiology and American Heart Association/American College of Cardiology guidelines is that patients at highest risk of infective endocarditis should receive antibiotic prophylaxis, it is unclear whether a placebo controlled, “no antibiotic prophylaxis” trial would receive international ethical approval. In this context, the priority is to further clarify the link between infective endocarditis and invasive dental procedures. To do this, we are conducting an observational study, the IDEA Study, to link NHS Digital hospital admissions data to the NHS Business Services Authority Dental Database and to determine whether the frequency of invasive dental procedures is higher in the three months before the diagnosis of infective endocarditis, compared with earlier three month “control” periods (https://www.journalslibrary.nihr.ac.uk/programmes/hta/155732/#/). This study will be highly powered to assess the link between invasive dentistry and infective endocarditis: in the proposed period of study between April 2009 and March 2015, there are data for 10 593 infective endocarditis admissions and 90.6 million invasive dental procedures. The study will be conducted in the English population, for whom antibiotic prophylaxis was not recommended during this period, thereby fully exposing any potential link between invasive dental procedures and infective endocarditis and the case crossover design will reduce any effect from residual confounders. Refuting a link between dental interventions and infective endocarditis would logically support a move away from antibiotic prophylaxis as a preventative strategy. Conversely, confirmation of the link would provide further justification for a randomised trial.

What should we do in light of the uncertainty?

The first step is to risk stratify the patient (fig 3). Consistent with European Society of Cardiology and American Heart Association/American College of Cardiology guidelines, we advocate that antibiotic prophylaxis is only considered for high risk patients: those with prosthetic valves, previous infective endocarditis, or certain types of congenital heart disease. We also suggest dental risk stratification: high risk procedures are those in which there is manipulation of the gingival or periapical region of the teeth (fig 3). If both the patient and dental procedure are high risk, it is reasonable to offer the option of antibiotic prophylaxis. When offering antibiotic prophylaxis,

- outline what is known about the potential risks and benefits
- explain that the evidence base is weak
- reassure the patient that the overall risk of infective endocarditis after a dental intervention is extremely low (even in those at high risk).

For patients who choose antibiotic prophylaxis, we advise single dose amoxicillin 3 g given orally 60 minutes before the procedure, or clindamycin 600 mg in those who are allergic to penicillin.
Educate patients at risk (including those with native valve disease or a bicuspid aortic valve, who are at moderate risk) of the importance of disease prevention. Advise patients on:

- good oral hygiene with at least yearly dental review
- injection control including disinfecition of cutaneous wounds, curative antibiotics for any focus of bacterial infection
- discourage tattooing or piercing

- the symptoms of infective endocarditis for patients at risk

(see supplementary file: Patient information leaflet on infective endocarditis).

Early diagnosis of infective endocarditis can be life saving but it requires a high index of suspicion among dentists, general practitioners, and hospital doctors.

Conflicts of interest

BP does expert medicoegal work that sometimes involves discussions regarding the relationship to dental procedures and the need for antibiotic prophylaxis. BP has received payment for lectures on TAVI valves and has advised AstraZeneca on pharmaceuticals not related to endocarditis or valve disease. BP has an unrestricted educational grant to attend conferences from Edwards Lifesciences. MD has advised St Jude Medical on new heart failure and myocardial infarction. MD also has had a relationship with Pfizer-Bristol Myers Squibb, Novartis for studies on heart failure and myocardial infarction. MD has advised St Jude Medical on new heart failure practitioners, and hospital doctors.

Provenance and peer review: Commissioned; externally peer reviewed.

The ongoing research mentioned in this paper is independent research funded by the National Institute for Health Research (Health Technology Assessment, 15/57/32 – The Invasive Dentistry-Endocarditis Association Study: The IDEA Study). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research, or the Department of Health.
Recommendations for further research

A properly powered randomised controlled trial of antibiotic prophylaxis in dental procedures would resolve the current controversy over its efficacy in reducing the risk of developing infective endocarditis. A registry of all infective endocarditis cases and associated microbiology would also greatly further our knowledge. The IDEA study mentioned above will hopefully determine if there really is a link between invasive dental procedures and infective endocarditis. Since the majority of endocarditis cases caused by oral bacteria appear to result from daily activities and poor oral hygiene rather than invasive dental procedures, we also need further research to elucidate the link between poor oral hygiene, periodontal disease, and infective endocarditis and to identify other methods, besides antibiotic prophylaxis, that could prevent infective endocarditis.

How patients were involved in this article

We are very grateful for comments and suggested changes to this article from two individuals whose spouses died of infective endocarditis, which developed after dental intervention. Through the charity Heart Valve Voice (https://www.heartvalvevoice.com/) we approached patients at risk of infective endocarditis, who suggested that overall awareness of infective endocarditis is poor. Individual patients have found a lack of consensus regarding antibiotic prophylaxis and are consequently seeking unfiltered internet advice.

Search strategy

The search strategy for our systematic review addressing the efficacy of antibiotic prophylaxis before invasive dental procedures has been published in full at http://heart.bmj.com/content/early/2017/02/17/heartjnl-2015-309102.long.

In summary, using subject headings or title/abstract keywords for bacterial endocarditis, antibiotics, and prophylaxis, we searched Medline, Medline In-Process (OvidSP), Embase (OvidSP), Cochrane Central Register of Controlled Trials (Cochrane Library, Wiley), Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects (Cochrane Library, Wiley), Science Citation Index Expanded and Conference Proceedings Citation Index—Science (Web of Science Core Collection), Clinicaltrials.gov, and the WHO International Clinical Trials Registry Platform from inception up to 25 February 2016.

Education into practice

How do you identify patients at high and moderate risk of infective endocarditis? How could you make this process more robust?

Has this article given you new ideas about how to discuss antibiotic prophylaxis for invasive dental procedures with patients at risk of infective endocarditis?

Do you routinely give all high risk patients an infective endocarditis patient leaflet like that in the supplementary file attached to this article?

Are you aware of the cardinal symptoms of infective endocarditis? Do you make sure that your high risk patients are aware of how to spot these symptoms and what to do if they occur?
Table

<table>
<thead>
<tr>
<th>First author, year</th>
<th>PMID</th>
<th>Paper/abstract</th>
<th>Region, country</th>
<th>Population</th>
<th>Diagnosis</th>
<th>Study period</th>
<th>Guideline change. Level of antibiotic prophylaxis restriction</th>
<th>Increased incidence after-guideline change</th>
<th>Increase in rate of change of incidence after guideline change</th>
<th>Guideline time point identified by change point analysis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bates 2016<sup>16</sup></td>
<td>27418041</td>
<td>Paper</td>
<td>USA</td>
<td>Children ≤18 identified from Paediatric Health Information System Database (29 hospitals)</td>
<td>All cases: acute and subacute bacterial IE</td>
<td>2003-2014</td>
<td>AHA/ACC April 2007. Relative restriction</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Bikdeli 2013<sup>34</sup></td>
<td>23994421</td>
<td>Paper</td>
<td>USA</td>
<td>Adults ≥65</td>
<td>All cases: principal or secondary discharge dx of IE</td>
<td>1999-2010</td>
<td>AHA/ACC April 2007. Relative restriction</td>
<td>No</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dayer 2015<sup>25</sup></td>
<td>25467589</td>
<td>Paper</td>
<td>UK</td>
<td>All</td>
<td>All cases: primary dx acute or subacute IE</td>
<td>January 1, 2000-March 31, 2013</td>
<td>NICE March 2008. Total restriction</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DeSimone 2012<sup>23</sup></td>
<td>26141329</td>
<td>Paper</td>
<td>USA</td>
<td>Adults ≥18</td>
<td>VGS IE</td>
<td>January 1, 1999-December 31, 2013</td>
<td>AHA/ACC April 2007. Relative restriction</td>
<td>No</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Keller 2016<sup>15</sup></td>
<td>27816113</td>
<td>Paper</td>
<td>Germany</td>
<td>All patients hospitalised with acute or subacute IE</td>
<td>All cases of IE and subgroups by causative organism</td>
<td>Survey years 1991, 1999, 2008</td>
<td>ESC October 2009. Relative restriction</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mackie 2016<sup>14</sup></td>
<td>26886840</td>
<td>Paper</td>
<td>Canada (except Quebec and the Northern Territories)</td>
<td>All patients hospitalised with acute or subacute IE as main diagnosis</td>
<td>All hospitalisations with primary dx of IE</td>
<td>April 2002-March 2013</td>
<td>AHA/ACC April 2007. Relative restriction</td>
<td>Total IE increase, decrease in VGS</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pant 2015<sup>13</sup></td>
<td>25975469</td>
<td>Paper</td>
<td>USA</td>
<td>Patients in Nationwide Inpatient Sample with ICD codes for IE</td>
<td>All cases of IE and subgroups by causative organism</td>
<td>2000-2011</td>
<td>AHA/ACC April 2007. Relative restriction</td>
<td>Yes</td>
<td>Yes</td>
<td>Not performed</td>
</tr>
<tr>
<td>Salam 2014<sup>14</sup></td>
<td>NA</td>
<td>Abstract</td>
<td>Qatar</td>
<td>All patients hospitalised with IE in State of Qatar</td>
<td>All cases</td>
<td>2002-2012</td>
<td>AHA/ACC April 2007. Relative restriction</td>
<td>No</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>First author, year</th>
<th>PMID</th>
<th>Paper/abstract</th>
<th>Region, country</th>
<th>Population</th>
<th>Diagnosis</th>
<th>Study period</th>
<th>Guideline change. Level of antibiotic prophylaxis restriction</th>
<th>Increased incidence after-guideline change</th>
<th>Increase in rate of change of incidence after guideline</th>
<th>Guideline time point identified by change point analysis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>van den Brink 2016</td>
<td>Pending</td>
<td>Paper</td>
<td>Netherlands</td>
<td>All patients identified from the national healthcare insurance database</td>
<td>All cases of IE</td>
<td>2005-2011</td>
<td>ESC October 2009, Relative restriction</td>
<td>Yes, substantial increase in VGS</td>
<td>Yes</td>
<td>NA</td>
</tr>
</tbody>
</table>

*Earlier publications from same research group using same methodology. Study with longer follow-up used for analysis

AHA/ACC: American Heart Association/American College of Cardiology

ESC: European Society of Cardiology

VGS: Viridans group streptococci

ICD: International Classification of Diseases

Reproduced with permission from [18]
Figures

Fig 1 Pathogenesis of infective endocarditis

Fig 2 Infective endocarditis. Vegetation can be seen on the mitral valve (arrow)
Fig 3 Identifying patients at risk of infective endocarditis who might benefit from antibiotic prophylaxis and other preventative measures

Is this patient with a predisposing cardiac condition at high risk of infective endocarditis?

- Patients with any prosthetic valve
 - Transcatheter valves
 - Bioprosthetic valves
 - Homografts
- Patients in whom any prosthetic material was used for cardiac valve repair
- Patients with previous infective endocarditis
- Patients with congenital heart disease
 - Any type of cyanotic congenital heart disease
 - Any type of congenital heart disease repaired with prosthetic material, up to 6 months after procedure
 - Lifelong if residual shunt or valvular regurgitation

Is the dental intervention high risk?

- Involves manipulation of the gingival region of the teeth
 - Including extractions and scaling
- Involves perforation of oral mucosa
 - Excluding local anaesthetic injections
- Involves manipulation of periapical region of the teeth
 - Including root canal procedures

Offer antibiotic prophylaxis

- Offer antibiotic prophylaxis after outlining risks and benefits and background of limited high-quality evidence. See ESC guidelines (reference 10) for suggested antibiotic regimen

1. Educate regarding symptoms of infective endocarditis
2. Advise maintenance of good oral hygiene: dental follow-up twice a year in high-risk patients; yearly in others
3. Advise importance of infection control: disinfection of cutaneous wounds, curative antibiotics for any focus of bacterial infection
4. Discourage piercing/tattooing and intravenous drug use