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ABSTRACT 

Recent studies suggest that the evolutionary history of a cancer is important in forecasting clinical 

outlook. To gain insight into the clonal dynamics of multiple myeloma (MM) and its possible 

influence on patient outcome we analysed whole exome sequencing tumor data for 333 patients 

from Myeloma XI, a UK phase III trial and 434 patients from the CoMMpass study, all of which had 

received immunomodulatory therapy (IMiD). By analysing mutant allele frequency distributions in 

tumors we found that 17-20% of MM is under neutral evolutionary dynamics. These tumors are 

associated with poorer patient survival in non-intensively treated patients, consistent with 

reduced therapeutic efficacy of micro-environment modulating IMiD drugs. Our findings provide 

evidence that knowledge of the evolutionary history of MM has relevance for predicting patient 

outcome and personalising therapy.  
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INTRODUCTION 

 

Advances in the treatment of multiple myeloma (MM) in form of proteasome inhibitors and 

immunomodulatory drugs (IMiDs) have significantly improved patients’ outcome, however MM 

remains a remitting-relapsing disease in most patients.
1
 

Although rearrangements at the immunoglobulin (IGH) loci and hyperdiploidy (HRD) are key 

initiating events in MM oncogenesis, it is likely by inference from the study of other cancers, that 

the evolutionary history of MM is important in determining patient outcome.
2,3

 This is because 

prognosis in cancer is strongly associated with the development of resistant sub-clones.
4
 Recent 

studies of solid cancers have challenged the classical Darwinian model of cancer evolution based 

on a changing sub-clonal dominance.
5-7

 Observations have suggested that after malignant 

transformation, sub-clones that have distinct mutational profiles that can coexist for long periods 

of time.
8,9

 Such a model of neutral tumor evolution is consistent with only a handful of recurrent 

driver alterations identified to date, indicating that they all occurred in the primordial cancer cell 

and that subsequent clonal outgrowths are relatively rare.  

The mutant allele frequency distribution has been shown to predict the expected pattern of sub-

clonal mutations within a tumor under neutral evolutionary dynamics from a single baseline 

sample.
10

 To gain insight into the clonal evolution of MM and its impact on phenotype we 

analysed whole exome sequencing (WES) tumor data from two independent series of MM 

patients.
11,12

 We report that a high proportion of MM tumors are under neutral evolutionary 

dynamics and that these tumors are associated with a worse survival in patients receiving 

iMiDtherapy.  
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METHODS 

 

We analysed WES tumor data from: (i) 333 patients from Myeloma XI (NCT01554852, 

CRUK/09/014) an open-label randomised controlled randomised phase III trial comparing 

thalidomide against lenalidomide at induction and lenalidomide maintenance against no 

maintenance in both transplant eligible and non-eligible patients (Supplementary Methods, 

Supplementary Fig. 1) 
11,12

. Copy number changes in tumors were based on MLPA data and qRT-

PCR used to assign translocation status.
13,14

 (ii) 434 patients from the Multiple Myeloma Research 

Foundation’s CoMMpass study, which had received IMiD therapy (NCT01454297; dbGaP accession 

phs000748.v5.p4; IA9 data tranche; Supplementary Methods). Translocations status and copy 

number abnormalities from CoMMpass data were called from whole genome sequencing, exome 

and RNA sequencing (FISH-seq). Hyperdiploid cases with no detected translocation by FISH-seq, 

but classified by conventional FISH were considered as missing. 

 

Modelling tumor evolution  

The distribution of mutant allele frequencies in each MM tumor was used to detect neutral 

evolution as previously described
10

 (Supplementary Methods). Briefly, mutations were only 

included if the read depth was ≥ 10 and the number of mutant alleles was ≥3 and at least 12 

mutations matching these criteria had to be present in a sample to be included.
10

 Preliminary 

analysis showed that mosaic copy number changes, e.g. Hyperdiploidy could give rise to a false 

sub-clone status and all cases were corrected for copy number.
13-15

 By excluding public mutations 

present at mutational frequencies ≥0.3, the influence of undetermined normal CD138 cell 

contamination was controlled. Mutations at a frequencies ≤ 0.12 were also excluded, since they 

reach the limit of reliable detectability in bulk sequencing data.
10

  For each tumor sample the 

cumulative number of mutations, M(f), was tested for linearity with the inverse of the frequency 

(1/f) as predicted by M(f)=µ/β( 1/f - 1/fmax) for neutral tumor evolution. A tumor sample was 

considered to have evolved neutrally if R
2
 ≥0.98, as previously advocated.

10
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RESULTS AND DISCUSSION 

 

Evidence of neutral evolution was shown in 20% of tumors (65/333) from the Myeloma XI trial 

(Fig.1; Supplementary Fig.2 and 3). Evidence for neutral evolution was not influenced by 

sequencing depth, exome coverage or number of mutations (Supplementary Table 1). There was 

no significant association between neutral clonal evolution in tumors by age at diagnosis, sex or 

International Staging System (ISS) stage. In the CoMMpass study 17% of tumors (74/434) from 

patients treated with IMiDs showed evidence of neutral evolution.  

 

In both the Myeloma XI and CoMMpass series tumors with IGH translocations were more likely to 

show evidence of neutral evolution than hyperdiploidic tumors;  Respective median R
2
 values for 

Myeloma XI and CoMMpass tumors being 0.963 vs. 0.956 (P=0.002), and  0.957 vs. 0.947 (P=0.034) 

(Fig. 2 , Supplementary Fig. 4 and 5). 

 

In both series of patients that received non-intensive therapy, (i.e. no high-dose alkylating 

consolidation), neutral tumour evolution was associated with worse progression free survival (PFS) 

and overall survival (OS); In the Myeloma XI trial, median PFS was 15.6 as compared with 20.5 

months (Logrank P=0.019) and median OS was 27.3 compared with 49.6 months (P<0.001) for 

neutral and non-neutral tumors, respectively. In the CoMMpass study, median PFS was 18.7 as 

compared with 28.1 months (P=0.036) and median OS was 21.3 and not reached (P=0.029), 

respectively. In contrast no difference was shown for patients in receipt of intensive alkylating 

therapy based on high-dose melphalan and autologous transplantation.  

 

To address the possibility of potential co-linearity between tumor evolution status and established 

genetic risk factors in non-intensively treated patients that may have confounded outcome we 

performed a multi-variable survival analysis (Supplementary Table 2). Neutral evolution was 

shown to be prognostically independent of ISS, adverse IGH translocations, gain(1q) and TP53 

deletion.  

 

The observation that tumors with IGH translocations have a higher degree of evolutionary 

neutrality than hyperdiploid tumors may reflect the fact that early mutational events brought 

about by IGH translocations provide increased tumor fitness as compared to hyperdiploidy. 
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Importantly, IGH translocations are present in all sub-clones, thus potentially mediating relative 

tumor independence from external factors such as microenvironment growth factors that might in 

a weaker oncogenic context contribute to sub-clonal selection.
16

  

 

Tumor microenvironment factors are well established to influence MM cell survival and 

proliferation.
17

 Therapy with IMiDs modulates the tumor microenvironment, but in the context of 

neutral evolution and presence of early clonal strong oncogenic driver events this mechanism of 

therapy may be less efficacious. This contrasts with intensive alkylator therapy, which targets the 

tumor cell directly and non-specifically through DNA adduct formation. This ‘de-bulking’ effect 

may reset the sub-clonal structure, potentially reducing the impact of a neutral or non-neutral 

evolutional tumor history (Supplementary Fig. 6), which may explain the similar survival in both 

groups of intensively treated patients.  

 

In summary, we demonstrate that a significant proportion of MM is under neutral evolutionary 

selection. Importantly, such tumors tend to confer a poorer patient survival in the context of 

microenvironment modulating therapies. Our findings therefore provide further evidence that 

knowledge about the evolutionary dynamics of MM has potential to inform treatment decisions. 
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FIGURE LEGENDS 

Figure 1: Influence of neutral evolutionary dynamics on overall survival and progression-free 

survival in Myeloma XI and CoMMpass studies. Kaplan-Meier curves comparing neutral cases (R2 

≥ 0.98) versus non-neutral cases (A) progression-free survival (PFS) of Myeloma XI cases in the 

non-intensive treatment arm; (B) overall survival (OS) of Myeloma XI cases in the non-intensive 

treatment arm; (C) PFS of Myeloma XI cases in the intensive treatment arm; (D) OS of Myeloma XI 

cases in the intensive treatment arm; (E) PFS of non-autologous transplant CoMMpass cases 

receiving an IMID; (F) OS of non-autologous transplant CoMMpass cases receiving an IMID; (G) PFS 

of autologous transplant CoMMpass cases receiving an IMID; (H) OS of autologous transplant 

CoMMpass cases receiving an IMID. The red line depicts the survival curve for tumors with neutral 

evolutionary dynamics and the black line depicts the survival curve for tumors with non-neutral 

evolutionary dynamics. Horizontal ticks on the survival curves show censored cases. 

 

Figure 2: Association of neutral evolutionary dynamic with IgH translocations in Myeloma XI and 

CoMMpass studies. Violin-plot of the neutral evolutionary dynamics measured by R2 by (a) 

Myeloma XI (b) CoMMpass. The distribution shows kernel density estimation where a broader 

shape represents a higher probability of a value. Thick black bar represents the interquartile range. 

Thin line represents the 95% confidence interval. The dotted line corresponds to the R2=0.98 

threshold for discriminating neutral from non-neutral tumors. Statistical differences between 

experimental groups were evaluated by Wilcoxon rank sum test. P < 0.05 was considered 

statistically significant. 






