Highly Productive Continuous Flow Synthesis of Di- and Tripeptides in Water

Katherine E. Jolley, William Nye, Carlos González Niño, Nikil Kapur, Alain Rabion, Kai Rossen and A. John Blacker

Supporting Information

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Consumption of base during dipeptide formation</td>
<td>2</td>
</tr>
<tr>
<td>2. Steady state determination and RTD determination</td>
<td>4</td>
</tr>
<tr>
<td>3. Effect of slow mixing speed (1200 rpm) on reaction</td>
<td>5</td>
</tr>
<tr>
<td>4. Comparison of crude reaction product for formation of L-val-phe with 1.1 and 1.5 eq. L-valyl NCA.</td>
<td>6</td>
</tr>
<tr>
<td>5. Mass Balance</td>
<td>7</td>
</tr>
<tr>
<td>6. Reaction metrics</td>
<td>7</td>
</tr>
<tr>
<td>6.1 Solution phase dipeptide synthesis (batch)</td>
<td>7</td>
</tr>
<tr>
<td>6.2 Solid phase synthesis (batch)</td>
<td>9</td>
</tr>
<tr>
<td>6.3 Solution phase dipeptide synthesis (flow: microflow tube reactor)</td>
<td>11</td>
</tr>
<tr>
<td>6.4 Solution phase dipeptide synthesis (flow: CSTR)</td>
<td>13</td>
</tr>
<tr>
<td>7. Experimental</td>
<td>16</td>
</tr>
<tr>
<td>7.1 Chemicals and instrumentation</td>
<td>16</td>
</tr>
<tr>
<td>7.2 Experimental set up</td>
<td>17</td>
</tr>
<tr>
<td>7.3 Equipment information</td>
<td>18</td>
</tr>
<tr>
<td>7.4 General experimental procedure</td>
<td>20</td>
</tr>
<tr>
<td>7.5 Purification</td>
<td>21</td>
</tr>
<tr>
<td>7.6 Characterisation data for peptide products</td>
<td>22</td>
</tr>
<tr>
<td>8. Spectra and chromatograms</td>
<td>25</td>
</tr>
<tr>
<td>8.1 NMR spectra for isolated reaction products</td>
<td>26</td>
</tr>
<tr>
<td>8.2 NMR spectra for crude reaction solutions at steady state during</td>
<td>38</td>
</tr>
<tr>
<td>8.3 Examples of 1H NMR spectra at steady state for di- and tri-peptide products under optimum reaction conditions</td>
<td>50</td>
</tr>
<tr>
<td>8.4 HPLC chromatograms for crude reaction solutions</td>
<td>54</td>
</tr>
<tr>
<td>8.5 HPLC calibration data</td>
<td>56</td>
</tr>
<tr>
<td>9. References</td>
<td>58</td>
</tr>
</tbody>
</table>
1. **Approximate heat flow and consumption of base during dipeptide formation**

Understanding the reaction heat flow and stoichiometry are important. Since a conventional calorimeter was unsuitable for this reaction, the bespoke reactor shown in Section 7.2 was used as a rudimentary calorimeter with lagged walls to minimise heat loss. Furthermore the rapid reaction and 300 mL volume facilitated heat flow measurement. The titration of base to maintain pH 10.2 provided understanding of the main- and side reactions.

(i) As a control, without stirring or any addition the temperature of the reaction mass initially at 0 °C rose to 2.2 °C over 10 minutes, ie a temperature difference of 20 °C caused the reactor water temperature to rise at 0.22 °C/min.

(ii) A fed-batch control reaction was run to establish the temperature rise due to the high shear stirrer at 4000rpm and the addition of 18ml KOH at ambient over 10 minutes. This caused the water temperature to rise at 0.85 °C/min.

(iii) The reactor was set-up as a solid NCA fed-batch. To the reactor was added 300 mL of the reaction solvent (0.1M Na$_2$B$_4$O$_7$ aq. or water/base) containing 60mmol L-Phe the pH was adjusted to pH10.2 by addition of base as necessary. The reaction mass was stirred (4000 rpm) and actively cooled to 0 °C. Once at 0°C the cooling was switched-off and to the reactor was then fed the required L-alanine-NCA solid (69 mmol, 1.15 eq.) over 8 minutes, and base titrated, at a rate necessary to maintain the reaction solution at pH 10.2, as in Figure S2. The internal reaction temperature was recorded every 30s and plotted as the observed temperature minus a cumulative 0.85°C giving a temperature rise due to the reaction of NCA and L-Phe of 0.54 °C/min. The graph shows after the end of the additions at 8 minutes, and for a further 7 minutes there is little heat flow,

![Chemical structure](image)

Figure S1. Temperature rise for addition of L-alanine-NCA (69 mmol, 1.15 eq.) to L-phenylalanine (60 mmol) at constant volume 300mL (fed batch). pH maintained at 10.2 with addition of 6 M KOH aq. as necessary. The temperature rise due to mixer 4000rpm and KOH addition at room temperature has been subtracted.
Therefore calculation of the exotherm is valid over this short time. At the end of the reaction the mass was acidified with 3M sulfuric acid to allow decarboxylation of the carbamate intermediate and analysed to determine conversion by NMR and HPLC.

Figure S2. Volume of KOH used for addition of L-alanine-NCA (69 mmol, 1.15 eq.) to L-phenylalanine (60 mmol) at constant volume 300mL (fed batch). pH maintained at 10.2 with addition of 6 M KOH aq. as necessary. Temperature rise due to mixer 4000rpm, KOH addition and room temperature atmosphere has been subtracted.

60 mmol L-phenylalanine, 69 mmol L-alanyl NCA, total KOH used = 111 mmol

\(^1\)H NMR showed 72% conversion of phenylalanine to L-ala-L-phe (43.2 mmol L-ala-L-phe). Remaining 67.8 mmol KOH reacts with remaining 25.8 mmol L-alanyl NCA. Since hydrolysis with hydroxide and decarboxylation release in theory 1 mole equivalent of acid, 67.8-25.8 mmol leaves 42 mmol base that react with 25.8 mmol CO\(_2\) to form at pH 10.2 a 63:37 mixture of carbonate: bicarbonate giving a pKa of 10.6 in this solution of high ionic strength compared to the literature pKa = 10.3 in pure water.

Scheme S1. Proposed consumption of KOH

\[
\text{H}_2\text{N} - \text{Ph} - \text{O} \rightarrow \text{O} - \text{H} \rightarrow \text{O} - \text{N} \rightarrow \text{O} - \text{Me} \rightarrow \text{O} - \text{H} + \text{H}_2\text{O}
\]

1. Hydrolysis

\[
\text{Me} - \text{HN} - \text{O} + \text{KOH} 0.72 \text{ eq.} \rightarrow \text{Me} - \text{HN} - \text{O} + \text{CO}_2
\]

\[
\text{O} - \text{H} + \text{KOH} 0.43 \text{ eq.} \rightarrow \text{O} - \text{H} + \text{CO}_2 + \text{KCO}_3 0.286 \text{ eq.}
\]

\[
\text{K}_2\text{CO}_3 0.143 \text{ eq.}
\]
2. Steady state and residence time distribution determination

The concentration of starting material and dipeptide product stabilizes from the second residence time (14 min.). Apparent steady state is achieved after 2 residence times.

The residence time distribution for the bespoke reactor shown in section 7 was determined colorimetrically using a pulse of food dye with fractions collected every minute and flow rate of 43mL/min to give a theory residence time of 7 minutes. The measured average residence time $t^*(E_i)$ taken from integration of the curve in Figure S4 was 8.6 minutes.
3. **Effect of slow mixing speed (1200 rpm) on reaction**

Figure S5. Build-up of NCA on surface of reaction solution
4. **Comparison of crude reaction product for formation of L-val-phe with 1.1 and 1.5 eq. L-valyl NCA.**

![Chemical Reaction Diagram](image)

Figure S6. 1H NMR spectra for formation of L-val-L-phe with 1.1 and 1.5 eq. NCA.
5. Mass Balance

Mass directed auto preparative chromatography (for method see Experimental section):

10 mL of crude reaction purified. Fractions containing L-phe (reagent), L-alα-L-phe (product) and L-alα-L-alα-L-phe (side product) were combined and dried.

L-Phe: 40 mg, 0.24 mmol.
L-Alα-L-phe: 400 mg, 1.7 mmol.
L-Alα-L-alα-L-phe: 20 mg, 0.065 mmol.
Total moles L-phe (present in 3 compounds) = 2 mmol. In 10 mL = 0.2 M.
Concentration of L-phe reagent solution = 0.2 M.

6. Reaction metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>SPPS</th>
<th>Solution phase synthesis (batch)</th>
<th>Continuous un-buffered solution phase synthesis</th>
<th>Continuous peptide formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptide</td>
<td>L-Leu-L-Alα</td>
<td>L-Alα-L-Phe</td>
<td>L-Val-L-Phe</td>
<td>N-Boc-D-phenylgly-O-allyl-L-phe</td>
</tr>
<tr>
<td>Yield (%)</td>
<td>50</td>
<td>70</td>
<td>82</td>
<td>97</td>
</tr>
<tr>
<td>Space time yield (g L⁻¹ h⁻¹)</td>
<td>0.014⁷</td>
<td>0.35</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Total Mass intensity</td>
<td>3165</td>
<td>686</td>
<td>28</td>
<td>840</td>
</tr>
<tr>
<td>Reaction mass efficiency (%)</td>
<td>4</td>
<td>57</td>
<td>67</td>
<td>44.9</td>
</tr>
<tr>
<td>Atom economy (%)</td>
<td>10</td>
<td>84</td>
<td>86</td>
<td>57.3</td>
</tr>
<tr>
<td>Health and safety issues</td>
<td>DMF</td>
<td>Na₂B₄O₇</td>
<td>None</td>
<td>DMF</td>
</tr>
</tbody>
</table>

⁷See main paper, Figure 3.

Metrics were calculated according to recent literature.

6.1 Solution phase dipeptide synthesis (batch)

Status: First pass metrics entry

Procedure

Step 1

Reactor types: Batch;
Conditions: 0 °C; 4:00 (hh:mm); 1 bar; under Air
Reactants: L-Alanine-NCA (2.53 g, 22 mmol); L-phenylalanine‡ (3.3 g, 20 mmol);
Reagents: potassium tetraborate tetrahydrate (61.1 g, 200 mmol); KOH (2.24 g, 40 mmol);
Solvents: H₂O (200 mL);

Workup

Techniques: Quenching; Filtration;
Chemicals: Sulphuric acid (5.52 g); Carbon (330 g);
Solvents: H₂O (1.3 L); Acetic Acid (120 mL); acetone (300 mL);

Products

L-alanyl-L-phenylalanine† (3.31 g, 14 mmol)
Carbon Dioxide (616 mg, 14 mmol)

<table>
<thead>
<tr>
<th>Name</th>
<th>Value/Reason</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>Conversion</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Selectivity</td>
<td>70%</td>
<td></td>
</tr>
</tbody>
</table>
Productivity calculation
3.31 g produced in 4 h* in 2325 ml reaction volume
= 0.356 g/L/h

* based on similar experiment carried out in our laboratories

6.2 Solid phase synthesis (batch)
Merrifield J. Am. Chem. Soc. 1963, 85, 2149-2154
Preparation described for L-leucyl-L-alanyl glycyl-L-valine. Calculation of green metrics based on hypothetical process to make L-leucyl-L-alanine: solid-phase reaction of protected L-alanine with solid supported leucine, deprotection and cleavage from the resin.

- Yield of tetrapeptide reported as 265 mg, 0.74 mmol, 13%; therefore assume 50% dipeptide yield $0.5^* 3 = 0.125$; 2.86 mmoles * 202 = 0.575 g
- Reaction time (excluding purification) for tetrapeptide = 85 hours; for dipeptide = 23 + 6 + 2.5 = 31.5 h
In the published procedure, volumes were not given for solvent used in wash steps. For the metrics calculations we have assumed 50 mL solvent for each wash.

Procedure

Step 1

- Reactor types: Batch;
- Conditions: 25 °C; 30:00 (hh:mm); under Air
- Reactants: N-carbobenzoxy-valyl-nitopolymer‡ (10 g, 5.6 mmol); N-carbobenzoxy-leucine (4.46 g, 16.8 mmol);
- Reagents: Acetic Acid (343 g, 5.71 mol); HBr (4.47 g, 55.2 mmol); 1,3-dicyclohexylcarbodiimide (3.47 g, 16.8 mmol); Et3N (2.9 g, 28.7 mmol); 1M HCl (9.15 g, 251 mmol); NaOH (2.1 g, 52.5 mmol);
- Solvents: Dimethylformamide (495 mL); EtOH (390 mL); H2O (50 mL);

Workup

- Techniques: Evaporation; Filtration;

Product

- alanyl-leucine† (575 mg, 2.84 mmol)

Metrics

<table>
<thead>
<tr>
<th>Name</th>
<th>Value/Reason</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Conversion</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Properties</td>
<td>Values</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Selectivity</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Reaction Mass Efficiency</td>
<td>3.98</td>
<td></td>
</tr>
<tr>
<td>Atom Economy</td>
<td>9.86</td>
<td></td>
</tr>
<tr>
<td>Solvents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health & Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Total</td>
<td>3165</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Reaction</td>
<td>2095</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Reaction chemicals</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Reaction solvents</td>
<td>1435</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Workup</td>
<td>1070</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Workup chemicals</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Workup solvents</td>
<td>1070</td>
<td></td>
</tr>
</tbody>
</table>

Catalysts used

| Reactor | Elements | Energy | Workup |

Productivity calculation

0.575g produced in 30 h in 1314 ml reaction volume

\[= 0.014 \text{ g/L/h} \]

6.3 Solution phase dipeptide synthesis (flow: microflow tube reactor)

Status: First pass metrics entry

Procedure

Step 1

Reactor types: Flow;
Conditions: under Air
Reactants: (2,2-dimethylpropanamido)(phenyl)acetic acid (108 mg, 0.46 mmol); Triphosgene‡ (22 mg, 0.074 mmol); prop-2-en-1-yl 2-amino-3-phenylpropanoate (36.9 mg, 0.18 mmol);
Reagents: DIPEA (59.5 mg, 0.46 mmol);
Solvents: MeCN (2.1 mL); Dimethylformamide (1.3 mL);

Workup

Techniques: Filtration; Evaporation; Chromatography; Aqueous workup;
Chemicals: Ammonium Chloride (1 g); Magnesium sulfate (2 g); sodium bicarbonate (aq. saturated) (11.5 g);
Solvents: Saturated brine (10 mL); H₂O (10 mL); Chloroform (15 mL);

Product

prop-2-en-1-yl 2-[2-(2,2-dimethylpropanamido)-2-phenylacetamido]13-phenylpropanoate† (73.9 mg, 0.175 mmol)

Metrics

<table>
<thead>
<tr>
<th>Name</th>
<th>Value/Reason</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>Conversion</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Selectivity</td>
<td>97%</td>
<td></td>
</tr>
</tbody>
</table>
6.4 Solution phase dipeptide synthesis (flow: CSTR)

Continuous dipeptide formation without buffer and with automated pH control
- Reaction carried out at 0-2 °C
- Residence time = 7 min. Reaction run for 35 min. (5 residence times)
- Yield of product is 82% based on representative purified sample (see below)

- Purification
 Mass directed prep:
 To purify 9.9 mL of reaction solution: 11 injections of 900 µL
 8 min. run time per injection, 20 mL/min flow rate
 5-95% MeOH in water with 1 % formic acid. Per injection: 160 mL solvent
 (79.2 mL MeOH, 79.2 mL Water, 1.6 mL formic acid)
- Column chromatography:
 To purify 20 mL of reaction solution:
Ion exchange chromatography first: Estimated amounts: ~50 g DOWEX 50WX4 100-200 mesh, 500 mL eluent (aqueous at pH 5, 5.5 and 6) Followed by silica gel flash chromatography: Estimated amounts: ~50 g silica, 500 mL eluent (DCM:MeOH:18% NH₄OH aq. 30:60:10).

![Chemical structures](attachment:image.png)

Status: First pass metrics entry

Procedure

Step 1

Reactor types: Flow; Conditions: under Air Reactants: **L-valyl-NCA** (47.2 g, 330 mmol); **L-phenylalanine** (49.6 g, 300 mmol); Reagents: KOH (30.3 g, 540 mmol); KOH (33.7 g, 600 mmol); H₂SO₄ (10 mL, 188 mmol); Solvents: H₂O (1.7 L);

Products

- **L-val-L-phe** (65 g, 246 mmol)
- **Carbon Dioxide** (10.8 g, 246 mmol)

Metrics

<table>
<thead>
<tr>
<th>Name</th>
<th>Value/Reason</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>82%</td>
<td>🟢</td>
</tr>
<tr>
<td>Conversion</td>
<td>100%</td>
<td>🟢</td>
</tr>
<tr>
<td>Selectivity</td>
<td>82%</td>
<td>🟢</td>
</tr>
<tr>
<td>Reaction Mass Efficiency</td>
<td>67.2</td>
<td>🟢</td>
</tr>
<tr>
<td>Category</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Atom Economy</td>
<td>85.7</td>
<td></td>
</tr>
<tr>
<td>Solvents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health & Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Total</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Reaction</td>
<td>28.4</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Reaction chemicals</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Reaction solvents</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Workup</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Workup chemicals</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mass intensity: Workup solvents</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Catalysts used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalysts recovered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workup</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Productivity calculation
65g produced in 35min in 1840 ml reaction volume

$= 60.5 \text{ g/L/h}$
7. Experimental

7.1 Chemicals and instrumentation

Commercially available chemicals used in this work were obtained from Sigma Aldrich and Fluorchem of reagent or reagent plus grade. L-Alanyl NCA and L-valyl NCA were obtained from Isochem and were stored under N\textsubscript{2} at -20 °C.

NMR: Bruker DPX-300 (300 MHz), Bruker Ascend 400 (400 MHz) or Bruker DRX-500 (500 MHz) instruments using D\textsubscript{2}O solvent.

HPLC: Agilent 1100 Series HPLC with Chemstation software for processing

LCMS: Bruker HCT Ion trap mass spectrometer coupled with Agilent 1100 HPLC

HRMS: Bruker Maxis Impact spectrometer with Ultimate 3000 UPLC

IR: Bruker ALPHA FT-IR spectrometer

Melting point: Stuart Melting Point Aparatus SMP30

Optical rotation: Schmidt and Haensch Polartronic H 352 with 1 dm cell.

Mass Directed Automated preparative chromatography (MDAP): Agilent Technologies 2120 Quadrupole mass spectrometer with Agilent Technologies 1260 Infinity HPLC.
7.2 Experimental set up

1: Powder dispenser for NCA addition
2: Silverson mixer
3: Stainless steel reactor (600 mL) with aerogel insulation jacket
4: Coolant feeds
5: Pump for buffer/amin acid solution
6: pH and temperature probes
7: Pump for KOH aq. feed
8: Collection vessel
9: Cooling coil
7.3 Equipment information

Mixer: Silverson mixer with a 50 mm diameter homogeniser.

Pumps: Watson Marlow SCI 323 peristaltic pump with Watson Marlow marprene tubing 1.6 mm bore diameter, 2.4 mm wall thickness.

250 Series stepper motor pump, SMB driver, 4 rollers. 1.6 mm bore Norprene tubing.

Reactor vessel: 600 mL stainless steel beaker

Modifications made in-house.

- Adjustable height overflow pipe added
- Drain pipe added

1. Drain
2. Overflow pipe

Powder dispenser: Lymann E-ZEE Flo Universal adjustable powder trickler

Modifications made in-house

- Base removed
- Material reservoir replaced
- Motor added to feed pipe

1. Feed pipe
2. Solid container
3. Motor

Chiller: Huber Ministat 125

Insulation for reactor vessel: Aerogel thermal insulation

Cooling coil: stainless steel pipe 6 mm OD.
The pH controller was made in-house and specially tailored for the application from the following elements

- Arduino UNO development board
- Atlas Scientific EZO pH Circuit
- Atlas Scientific scientific grade silver / silver chloride pH Probe
- Atlas Scientific 125 mL calibration solutions (pH 4, 7 and 10)
- Atlas Scientific Female BNC Spec. Thread size ¼" – 36 UNS Thread type
- Atlas Scientific Inline Voltage Isolator
- Adafruit Analog Output K-Type Thermocouple Amplifier – AD8495 Breakout
- Thermosense Mineral Insulated k-type Thermocouple Sensor with Pot Seal
- Adafruit RGB LCD Shield

A hardware serial communication was established between the microprocessor and the Atlas Scientific EZO chip to access the pH readings, being the ground of this chip isolated from the pump’s using the Inline Voltage Isolator to prevent electrical noise affecting the pH readings.

The pH probe was calibrated using three point calibration with the calibration solutions at room temperature.

The temperature is acquired by the k-type thermocouple, amplifying its signal with the thermocouple amplifier chip and reading its value using the built-in ADC in the board. This value is further processed to calculate the temperature in Celsius. Since the temperature will change during operation, its effect on the pH readings is compensated using the equation below

$$pH_{CORRECTED} = 7.0 + (pH - 7.0) \times \frac{T}{T_0}$$

Where pH is the value of the pH read by the probe, T is the temperature of operation in Kelvin read by the thermocouple and T_0 is the temperature of calibration, room temperature (298.15 K) in the current case.

A PI control loop was programmed in the microprocessor, being the corrected pH process variable. The PI control parameters were estimated using lambda tuning from step input experiments information and then modified manually to achieve a robust control.

In each call, the PI algorithm computes a new output signal that controls the speed of the 250 Series Stepper Motor Pump, which feeds the KOH aq. solution to the reactor in order to reach the desired pH Setpoint.
Furthermore, an additional serial communication was set to share the temperature, pH, and output signal values with a computer via USB connection, which made possible to track the values of temperature and pH in the reactor during operation.

An LCD screen was installed to show the user the pH and temperature values at all times.

7.4 General experimental procedure

The equipment was set-up as in the diagram and photos above and the overflow pipe was set at the 300 mL level. To the reactor was added 300 mL of the reaction solvent (0.1M Na₂B₄O₇ aq. or water/base) and the pH was adjusted to pH10.2 by addition of base as necessary. The solvent was stirred (4000 rpm) and cooled to 0 °C. Once at 0°C, to the reactor was then fed 0.2 M, pH 10.2 aqueous amino acid solution (41 mL/min, 8.2 mmol/min.), the required NCA (9 mmol/min.) and base, if required, at a rate necessary to maintain the reaction solution at pH 10.2. The reaction was stirred at 4000 rpm and the temperature maintained between 0-2 °C.

The reaction solution was collected via the overflow pipe. During the reaction, the reaction temperature, pH and flow rate of base were recorded each minute. After 7 min. (1 residence time), 300 mL (1 reactor volume) of solution had been collected. The collection vessel was replaced and the process repeated until the required number of reactor volumes had been collected. Once collected, each reactor volume was acidified to allow decarboxylation of the collected product. The products from each individual reactor volume were analysed as below:

NMR: 1 mL of the reaction solution was dried by rotary evaporation. A portion of the obtained solid was analysed by NMR in D₂O. For the initial reactions, a known mass of NaOAc was added to the NMR sample as an external standard however results from this were found to be inconsistent and were not used.
HPLC: 20 μL of the reaction solution is added to 10 μL of 0.1M biphenyl in MeOH (external standard). To this is added 500 μL MeOH and 470 μL H₂O. Grace Davidson Vydac C18(218TP) 250 x 4.6 mm, pore size 300 Å, particle size 5 μm, pH 2-7.5; 210 nm; 25 °C column oven; 10 μL injection volume; 1 mL/min.; solvent A: Water + 0.1% TFA; solvent B: MeCN + 0.1% TFA; Gradient: 0 min 5% B, 16 min 40% B, 18 min 40% B, 20 min 80% B, 27 min 80% B, 28 min 5% B.

Retention times:
L-Phenylalanine: 7.2 min.
L-Alanyl-L-phenylalanine: 8.9 min.
DL-Alanyl-DL-phenylalanine: 8.9 and 10.6 min.
L-Alanyl-L-alanyl-L-phenylalanine: 14.0 min.
L-Valyl-L-phenylalanine: 14.7 min.
L-Alanyl-L-leucine: 10.2 min.
L-Leucine: 7.0 min.
L-Valyl-L-alanyl-L-leucine: 17.3
L-Valyl-L-aspartyl-L-phenylalanine: 18.0 min.
L-aspartame: 16.2 min.
Biphenyl (external standard): 25.7 min.

7.5 Purification
Mass directed auto preparative chromatography (MDAP)

Small quantities (5-10 mL) of the crude reaction solutions were purified by MDAP to give pure samples of the desired reaction products for characterisation (see 4.5 Peptide products). MDAP method: Xbridge Prep C18 5 μm OBD™ 19x100 mm. 5-95% MeOH in water with 0.1% formic acid over 8 min., 20 mL/min flow rate.

Ion exchange Chromatography

The ion exchange resin (Dowex 50WX4 100-200 mesh) was washed with water. 20 mL of the crude reaction solution was basified to pH 5.5 with 1 M KOH aq. was loaded onto the column. The products were eluted with firstly a pH 5.5 aqueous solution, followed by pH 5.7 and finally pH 6. The fractions collected were analysed by TLC (Si gel, ChCl₃;MeOH:NH₄OH 18% aq. 50:40:10, visualisation by UV and PMA dip.)

This method was found to successfully remove salts and tri-, tetra-, etc. peptide side products from buffer free reactions. For L-alanyl-L-phenylalanine formation, the dipeptide was
successfully separated from residual phenylalanine starting material. For the formation of other dipeptides, the dipeptide and amino acid were not separated and subsequent silica gel flash chromatography was required.

Flash chromatography

Following ion exchange chromatography, the dipeptide/amino acid mixture was loaded onto the silica gel column. The products were eluted with DCM:MeOH:NH₄OH aq. 18% 30:60:10. Fractions were analysed by TLC using the same solvent system and visualised by UV and PMA dip. For L-val-L-phe preparation, the dipeptide was obtained as an enriched mixture along with a reduced amount of phenylalanine than obtained from the ion exchange chromatography alone.

7.6 Characterisation data for peptide products

L-Alanyl-L-Phenylalanine

Mp 242-243°C; [α]₀²⁰ + 39.3 (589 nm, c 2, water) (lit. [α]₀ 39.8 (L,L)); IR νₘₐₓ 3229.8, 2923.7, 1668.0, 1522.6, 1222.5, 1076.8, 739.4, 697.5, 608.7 cm⁻¹; ¹H NMR (500 MHz, D₂O) ¹H NMR (501 MHz, Deuterium Oxide) δ 7.43 (t, J = 7.3 Hz, 3H, CH Ar), 7.38 – 7.31 (m, 4H, CH₂Ar), 4.65 (dd, J = 8.9, 5.6 Hz, 1H, CHCH₂Ar), 4.03 (q, J = 7.1 Hz, 2H, CHCH₃), 3.29 (dd, J = 14.0, 5.6 Hz, 1H, CH₄H²Ar), 3.09 (dd, J = 14.1, 9.0 Hz, 2H, CH₄H³Ar), 1.53 (d, J = 7.1 Hz, 3H, CH₃); ¹³C NMR (125 MHz, D₂O) 175.78 (C=O), 170.37 (C=O), 137.11 (CHAr), 129.30 (CH₃), 128.83 (2 x CH₂Ar), 127.19 (2 x CH₂Ar), 55.36 (CHCH₂), 49.01 (CHCH₃), 36.78 (CH₂), 16.49 (CH₃); LRMS m/z (ESI) 237.3 (M⁺ + H); HRMS m/z (ESI): M⁺ + H, 237.12342 C₁₂H₁₇N₂O₃ requires M 237.12337.

L-Alanyl-L-Leucine
Mp 226-227°C; [α]_D^{20} -30.2 (589 nm, c 1, water); IR ν_{max} 3218.1, 3067.3, 2956.8, 1667.4, 1520.7, 1049.5, 606.6 cm⁻¹; ¹H NMR (500 MHz, D₂O) δ 4.42 (t, J=7.3 Hz, 1H, CHCH₂CH(CH₃)₂), 4.15 (q, J=7.1 Hz, 1H, CH₂CH₃), 1.73-1.72 (m, 3H, CH₂ and CH(CH₃)₂ overlapping), 1.60 (d, J=7.0 Hz, 3H, CH₃), 0.97 (dd, J=17.8, 6.3 Hz, 6H, CH(CH₃)₂); ¹³C NMR (125 MHz, D₂O) 176.82 (C=O), 170.85 (C=O), 52.20 (C_HCH₂CH(CH₃)₂), 49.02 (C_HCH₃), 39.41 (CH₂), 24.57 (CH(CH₃)₂), 22.22 (CH₃), 20.72 (CH₃), 16.57 (CH₃); LRMS m/z (ESI) 203.4 (M⁺ + H); HRMS m/z (ESI): M⁺ + H, 203.13897 C₉H₁₉N₂O₃ requires M 203.13902.

\[
\text{L-Valyl-L-Phenylalanine}
\]

Mp 233-234°C; [α]_D^{20} +70 (589 nm, c 1, water); IR ν_{max} 3218.1, 3067.3, 2956.8, 1667.4, 1520.7, 1049.5, 606.6 cm⁻¹; ¹H NMR (500 MHz, D₂O) δ 7.44-7.41 (m, 2H, CHAr), 7.38–7.35 (m, 3H, CHAr), 7.47 (dd, J = 8.6 Hz, 1H, CHCH₂Ar), 3.80 (d, J = 5.6 Hz, 1H, CHCH(CH₃)₂), 3.27 (dd, J = 14.1, 5.8 Hz, 1H, CH⁴H⁸Ar), 2.28–2.18 (m, 1H, CH(CH₃)₂), 1.05–1.01 (m, 6H, (CH₃)₂); ¹³C NMR (125 MHz, D₂O) 176.82 (C=O), 170.85 (C=O), 52.20 (CHCH₂(CH₃)₂), 49.02 (CH₃), 39.41 (CH₂), 24.57 (CH(CH₃)₂), 22.22 (CH₃), 20.72 (CH₃), 16.57 (CH₃); LRMS m/z (ESI) 265.3 (M⁺ + H); HRMS m/z (ESI): M⁺ + H, 265.15510 C₁₄H₂₁N₂O₃ requires M 265.15467.

\[
\text{L-Alanyl-L-Alanyl-L-Phenylalanine}
\]

Mp 209-210 °C; [α]_D^{20} -13.6 (589 nm, c 1, water); IR ν_{max} 3218.1, 3063.9, 2935.8, 1632.8, 1529.9, 1077.7, 958.5, 696.5, 575.8 cm⁻¹; ¹H NMR (500 MHz, D₂O) δ 7.42-7.30 (m, 2H, CHAr), 4.63-4.54 (m, 1H, CHCH₂Ar), 4.34 (q, J = 7.2 Hz, 1H, CHCH₃), 4.08 (q, J = 7.1 Hz, 1H, CHCH₃), 3.24 (dd, J = 13.8, 5.4 Hz, 1H, CH⁴H⁸Ar), 3.08 (dd, J = 13.8, 7.9 Hz, 1H, CH⁴H⁸Ar), 1.51 (d, J = 7.0 Hz, 3H, CH₃), 1.37 (d, J = 7.1 Hz, 3H, CH₃); ¹³C NMR (125 MHz, D₂O) 176.13
(C=O), 173.87 (C=O), 170.50 (C=O), 137.00 (C=HAr), 129.47 (2 x C=HAr), 128.74 (2 x C=HAr), 127.10 (C=HAr), 55.13 (CHCH2Ar), 49.82 (CHCH2), 49.00 (CHCH2), 37.17 (CH3), 16.69 (CH3), 16.65 (CH3); LRMS m/z (ESI) 308.4 (M+ + H); HRMS m/z (ESI): M+ + H, 308.16069 C15H22N3O4 requires M 308.16048.

L-Valyl-L-Alanyl-L-Leucine

Mp 341-342 °C; [α]D20 -93.4 (589 nm, c 1, water); IR νmax 3295.1, 3065.6, 2961.1, 1644.7, 1541.2, 1232.1, 1160.8, 1044.2, 605.1 cm⁻¹; ¹H NMR (500 MHz, D2O) δ4.48 (q, J = 7.2 Hz, 1H, CHCH3), 4.41-4.35 (m, 1H, CHCH2), 3.85 (d, J = 5.9 Hz, 1H, CHCH(CH3)2), 2.30-2.21 (m, 1H, CH(CH3)2), 1.74-1.69 (m, 3H, CH2 and CH(CH3)2 overlapping), 1.45 (d, J = 7.2 Hz, 3H, CH3), 1.08-1.06 (m, 6H, (CH3)2), 0.98 (d, J = 6.3 Hz, 3H, (CH3)2), 0.93 (d, J = 6.3 Hz, 3H, (CH3)2); ¹³C NMR (125 MHz, D2O) 177.11 (C=O), 174.27 (C=O), 168.89 (C=O), 58.45 (CHCH(CH3)2), 52.04 (CHCH2(CH3)2), 49.58 (CHCH3), 39.69 (CH3), 30.10 (CH2CH(CH3)2), 24.52 (CHCH(CH3)2), 22.32 (CH3), 20.71 (CH3), 17.65 (CH3), 16.94 (CH3), 16.50 (CH3); LRMS m/z (ESI) 302.4 (M+ + H); HRMS m/z (ESI): M+ + H, 302.20749 C14H28N3O4 requires M 302.20743.

L-Valyl-L-Aspartyl-L-Phenylalanine

Mp 184-186 °C; [α]D20 -5.6 (589 nm, c 1, water); IR νmax 3193.3, 3066.0, 1713.8, 1660.3, 1517.5, 1030.3, 581.8 cm⁻¹; ¹H NMR (500 MHz, D2O) 87.37-7.14 (m, 5H, CHAr in tripeptide and 2H CHAr in impurity), 4.69-4.67 (m, 1H, CHCH2CO2H), 4.49 (dd, J = 8.0, 5.3 Hz, CHCH2Ar), 4.40-4.38 (m, 0.4H, impurity), 4.14-4.12 (m, 0.4H, impurity), 3.69 (d, J = 5.9 Hz, 1H, CHCH(CH3)2), 3.16 (ddd, J = 38.2, 13.8, 4.6 Hz, 1.4H, CH₃H⁺CO₂H and impurity), 2.98-2.95 (m, 1.4H,
CH₃H₅CO₂H and impurity), 2.77 (dd, J = 16.7, 5.0 Hz, 1H, CH₃H₅Ar), 2.64 (dd, J = 16.8, 8.8 Hz, 1H, CH₃H₅Ar), 2.10-2.07 (m, 0.5H, impurity), 2.04-1.99 (m, 1H, CH(CH₃)₂), 0.85 (t, J = xx Hz, 6H, CH(CH₃)₂); ¹³C NMR (125 MHz, D₂O) Complex spectra obtained due to unidentified impurity. Peaks could not be assigned; LRMS m/z (ESI) 380.4 (M⁺ + H); HRMS m/z (ESI): M⁺ + H, 380.18241 C₁₈H₂₆N₃O₆ requires M 380.18161.

8. Spectra and chromatograms

¹H NMR and ¹³C NMR in D₂O were obtained for the di- and tripeptide products prepared. Products were isolated from the crude reaction solution by mass directed automated preparative chromatography as detailed above for characterisation.

HPLC data was obtained for crude reaction solutions using the sample preparation detailed above.
9.1 NMR spectra for isolated reaction products
L-Alanyl-L-phenylalanine 1H NMR (500 MHz, D$_2$O)
L-Alanyl-L-phenylalanine 13C NMR (125 MHz, D$_2$O)
L-Alanyl-L-leucine 1H NMR (500 MHz, D$_2$O)
L-Alanyl-L-leucine 13C NMR (125 MHz, D$_2$O)
L-Valyl-L-phenylalanine 1H NMR (500 MHz, D$_2$O)
L-Valyl-L-phenylalanine 13C NMR (125 MHz, D$_2$O)
L-Valyl-L-alanyl-L-leucine 1H NMR (500 MHz, D$_2$O)
L-Valyl-L-alanyl-L-leucine 13C NMR (125 MHz, D$_2$O)
L-Alanyl-L-alanyl-L-phenylalanine 1H NMR (500 MHz, D$_2$O)
L-Alanyl-L-alanyl-L-phenylalanine 13C NMR (125 MHz, D$_2$O)
L-Valyl-L-aspartyl-L-phenylalanine \(^1\)H NMR (500 MHz, D\(_2\)O)
L-Valyl-L-aspartyl-L-phenylalanine 13C NMR (500 MHz, D$_2$O)
9.2 NMR spectra for crude reaction solutions at steady state during Formation of L-alanyl-L-phenylalanine (Main paper: Table 1, entry 1) 1H NMR (300 MHz, D$_2$O)
Formation of L-alanyl-L-phenylalanine (Main paper: Table 1, entry 2 and Figure 3) 1H NMR (300 MHz, D$_2$O)
Formation of L-alanyl-L-phenylalanine (Main paper: Table 1, entry 3) 1H NMR (300 MHz, D$_2$O)
Formation of L-alanyl-L-phenylalanine (Main paper: Table 1, entry 4) 1H NMR (300 MHz, D$_2$O)
Formation of L-alanyl-L-phenylalanine (Main paper: Table 1, entry 5) 1H NMR (300 MHz, D$_2$O)
Formation of L-alanyl-L-phenylalanine (Main paper: Table 1, entry 6) 1H NMR (500 MHz, D$_2$O)
Formation of L-alanyl-L-phenylalanine (Main paper: Table 1, entry 7) ¹H NMR (500 MHz, D₂O)
Formation of L-alanyl-L-phenylalanine (Main paper: Table 1, entry 8) 1H NMR (500 MHz, D$_2$O)
Formation of L-alanyl-L-phenylalanine (Main paper: Table 1, entry 9) 1H NMR (500 MHz, D$_2$O)
Formation of L-alanyl-L-leucine (Main paper: Table 1, entry 10) \(^1\)H NMR (300 MHz, D\(_2\)O)
Formation of L-alanyl-L-leucine (Main paper: Table 1, entry 11, Figure 3) 1H NMR (300 MHz, D$_2$O)
Formation of L-alanyl-L-leucine (Main paper: Table 1, entry 12) 1H NMR (300 MHz, D$_2$O)
9.3 Examples of 1H NMR spectra at steady state for di- and tri-peptide products under optimum reaction conditions

For formation of L-alanyl-L-phenylalanine and L-alanyl-L-leucine see section 9.2.

Formation of L-valyl-L-phenylalanine (Main paper: Figure 3) 1H NMR (400 MHz, D$_2$O)
Formation of L-alanyl-L-alanyl-L-phenylalanine (Main paper: Figure 3) 1H NMR (300 MHz, D$_2$O)
Formation of L-valyl-L-alanyl-L-leucine (Main paper: Figure 3) 1H NMR (500 MHz, D$_2$O)

Complex mixture of ala-leu, val-ala-leu and side products.
Formation of L-valyl-L-aspartyl-L-phenylalanine (Main paper: Figure 3) 1H NMR (500 MHz, D$_2$O)
9.4 HPLC chromatograms for crude reaction solutions

Formation of L-Alanyl-L-phenylalanine

Formation of L-Alanyl-L-leucine
Formation of L-Valyl-L-phenylalanine

![Graph showing chromatographic peaks for L-Valyl-L-phenylalanine]

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime [min]</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU's]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.915</td>
<td>MM</td>
<td>0.2141</td>
<td>2984.99512</td>
<td>232.37984</td>
<td>14.1422</td>
</tr>
<tr>
<td>2</td>
<td>14.797</td>
<td>MM</td>
<td>0.2549</td>
<td>8390.91016</td>
<td>548.63324</td>
<td>39.7543</td>
</tr>
<tr>
<td>3</td>
<td>25.713</td>
<td>MM</td>
<td>0.1747</td>
<td>9731.03027</td>
<td>928.27277</td>
<td>46.1035</td>
</tr>
</tbody>
</table>

Totals: 2.1106e+4 1709.28584

Formation of L-Alanyl-L-alanyl-L-phenylalanine

![Graph showing chromatographic peaks for L-Alanyl-L-alanyl-L-phenylalanine]

<table>
<thead>
<tr>
<th>Peak</th>
<th>RetTime [min]</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [mAU's]</th>
<th>Height [mAU]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.967</td>
<td>MM</td>
<td>0.2124</td>
<td>517.31085</td>
<td>40.59197</td>
<td>2.3215</td>
</tr>
<tr>
<td>2</td>
<td>12.080</td>
<td>MM</td>
<td>0.2109</td>
<td>3591.91431</td>
<td>283.83630</td>
<td>16.1195</td>
</tr>
<tr>
<td>3</td>
<td>15.994</td>
<td>MM</td>
<td>0.1967</td>
<td>3242.60303</td>
<td>274.78009</td>
<td>14.5519</td>
</tr>
<tr>
<td>4</td>
<td>14.649</td>
<td>MM</td>
<td>0.1844</td>
<td>1041.05396</td>
<td>94.06982</td>
<td>4.6719</td>
</tr>
<tr>
<td>5</td>
<td>15.399</td>
<td>MF</td>
<td>0.1734</td>
<td>335.95642</td>
<td>32.29836</td>
<td>1.5077</td>
</tr>
<tr>
<td>6</td>
<td>15.659</td>
<td>FM</td>
<td>0.1885</td>
<td>696.95972</td>
<td>61.78560</td>
<td>3.1367</td>
</tr>
<tr>
<td>7</td>
<td>25.718</td>
<td>MM</td>
<td>0.1857</td>
<td>1.28553e+4</td>
<td>1154.06506</td>
<td>57.6908</td>
</tr>
</tbody>
</table>

Totals: 2.22831e+4 1941.42720
Formation of L-Valyl-L-alanyl-L-leucine

9.5 HPLC calibration data

L-Phenylalanine

$y = 3.6904x$

$R^2 = 0.9651$

L-Leucine

$y = 166.34x$

$R^2 = 0.9677$
Quantification of valyl-phenylalanine using biphenyl external standard gave results inconsistent with the NMR data obtained for reaction solutions. Instead, the valyl-phenylalanine formed in reaction solutions was quantified using a plot of valyl-phenylalanine standard concentration vs. valyl-phenylalanine standard peak area (below).
9. References

