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Gradient-Based Sequential Markov Chain Monte

Carlo for Multitarget Tracking With

Correlated Measurements
Roland Lamberti , François Septier, Naveed Salman, and Lyudmila Mihaylova , Senior Member, IEEE

Abstract—Measurements in wireless sensor networks (WSNs)
are often correlated both in space and in time. This paper focuses
on tracking multiple targets in WSNs by taking into considera-
tion these measurement correlations. A sequential Markov Chain
Monte Carlo (SMCMC) approach is proposed in which a Metropo-
lis within Gibbs refinement step and a likelihood gradient proposal
are introduced. This SMCMC filter is applied to case studies with
cellular network received signal strength data in which the shad-
owing component correlations in space and time are estimated.
The efficiency of the SMCMC approach compared to particle fil-
tering, as well as the gradient proposal compared to a basic prior
proposal, are demonstrated through numerical simulations. The
accuracy improvement with the gradient-based SMCMC is above
90% when using a low number of particles. Thanks to its sequen-
tial nature, the proposed approach can be applied to various WSN
applications, including traffic mobility monitoring and prediction.

Index Terms—Multiple target tracking, correlated shadowing,
sequential Markov Chain Monte Carlo (SMCMC), gradient-based
likelihood proposal.

I. INTRODUCTION

T
RACKING multiple mobile targets is a challenging task

which has applications in a number of fields, including

that of wireless cellular communication networks and mobility

prediction for intelligent transportation systems. In this area,

the main structure of a system will feature target nodes whose

kinematic states are unknown and need to be estimated; and

sensor nodes receiving some type of noisy information about

the target nodes, from which an estimation of their states can be

inferred.

A variety of methods have been developed in order to

solve this localization problem. The more common range-based
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methods (as opposed to range-free methods) depend on the dis-

tances between nodes, through measurements of received signal

strengths (RSS), signal time-of-arrivals (ToA) [1] or angle-of-

arrivals (AoA) [2] originating from the targets. Both ToA and

AoA approaches allow for accurate distance estimations lead-

ing to good localization, however ToA requires synchronized

clocks on the target nodes, while AoA requires an array of

antennas and is still sensitive to errors due to multipath, mak-

ing them costly solutions. The received signal strength tech-

nique [3] is a much more direct and simple approach, with

low implementation costs; as such, it is a recurrent subject

of performance optimization attempts. Taking into account the

shadowing correlation (Gudmunson’s model [4], [5]) between

different nodes (targets or sensors), which capitalizes on the

fact that in a given environment, closeby areas present more

or less similar behaviors with regard to shadowing, and may

thus be modeled as highly correlated, is one such way of im-

proving this technique. A few examples of research include

[6] which studies the combination of measurement correlation

and shrinkage estimation of the covariance matrix for signif-

icant performance improvements, but is limited to the static

case. In [7]–[10] the measurement correlations are taken into

account and refined particle filtering (or Sequential Importance

Resampling - SIR) algorithms are implemented. This results in

high localization accuracy, however these algorithms inherently

suffer from the limitations of the particle filtering approach.

Although this approach is known to be an effective way of solv-

ing non-linear problems, it performs poorly in high-dimensional

state-spaces [11].

In this paper, we present a novel Bayesian solution to tracking

problems with correlated measurements based on an advanced

Monte-Carlo algorithm. Firstly, we take into account the shad-

owing correlations both spatially and in time, that is, between

either current or past positions of any targets. This allows for

performance improvements both due to the correlations in time

between positions of a single target, and due to the correlations

between trajectories of different targets which may cross at some

point in time. Finally, in order to efficiently solve the Bayesian

tracking problem, we propose to use a Sequential Markov Chain

Monte Carlo (SMCMC) algorithm. This technique, which is

still largely under-exploited in the signal processing literature,

allows for more robust and overall better performance than the

more classical particle filtering, especially in high-dimensional

systems [12]–[14]. The combination of these two features thus
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has a good potential for overall robustness in tracking perfor-

mance in a wide range of scenarios. Preliminary results, includ-

ing experimental analyses regarding the benefits of taking into

account the spatio-temporal shadowing correlation, are already

reported in our previous work [15]. We now detail and justify

our choice of the SMCMC methodology and complete these

results by replacing the prior proposal density of the Gibbs re-

finement step with a likelihood gradient proposal. This allows

to better capitalize on informative measurements and guides

the particles towards high-likelihood zones, increasing the ef-

ficiency of the algorithm. Finally, we present new simulation

results demonstrating the benefits of this distribution over the

prior and further justifying the superiority of SMCMC over SIR

in our model, when both have similar sampling costs and use

the same proposal densities.

The paper is structured as follows. Section II details the choice

of the target and observation models. Section III-B explains the

Bayesian framework used as well as the SMCMC solution, and

Section IV details how to integrate the likelihood gradient in

the proposal density of the Gibbs refinement step. Simulation

results using synthetic data on the superiority of SMCMC with

Gibbs refinement compared to SIR with resample-move, and the

benefits of this gradient proposal compared to the prior, are pre-

sented and analyzed in Section V, while Section VI highlights

the main conclusions of this work.

II. TARGET AND OBSERVATION MODELS

A. Target State and Motion Models

In a 2-dimensional (2-D) network, the kinematic state of

a single target at discrete time step t may be defined as a

vector of positions and velocities xt = [xt,x , xt,y , xt,ẋ , xt,ẏ ]T ,

although it could also contain accelerations or other vari-

ables of interest. Here, N
∗ represents the set of all natu-

ral numbers excluding 0; the kinematic state {xt,1:N }t∈N∗ =
{[(xt,1)

T , (xt,2)
T , . . . , (xt,N )T ]}t∈N∗ of a set of N targets is

considered to be a stochastic Markov process such that at any

time step t, the transition probability density function (pdf)

p(xt,1:N |x1:t−1,1:N ) = p(xt,1:N |xt−1,1:N ) is known and can ei-

ther be evaluated point-wise or sampled from.

B. Correlated Observation Model

Consider a set of N targets evolving from time 1 to time T ,

x1:T ,1:N , and a set of M immobile sensors s = [s1 , · · · , sM ]
where si = [si

x , si
y ]T is the position of the i-th sensor for i ∈

{1, . . . , M}. We suppose that both N and M are fixed and

known in this model. Throughout the paper, with the exception

of square functions, superscripts will be used to denote a sensor

i, a particle n or a Monte Carlo run l (in the simulations section),

and subscripts will mostly be used to denote a time step t, a target

j or a component {x, y, ẋ, ẏ}. At time t ∈ {1, · · · , T}, a target

j ∈ {1, · · · , N} transmitting a signal with power Pt,j causes a

sensor i to receive a signal with power P i
t,j (the data association

problem is assumed to be resolved, for example it could be

assumed that the targets emit during preassigned epochs). The

corresponding path-loss can be expressed as

Li
t,j = 10 log10 Pt,j − 10 log10 P i

t,j (1)

The observed path-loss signal yi
t,j at the sensor can empiri-

cally be modeled [16]–[19] as

yi
t,j = Li

t,j − L0 = 10α log10 d(xt,j , s
i) + wi

t,j (2)

where

d(xt,j , s
i) =
√

(xt,j,x − si
x)2 + (xt,j,y − si

y )2 (3)

corresponds to the Euclidean distance between the position of

the j-th target at time t and the i-th sensor.L0 is the path-loss sig-

nal at a reference distance of usually 1 meter away from the sen-

sor; α is the path-loss exponent (PLE) assumed known (or accu-

rately estimated in a real application); and wi
t,j ∼ N (0, (σi

t,j )
2)

is the realization of a random variable modeling the log-normal

shadowing effect, with σi
t,j the shadowing standard deviation

associated with the link between the i-th sensor and the j-th

target. Thus, the shadowing effect introduces a multiplicative

factor in terms of distance which means the corresponding er-

ror induced is proportional to the distance itself. Therefore, this

error will remain significant should the distance increase con-

siderably. The standard deviation σi
t,j is assumed to be constant

over time, and we also consider the region of surveillance to be

limited enough not to challenge the sensivity of the sensors.

In order to account for the spatio-temporal shadowing correla-

tions between two positions within the network, we use the Gud-

munson model [4]. Thus the correlation between the j-th target

at time r and the k-th target at time t, for (j, k) ∈ {1, . . . , N}
and (r, t) ∈ {1, . . . , T}, is

Corr(xr,j ,xt,k ) = exp

(

−
d(xr,j ,xt,k )

Dc

)

(4)

where Dc is the decorrelation distance used in the Gudmundson

model, which depends on the environment (field measurements

in [20] suggest values for Dc for different environments) and is

assumed to be known or previously estimated.

By defining:

– f i(xt,j ) = 10α log10(d(xt,j , s
i)) the exact path-loss sig-

nal between the position of xt,j and that of si ;

– ρi(xr,1:N ,xt,1:N ) a N × N matrix whose (j, k) term

[ρi(xr,1:N , xt,1:N )]j,k = σi
r,jσ

i
t,k exp

(

−
d(xr , j ,xt , k )

D c

)

represents the covariance between the measurements at

the ith sensor corresponding to xr,j and xt,k ;

the collection of all the path-loss measurements observed at

the i-th sensor until time t is then distributed according to the

following multivariate Gaussian density p(yi
1:t,1:N |x1:t,1:N ):

yi
1:t,1:N =

⎡
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with Ri
t the (N × t,N × t) observation covariance matrix

which includes correlations in the measurements due to the

close proximity of target positions, both “spatially” at a given

time step and “spatio-temporally” between positions of different

targets from different time steps, and can be expressed in blocks

as:

Ri
t =

⎡

⎢

⎢

⎢

⎣

ρi(x1,1:N ,x1,1:N ) · · · ρi(x1,1:N ,xt,1:N )

...
. . .

...

ρi(xt,1:N ,x1,1:N ) · · · ρi(xt,1:N ,xt,1:N )

⎤

⎥

⎥

⎥

⎦

. (6)

Finally, measurements at each sensor are supposed to be inde-

pendent from measurements at all other sensors - this is justified

by considering scenarios where the sensor positions are immo-

bile and sufficiently far apart from each other thus inducing little

to no correlation. Thus the joint pdf of the measurements from

several sensors can be calculated as the product of the pdfs of

the measurements from each one of these sensors:

p(y1:M
1:t,1:N |x1:t,1:N ) =

M
∏

i=1

p(yi
1:t,1:N |x1:t,1:N ). (7)

III. PROPOSED BAYESIAN SOLUTION

A. Recursive Inference

The aim of the Bayesian inference is to recursively estimate

the states of the sequence of targets by computing the expecta-

tion of its joint posterior density. At time t, this posterior density

can be deduced recursively as a function of its expression from

the previous time step t − 1:

p(x1:t,1:N |y1:M
1:t,1:N ) ∝

M
∏

i=1

p(yi
t,1:N |yi

1:t−1,1:N ,x1:t,1:N )p(xt,1:N |xt−1,1:N )

× p(x1:t−1,1:N |y1:M
1:t−1,1:N ). (8)

However, this density is intractable mainly due to the nonlinear

relationship of the hidden states in the observations and there-

fore needs to be approximated. In this posterior distribution

of interest, the likelihood is obtained from (5) using classical

conditional properties of the multivariate Gaussian distribution:

p(yi
t,1:N |yi

1:t−1,1:N ,x1:t,1:N ) = N
(

µ
i
t ,Σ

i
t

)

, (9)

where

µ
i
t = µ2 + Σ2,1Σ

−1
1,1(z − µ1),

Σi
t = Σ2,2 − Σ2,1Σ

−1
1,1Σ1,2 , (10)

with

z = yi
1:t−1,1:N ,

µ1 = [f i(x1,1), · · · , f i(x1,N ), · · · , f i(xt−1,1), · · · ,

f i(xt−1,N )]T ,

µ2 = [f i(xt,1), · · · , f i(xt,N )]T ,

Σ1,1 = Ri
t − 1 ,

Σ2,1 = [ρi(xt,1:N ,x1,1:N ), · · · , ρi(xt,1:N ,xt−1,1:N )],

Σ1,2 = [ρi(x1,1:N ,xt,1:N ), · · · , ρi(xt−1,1:N ,xt,1:N )]T ,

Σ2,2 = ρi(xt,1:N ,xt,1:N ). (11)

Given that any measurement is dependent on all of the other

measurements at any time step, the sizes of the mean vector

and covariance matrix of the observation defined in (5) grow

with time. As a consequence, the cost of the computation of the

likelihood in (9) that will be required in the filtering algorithm

increases with time. In this paper, we therefore propose to use a

strategy in order to have a constant computational cost by using

a restriction of the size of the used history of positions, for

instance through a sliding time window. One drawback of such

an approximation is that it could imply the loss of interesting

correlation information in cases where some targets approach

past trajectories of some other targets (or themselves). Indeed,

although the most significant correlations may often intuitively

be the ones between positions of a same target at close time

steps, simply due to their inherent proximity compared to the

proximity of positions from different targets, this still depends

on the chosen target motion model. It is likely to be the case

if the targets move completely independently, which is clearly

not always a correct assumption in real scenarios. However, the

sliding time window approximation may also help in avoiding

possible numerical problems in the evaluation of the likelihood

(due to the inversion of a large covariance matrix). By defining

the size of this sliding time window as twindow, the computation

of the likelihood in (9) will involve a modified covariance matrix

of size (N × (twindow + 1), N × (twindow + 1)) since ∀(j, k) ∈
{1, . . . , N}, we will consider Corr(xr,j ,xt,k ) = 0 if |r − t| >
twindow.

In a single target scenario, the authors in [10] propose to

use a sequential Monte-Carlo method, known as particle fil-

ter, in order to infer the single target characteristics given the

observations. However, this method suffers from intrinsic limi-

tations in high-dimensional systems ([11], [21]), as the number

of samples needs to increase exponentially with the variance

of the weights (which is typically a linear function of the state

dimension) so as to ensure that not only a single weight will

be non-null. In order to obtain a more efficient algorithm for

multiple target tracking, we thus propose an alternative solution

based on a more advanced methodology known as Sequential

Markov Chain Monte Carlo (SMCMC) [12].

B. The Proposed SMCMC Algorithm

Traditionally, Markov chain Monte Carlo (MCMC) meth-

ods are used to draw samples from probability distributions in

a non-sequential setting. The advantages of MCMC over Im-

portance Sampling (IS), which is the main principle used in

particle filters, are that it is generally more effective in high-

dimensional systems, and also easier to design for complex dis-

tributions. Recently, sequential MCMC schemes were proposed

in the literature - see ([13], [14]) for a review. Although there are
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no theoretical proofs of this yet, SMCMC has experimentally

proven to be much more efficient than particle filtering (includ-

ing particle filtering augmented with MCMC resample-moves

[22]) at handling high-dimensional settings, because of the se-

quential nature of the algorithm allowing local exploration of

the state-space with a single Markov chain at a given time step,

thus reaching more relevant regions of the state-space in terms

of posterior. On the contrary, a particle filter augmented with

MCMC resample-moves will still suffer from the limitations of

the importance sampling and resampling steps (which SMCMC

omits entirely), and attempt to remedy them by constructing

several independent Markov chains which is much less efficient

than the SMCMC approach.

More specifically, the sequential MCMC (SMCMC) is a pow-

erful sequential methodology for filtering that targets the joint

posterior distribution defined in our case by (8). At a given time

step, we use a MCMC procedure to make inference from this

complex distribution (which is fixed for this time step). How-

ever, since we do not have a closed form representation of the

posterior distribution p(x1:t−1,1:N |y1:M
1:t−1,1:N ) at time t − 1, it

will be approximated by an empirical distribution based on the

current particle set:

p(x1:t−1,1:N |y1:M
1:t−1,1:N )≈

1

Np

Np
∑

j=1

δ
x

( j )
1 : t−1 , 1 :N

(x1:t−1,1:N ) (12)

where Np is the number of particles and (j) the particle index.

Then, by plugging this particle approximation into (8), we obtain

π(x1:t,1:N ) ∝

1

Np

Np
∑

j=1

(

M
∏

i=1

p(yi
t,1:N |yi

1:t−1,1:N ,x
(j )
1:t−1,1:N ,xt,1:N )

)

× p(xt,1:N |x
(j )
t−1,1:N )δ

x
( j )
1 : t−1 , 1 :N

(x1:t−1,1:N ) (13)

where π(x1:t,1:N ), an empirical approximation of the true pos-

terior p(x1:t,1:N |y1:M
1:t,1:N ) based on the particle set x

(1:Np )
1:t−1,1:N ,

is the target distribution of the Markov chain at time step t. At a

given iteration n of the Markov chain, the variables x1:t−1,1:N

are to be drawn according to a uniform discrete distribution

(selected uniformly from the set x
(1:Np )
1:t−1,1:N ) whereas xt,1:N is

then drawn from a continuous distribution conditional to this

previous sample, hence the designation “Joint Draw” for this

procedure.

Then, having made many joint draws from (13) using an

appropriate MCMC scheme, the converged MCMC output for

variable x1:t,1:N can be extracted to give an updated particle

approximation of p(x1:t,1:N |y1:M
1:t,1:N ) to be used at the next time

iteration. More specifically, after a burn-in period of Nburn , keep

every MCMC output x
(j )
1:N = xn

1:N as the new particle set for

the posterior distribution (the notation (j) is meant to include

only the Np particles that are considered to be after the burn-in

period, while n may refer to any particle of the chain). In this

way, sequential inference can be achieved.

In addition to this procedure, we choose to perform an ad-

ditional refinement step in order to improve the quality of the

samples corresponding to time t. Several block sampling struc-

tures could be considered [23], but in this paper, we opt to

sample successively each of the individual targets using a series

of Metropolis-within Gibbs steps, which consists in drawing

new samples component-wise, that is in our application, target-

wise, conditionally to all other targets, and choosing whether to

accept them. This allows to carefully move each component of

our particles towards more interesting regions of the state-space,

using densities that are focused on each component as opposed

to the joint density used in the previous step. It should be empha-

sized that our block sampling Gibbs step is in fact target-wise

and thus multivariate, rather than univariate coordinate-wise.

This is much more efficient since in our setting there is a strong

correlation between coordinates of a single target, which means

sampling a single coordinate conditionally to other coordinates

of the same target would be degenerated (close to deterministic).

To further take advantage of this approach, we also use a

Langevin-type gradient proposal density for sampling in the

refinement (this aspect will be detailed in Section IV). It is in-

teresting to note that performing both a MH Joint Draw and next

a component-wise Gibbs refinement is complementary. Indeed,

the Gibbs step improves upon the previous joint sampling. How-

ever, if we were to omit the initial Joint Draw and only perform

this refinement step, the sampling might become degenerated if

there is high correlation between targets’ measurements since

we use a density conditional on all targets other than the current

component [12]. Additionally, while in our chosen algorithm

we only perform a single MH Joint Draw step, several iterations

could potentially help improve the mixing for the Markov Chain

[24] (once again especially when there is strong correlation be-

tween blocks, which in our case would correspond to targets in

close proximity).

In short, at time t and at the n-th MCMC iteration, the fol-

lowing procedure is thus performed to obtain samples from

p(x1:t,1:N |y1:M
1:t,1:N ):

� Make a joint draw for x1:t,1:N using a Metropolis-Hastings

step,
� Refine the hidden state at current time t, xt,1:N , using a

series of Metropolis-Hastings-within-Gibbs steps.

The complete proposed algorithm is summarized in Algo-

rithm 1 (which also includes the Langevin-type gradient pro-

posal explained in Section IV).

Following the acquisition of this set of particles (selected after

a burn-in period) asymptotically drawn according to the density

p(x1:t,1:N |y1:M
1:t,1:N ), the target state estimation at time t can be

performed using the minimum mean square error criterion as

the mean of the particles, which corresponds to the empirical

approximation of the expectation of the marginalized posterior

density p(xt,1:N |y1:M
1:t,1:N ):

x̂t,1:N =

∫

xt,1:N p(xt,1:N |y1:M
1:t,1:N )dxt,1:N

≈
1

Np

Np
∑

j=1

x
(j )
t,1:N . (14)
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Algorithm 1: Proposed SMCMC for Multi-Target Tracking.

At time t, to compute the n-th SMCMC particle trajectory

xn
1:t,1:N :

Data: y1:M
1:t,1:N (all of the measurements available at time t),

x
(1:Np )
1:t−1,1:N (the particle set constituting the empirical

approximation of the posterior density from time t − 1),

xn−1
1:t,1:N (the result of the previous step n − 1 of the

algorithm)

Joint Draw using Metropolis-Hastings

– Randomly select a joint particle trajectory x̃1:t−1,1:N by

sampling it from the empirical measure of

p(x1:t−1,1:N |y1:M
1:t−1,1:N ) obtained at the previous time

iteration:

x̃1:t−1,1:N ∼
1

Np

Np
∑

j=1

δ
x

( j )
1 : t−1 , 1 :N

(x1:t−1,1:N ) (15)

– Draw a random sample for the current t-th time step:

x̃t,1:N ∼ p(·|x̃t−1,1:N ) (16)

– Calculate the acceptance ratio which compares the

likelihood given x̃1:t,1:N with the likelihood given xn−1
1:t,1:N

(which is the one from the previous iteration n − 1):

α = min

(

1,

∏M
i=1 p(yi

t,1:N |yi
1:t−1,1:N , x̃1:t,1:N )

∏M
i=1 p(yi

t,1:N |yi
1:t−1,1:N ,xn−1

1:t,1:N )

)

(17)

– Accept this proposed particle or reject it:

draw a ∼ U [0, 1]
if (a < α) then

accept the particle, thus xn
1:t,1:N := x̃1:t,1:N

else

reject the particle, thus xn
1:t,1:N := xn−1

1:t,1:N

end

Refinement using Metropolis-within-Gibbs

– Successively sample each target:

for b = 1 to N do

– Define x̃1:t,1:N := xn
1:t,1:N

– Draw a new sample from the gradient-based

proposal density q in (19), for the b-th target at

current time t:

x̃t,b ∼ q(·|xn
t,b) (18)

– Calculate the acceptance ratio as α = min (1, β)
where β is from (28), with the modified particle

x̃1:t,1:N .

– Accept this proposal particle or reject it:

draw a ∼ U [0, 1]
if (a < α) then

accept the particle, xn
t,b = x̃t,b

else

reject the particle, do not update the b-th block

in xn
t,1:N

end

end

Output: Sample xn
1:t,1:N

IV. GRADIENT-BASED PROPOSAL DENSITY

The choice of a relevant proposal density to propagate the

kinematic states in the Metropolis-within-Gibbs refinement

steps is crucial for the algorithm to be able to “lock-on” to

the targets. In our case, using the prior probability density may

be prone to failure especially in scenarios where this density

has a large covariance matrix. Therefore, we aim to overcome

this problem using a proposal density that is dependent on the

observations, so as to guide the particles towards regions of the

state-space which harbor high likelihood.

We choose a Langevin-type ([25], [26]) proposal density q(·)
which is based on the gradient of the target density (which

includes the likelihood). For a target k, at the n-th step of the

Metropolis-Hastings algorithm, the Gibbs refinement sample

will be drawn as follows:

x̃t,k ∼ q(·|xn
t,k ) = N

(

xn
t,k + m,Σ

)

(19)

where xn
t,k results from the Metropolis-Hastings Joint Draw,

and

m =
h

2
∇ (log Π(xt,k ))

∣

∣

∣

xt , k =xn
t , k

Σ = hI4×4 , (20)

h being a step which needs to be chosen empirically so that

the performance of the algorithm is optimal, and Π(xt,k ), pro-

portional to the conditional posterior density p(xt,k |y1:M
1:t,1:N ,

xn
1:t−1,1:N ,xn

t,1:N \k ) for the current target of interest, being the

product of the corresponding likelihood and prior terms, derived

from (8); thus

Π(xt,k )

=

M
∏

i=1

p(yi
t,1:N |yi

1:t−1,1:N ,xn
1:t−1,1:N ,xn

t,1:N \k ,xt,k )

× p(xt,k |x
n
t−1,1:N ,xn

t,1:N \k ). (21)

Using (9) and (10),

log Π(xt,k ) =
M
∑

i=1

logN
(

yi
t,1:N ;µi

t ,Σ
i
t

)

(22)

+ log p(xt,k |x
n
t−1,1:N ,xn

t,1:N \k ). (23)

We need to calculate the gradient of

logN
(

yi
t,1:N ;µi

t ,Σ
i
t

)

= −
1

2
log 2π − log |Σi

t | −
1

2

(

yi
t,1:N − µ

i
t

)T

× Σi
t

(

yi
t,1:N − µ

i
t

)

(24)

with respect to xt,k and evaluate it at xn
t,k . In this expression,

both µ
i
t and Σi

t are dependent on xt,k (see (10) and (11)). In

order to simplify this problem, we assume all terms related to

covariances (thus Σi
t as well as the covariance terms in µ

i
t) to be

constant for the derivative. Under this assumption, denoting A =
(

yi
t,1:N − µi

t

)

and S = Σi
t , we calculate for each component c
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of xt,k = [xt,k ,x , xt,k ,y , xt,k ,ẋ , xt,k ,ẏ ]T (thus c ∈ {x, y, ẋ, ẏ}):

∂ATSA

∂xt,k ,c
=

(

∂ATSA

∂µ
i
t

)T
∂µ

i
t

∂xt,k ,c
(25)

with

∂ATSA

∂µ
i
t

= −2SA

∂µ
i
t

∂xt,k ,c
=

[

0, · · · , 0,
∂f i(xt,k )

∂xt,k ,c
, 0, · · · , 0,

]T

(k-th component)

(26)

because all terms dependent on targets other than the k-th target

have derivatives equal to 0. Moreover, the only term derived in

µ
i
t is µ2 (from (11)), according to our assumption, since the only

other term in µ
i
t that depends on xt,k is a covariance (namely

Σ2,1). On the other hand,

∂f i(xt,k )

∂xt,k

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂f i(xt,k )

∂xt,k ,x

∂f i(xt,k )

∂xt,k ,y

∂f i(xt,k )

∂xt,k ,ẋ

∂f i(xt,k )

∂xt,k ,ẏ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

10α
(xt , k , x −si

x )
(xt , k , x −si

x )2 +(xt , k , y −si
y )

2

10α

(

xt,k ,y − si
y

)

(xt,k ,x − si
x)2 +

(

xt,k ,y − si
y

)2

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(27)

the derivatives with respect to velocities being zero since the ob-

servations are only dependent on the distances between targets,

thus only on target positions. Thus the propagation of velocity

values is handled by the prior component alone. The derivative

of this prior component is calculated in a similar way, except no

assumptions are necessary.

Lastly, the expression of the acceptance ratio for the refine-

ment step needs to be updated as it is dependent on the proposal

density q (with the same notations as Algorithm 1):

β =

∏M
i=1 p(yi

t,1:N |yi
1:t−1,1:N , x̃1:t,1:N )

∏M
i=1 p(yi

t,1:N |yi
1:t−1,1:N ,xn

1:t,1:N )

×
p(x̃t,k |xn

t−1,1:N ,xn
t,1:N \k )

p(xn
t,k |x

n
t−1,1:N ,xn

t,1:N \k )

q(xn
t,k |x̃t,k )

q(x̃t,k |xn
t,k )

. (28)

V. SIMULATION RESULTS

In order to illustrate the performance improvements induced

by

– using a SMCMC approach compared to a classical particle

filtering approach (Section V-A with a figure showing the

superiority of SMCMC the higher the dimension of the

state-space is),

– replacing the prior proposal density with the gradient pro-

posal density (Sections V-B and V-C with figures showing

Fig. 1. Example of two chaotic trajectories with σ2
target = 10 m2 . The orange

circles represent the sensors, the lines represent the trajectories and the �/△
symbols represent their starting/ending points, respectively.

the varying amounts of performance gains depending on

shadowing noise variance and number of particles),

we assume that each target evolves independently from the

others in a field of 16 sensors as illustrated in Fig. 1, according

to a nearly constant velocity model [27], [28] which is defined

as follows for the j-th target:

xt,j = Ftxt−1,j + ut,j (29)

where Ft would be a 4 × 4 transition matrix and ut,j a vector

of independent realizations of N (04 ,Qt) with Qt a 4 × 4 state

noise covariance matrix, both Ft and Qt depending only on the

time interval between t and t − 1. Here Ft and Qt are defined

as:

Ft =

[

I2 τtI2

02 I2

]

,Qt = σtarget

[

(τ 3
t /3)I2 (τ 2

t /2)I2

(τ 2
t /2)I2 τtI2

]

(30)

with τt the time interval between two time steps, which is chosen

constant and equal to 1 second, and σ2
target = 10 m2 .

Fig. 1 shows an example of two trajectories created with these

parameters and chosen to be confined within a grid of sensors.

Due to σ2
target having a relatively large value, the trajectories

are chaotic, representing a difficult tracking scenario.

In order to assess the accuracy of the different algorithms

when the measurements are randomly generated with standard

deviation σ (for the shadowing noise) equal for all target-sensor

links, we compute the root mean square error (RMSE) between

the estimations and the real positions of the target (the estima-

tions of other variables such as velocities or accelerations are

not taken into account), in time, averaged on a number of Monte

Carlo (MC) runs:

RMSEt =

√

√

√

√

1

NM C N

N
∑

j=1

NM C
∑

l=1

‖x̂l
t,j − xt,j‖2 (31)

where x̂l
t,j is the estimated state of the j-th target from the

l-th MC run. Throughout this section, we choose NM C = 10,

Nburn = 1
10 and unless specified otherwise we keep a number
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Fig. 2. Log-scale performance of our SMCMC algorithm versus a SIR algo-
rithm with the same Gibbs refinement step as resample-move. Low measurement
noise (σ2 = (0.1)2 dB) and process noise (σ2

target = 0.01 m2 ).

of sensors M = 16, a number of targets N = 2 and a number of

time steps T = 100. For reference, the experiments used Matlab

software and a laptop featuring a 2.80 GHz Intel(R) Core(TM)

i7-4810MQ CPU.

A. Performance Compared to Particle Filtering

First, we compare the proposed SMCMC algorithm with the

particle filtering approach which was proposed in [10] in a sim-

ilar context for single target tracking. More specifically, the

particle filter used in this section is the Sequential Importance

Resampling (SIR) [29] in which a resample-move strategy is em-

ployed after the resampling stage in order to diversify the set of

particles [22]. This strategy uses exactly the same step described

as the refinement step in our proposed SMCMC, including the

gradient-based proposal, thus allowing for a fair comparison

between the two algorithms. For further comparison we also

implement a SIR without resample-move but instead using a

custom EKF-based proposal [30]. Fig. 2 shows the RMSE ob-

tained with all three algorithms in which Np = 200 particles

are used to do the inference, and the actual target trajectories

are generated with σ2
target = 0.01 m2 thus much smoother than

those from Fig. 1 (Section V-B below studies this more chal-

lenging case). In this simulation, the shadowing variance is

σ2 = (0.1)2 dB which is a low noise in the context of our exper-

iment, and different numbers of targets are used (N = 3, 6, 9).

Indeed, the SIR algorithm’s main weakness comes from the

degeneration of the importance weights in situations where ei-

ther the likelihood becomes too informative (with a too small

variance) and no longer covers regions where the proposal distri-

bution is high, or more interestingly in difficult situations where

the state-space is high-dimensional. In such a multi-dimensional

scenario, the results show the significant superiority of the pro-

posed SMCMC against the SIR, with computational times of the

same order; additionally, the average RMSE per target remains

about the same for SMCMC as the total number of targets in-

creases, while it deteriorates in the case of SIR. For reference, the

Fig. 3. Log-scale performance of the SMCMC algorithm using the gradient-
based proposal density versus the prior density, for high measurement noise
values on the chaotic trajectory set from Fig. 1 (difficult scenario).

computational time of this experiment with 3 targets, averaged

over the MC runs and the time steps, is approximately 3.4144

seconds for SIR with resample-move, 1.6141 seconds for SIR

with EKF-based proposal and 3.8601 seconds for SMCMC.

The difference between SIR with resample-move and SMCMC

corresponds almost exactly to an increase of 10% in the com-

putational time, while the SMCMC method uses an additional

burn-in period of precisely 10% of the total number of parti-

cles (in this case, 222 particles including the burn-in, compared

to 200 for SIR with resample-move and for SMCMC without

burn-in). Thus, SIR with resample-move and SMCMC have a

similar computational time for a single particle (and the same

remarks still apply with higher numbers of targets).

B. Performance in Difficult, Noisy Scenarios

We now demonstrate the benefits of using the gradient pro-

posal distribution presented in Section IV instead of the basic

prior proposal in our Gibbs refinement moves, in difficult sce-

narios. Given the chaotic hidden state trajectories from Fig. 1

(thus N = 2), and either σ2 = 12 dB (average-to-high measure-

ment noise) or σ2 = 42 dB (high measurement noise), we run

our algorithm with either the prior proposal density or the gradi-

ent proposal density from Section IV. Fig. 3 shows the resulting

RMSE performance with respect to the time step, for Np = 500.

As expected, the estimator using the gradient proposal performs

better. For reference, the computational time of this experiment,

averaged over the MC runs and the time steps, is approximately

1.5205 second with the prior proposal and 3.2878 seconds with

the gradient proposal, when σ2 = 12 dB. When σ2 = 42 dB,

the computational times are 1.8128 second and 3.8967 seconds,

respectively.

Still using this scenario, monitoring the relevance of the pro-

posed particles through values of the acceptance ratio from

the Gibbs refinement step in Table I shows that the gradient

proposal allows to significantly reduce the rejection of sam-

ples due to this step, which is proof that the set of particles
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TABLE I
ACCEPTANCE RATIOS IN THE GIBBS REFINEMENT STEP WHEN USING EITHER

THE PRIOR PROPOSAL DENSITY OR THE GRADIENT-BASED ONE, WITH

VARYING MEASUREMENT NOISE

Prior Gradient

σ2 = (0.1)2 0.0066 0.0392

σ2 = (0.3)2 0.0075 0.2669

σ2 = (1)2 0.0377 0.8198

σ2 = (2)2 0.1940 0.9117

σ2 = (4)2 0.4860 0.9500

Fig. 4. Log-scale performance of the algorithm using the gradient-based pro-
posal density versus the prior density, with low measurement noise (σ2 =
(0.1)2 dB) and average process noise (σ2

target = 1m2 ).

propagated is able to reach regions of the state-space featuring

much higher likelihood than with the prior proposal. Moreover,

from a theoretical point of view, the gain of performance due to

using the gradient proposal should decrease when the measure-

ment noise increases, since this density aims to guide the sam-

pled particles towards these regions of high likelihood, because

then such regions become very wide and inaccurate. Table I con-

firms that the gain in acceptance ratio indeed decreases when

the measurement noise increases. Fig. 4 from Section V-C also

confirms this by showing much larger performance gain with

lower noise (and also less chaotic trajectories) than in Fig. 3’s

difficult scenario.

C. Performance in Easier Scenarios With Varying Number of

Particles

Another benefit of using this gradient-based density can be

demonstrated when reducing the number of particles used for

the filter. Indeed, using the Gaussian prior density implies that

in order to draw only a few particles which will be located

in regions of interest where the likelihood function is high, it

is required to draw a very large number of particles in total,

whereas the gradient-based density has no such drawback (as

the acceptance ratios from Table I also demonstrate). Fig. 4

shows RMSE values in time for different numbers of particles,

displaying how the linear gap of performance between the two

proposal densities increases when the number of particles used

decreases. For reference, the computational time of this experi-

ment, averaged over the MC runs and the time steps, is approx-

imately 0.24 second when using 25 particles and 1.66 second

when using 200 particles.

VI. CONCLUSIONS

This paper proposes a sequential MCMC solution to multi-

target tracking with RSS measurements, taking into ac-

count spatio-temporal correlations between targets and using

a gradient-based proposal density for drawing particles in the

Gibbs refinement moves. The simulation results show a perfor-

mance improvement (about 50% increase in accuracy) in any

scenario compared to using the prior density as a proposal, and

the gain is especially large (above 90%) when using low number

of particles or when the model considered features informative

measurements. The SMCMC approach is also shown to be su-

perior to particle filtering in this setting when both use the same

Gibbs refinement moves.
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