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ABSTRACT 

The available data on intrinsic kinetic parameters of wood char combustion is limited in the 

literature. The intrinsic reactivity of porous char particles reflects the variance in the pore 

structure resulted from various compositions of parent biomass or coal fuels. In this study 

detailed kinetic models for calculating the intrinsic reaction rate and the Arrhenius 

parameters in two combustion zones are developed for the char combustion. The influence 

of the parent fuel composition and the thermal treatment on the char oxidative reactivity 

observed on the char surface area and particle density are explored through a mathematical 

model of the char service area and density. A higher reactivity of the wood pellets than coal 

and enhanced reactivity with the increasing pyrolysis temperature were observed as well.  
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1. INTRODUCTION 

The combustion of solid fuel particles is a complex series of sequential and simultaneous 

reactions that can be classified in two major steps. The first step is the devolatilization of 

hydrocarbons and oxygen radicals (pyrolysis), supplemented by a profound change in the 

particle structure. The second step is the combustion of the solid porous residue (char) 

generated in the first step [1, 2].  

Researchers have examined the biomass devolatilization products and many have 

developed reactivity models to calculate the kinetic parameters based on the three 

components classification (cellulose, hemicellulose and lignin). Biomass pyrolysis was 

described to a certain acceptable extent by a global irreversible first-order reaction, and the 

devolatilization rate is only a function of temperature [3-5]. However, the reaction can be 

demonstrated by more than one step and combines various species reactions. Agrawal [6] 

and Conesa et al. [7] found that the model proposed by Kilzer and Broido [8] (KBM) of wood 

pyrolysis had the best fitting with the TGA experimental data. The KBM assumes a 

sequence of reaction steps starting with the formation of anhydrocellulose (Ce*) and tar then 
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the intermediate Ce* decomposes into volatiles and char. Mania et al. [9], Branca et al. [10], 

and Martin-Lara et al. [11] assumed three parallel non-interactive decomposition reactions of 

the three components (cellulose, hemicellulose and lignin) in sugarcane bagasse and waste 

wood with a first-order model for hemicellulose and cellulose, and a third-order model for 

lignin. However, it was found that Lignin decomposes at a wide range of temperatures that 

overlap with the other components [12].  

The char reactivity is an imperative parameter of the simulation and process design of the 

combustion process due to the major contribution of the char oxidation to the heat value of 

the fuel. There are many rate law models used to explain the char combustion in the 

literature. The char combustion data were treated with Arrhenius model as a global n-order 

reaction of the oxygen pressure [13-17].  

For the combustion of porous carbon particles, Essenhigh  [18], assumes that the complex 

reaction occurs in a sequence of steps starting with the diffusion of oxygen through the 

stagnant boundary layer of nitrogen outside the particle to reach the external surface of the 

particle, chemisorption of oxygen on the external surface of the particle, internal (pore) 

diffusion, then further reaction of the remaining oxygen and carbon, and finally the diffusional 

discharge of the reaction products. The char is assumed a uniform sphere of carbon, and the 

reaction rate is the mass of carbon consumed per unit area, and proportional to the oxygen 

pressure. He represents the reaction rate as follows:  

𝑹𝑨 = −𝝆𝒑.
𝒅𝒓

𝒅𝒕
=  −𝒌. 𝑷𝑶𝟐  (1) 

𝑤ℎ𝑒𝑟𝑒; 

𝑅𝐴: 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, (𝑘𝑔. 𝑚−2. 𝑠−1) 

𝑟 ∶ 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑟𝑎𝑑𝑖𝑢𝑠, (𝑚) 

𝜌𝑝 ∶ 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, (𝑘𝑔. 𝑚−3) 

𝑘 ∶ 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, (𝑠−1) 

𝑃𝑂2: 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑥𝑦𝑔𝑒𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, (𝑘𝑔. 𝑚−2) 

The Langmuir-Hinshelwood rate expression, assumes that the reaction rate is controlled by 

two kinetic mechanisms, first is a non-dissociative adsorption of oxygen particles on the 

carbon surface to form the complex C(O), and the second step is the desorption of C(O) [13, 

19, 20] .  

𝐶 +  𝑂2 → 𝐶(𝑂) ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.  (2) 

𝐶(𝑂) → 𝐶𝑂   (3) 

In 2001, Hurt found that both the single step global model and the Langmuir-Hinshelwood 

model do not describe the reaction order data of char combustion [20]. Observations of CO2 
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forming in the reaction suggested the reaction of gaseous oxygen with the complex C(O) as 

an intermediate step [21, 22] 

𝐶 +  𝑂2 → 𝐶(𝑂)   (4) 

𝐶(𝑂) +  𝑂2 → 𝐶𝑂2 +  𝐶(𝑂)    (5) 

 𝐶(𝑂) → 𝐶𝑂   (6) 

Thermal treatment of biomass and coal via a thermogravimetric analysis (TGA) has been 

extensively used to study the solid-phase burn-out rate [15, 21, 23-28]. Still, the intrinsic 

reactivity of biomass char combustion in comparison to coal has not gained enough interest 

and investigations in the literature. Also, the effect of the ash content on the pore surface 

area is not intensively highlighted in research work [29]. The intrinsic reactivity is the reaction 

rate per unit of total internal pore surface area per unit pressure of oxygen in the absence of 

any mass transfer limitations [30, 31].  

In 1972, Smith & Tylor [32] have formulated the relation between the apparent rate of 

reaction and the intrinsic reactivity for a first-order irreversible reaction of a porous solid as 

follows: 

𝑅𝑎𝑐 = 𝑅̈𝑠𝐴𝑔𝜌𝑎𝛾 (7)  

𝑤ℎ𝑒𝑟𝑒; 

: 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 ( ≤ 1).  

𝐼𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑎𝑠 𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑒  

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  [33] 

𝐼𝑛 𝑐ℎ𝑎𝑟 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 𝑖𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝐴𝑔 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 

 𝑓𝑜𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑟𝑎𝑡𝑒 𝑤𝑎𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑡𝑜 𝑅̈  [31].  

𝑅̈: 𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑒𝑡𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑐ℎ𝑎𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛, (𝑘𝑔 𝑐𝑎𝑟𝑏𝑜𝑛. 𝑚−2. 𝑠−1)  

𝐴𝑔: 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑜𝑟𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎, (𝑚2. 𝑘𝑔−1) 

𝜌𝑎: 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, (𝑘𝑔. 𝑚−3) 

γ: 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑡𝑜 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎, (𝑚)  

Then, Smith [2, 30], and Laurendeau [31] have given the details of calculating the 

effectiveness factor from the Thiel modulus  for first and n-order reactions of porous solids. 

Equation (7) has been widely used in the modelling of coal char combustion and gasification 

in literature [34-39]. Adanez et al. [40] used the TGA data to predict the intrinsic kinetic 

parameters of wood chars and applied the kinetic parameters on the fluidized bed 

combustion boilers. Recently, Gao et al. [41] used the random pore model (RPM) to 

calculate the intrinsic reactivity of rice husk char gasification with CO2. They determined the 

intrinsic reaction rate constant as a function of the gasification temperature and the oxidant 
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partial pressure. However, they assumed that gasification of the char at 950 C is in the 

combustion zone I where there is no diffusion limitation. Therefore, they did not consider the 

effectiveness factor in the determination of the intrinsic reactivity. This assumption at such a 

high temperature does not comply with all the published data on combustion zone I that are 

reviewed by Smith [2]. 

The intrinsic reactivity of a char depends on three elements; 1. Concentration of edge carbon 

atoms and dislocations, 2-mineral matter and trace elements, and 3- oxygen and hydrogen 

contents [31]. The overall reactivity also depends on the char porosity [42]. In addition, the 

char preparation conditions, i.e. heating rate, final pyrolysis temperature, and the residence 

time of the pyrolysis step, have a great effect on the produced char reactivity [43, 44]. The 

pyrolysis at low temperatures increases macropore size and decreases in the micro and 

mesoporous due to re-polymerization, particularly for plasticizing bituminous coals (high 

volatile matter content), and therefore increases the specific surface area of the char. While 

at higher pyrolysis temperatures the structural carbon crystallization increases, thus resulting 

in a lower concentration of the active sites [42, 43]. Similar conclusions were reached for 

anthracite coal due to the graphitization [45], and for sub-bituminous coal [46] due to the 

microporous blockage. Moreover, the char density increases with the increase of the heat-

treatment temp [47].  

The work of this paper aims to evaluate the thermal behaviour of biomass at various 

devolatilization temperatures, and the reactivity of the biomass char combustion in 

comparison to coal. In addition, the intrinsic kinetic parameters and reactivity of the biomass 

char combustion are determined and evaluated in comparison to coal. Furthermore, the 

effect of the char preparation conditions, parent fuel composition, and ash content on the 

char reactivity are also investigated. Non-isothermal TGA data are used in the pyrolysis 

stage with the aim of producing chars at a certain temperature and burn them isothermally. 

Multiple sets of experiments are performed to produce char at different temperatures. 

 

2. MATERIALS & EXPERIMENTAL METHODS  

Two types of wood pellets and two coal samples are used in this comparison. The biomass 

samples are the milled US white wood pellets (USWWP) imported by a power company in 

2015, and the Canadian milled wood pellets (CAWWP) imported by E-ON company in 2014. 

Both are mainly produced from soft wood parts such as spruce, fir and pine. The two coal 

samples used in this comparison are one from Vietnam-Hon gai region, which is infrequently 

studied in the literature (VC) and the other one is the Colombian coal El Cerrijon origin 

(ELC). These two types are the regularly imported types of coal to the UK.  
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The proximate analysis measurements on as received (ar) fuels were performed according 

to the BSI standard methods BS EN ISO 18122, BS EN ISO 18123, and BS EN ISO 18134-

1 using a Carbolite LHT6/30 furnace for ash content analysis and a Carbolite muffle furnace 

SCF 1100 for volatile matter content. The ultimate analysis on dry-ash-free (daf) basis, was 

performed with a Perkin Elmer flash2000 elemental analyser according to the BSI standard 

method BS ENISO 16948 to determine the C, H, N, S of each sample. The proximate and 

ultimate analysis of the samples are given in Table 1. In contrast to the other three samples, 

the VC sample shows a significantly high ash content at 38.25% wt. The influence of this 

high percentage in ash content on the char reactivity is intensely discussed in this paper.  

 

Table 1 

Proximate and ultimate analysis of the selected fuels 

Sample M.C.% Ash% VM% FC%* GCV, kJ/kg 

USWWP 5.48±0.26 0.67±0.04 86.32±0.61 7.53 18,587±40 

CAWWP 6.37±0.40 0.74±0.74 84.51±0.97 8.37 18,882±35 

ELC 3.96±0.08 1.77±0.00 44.48±0.25 49.79 29,764±05 

VC 7.52±0.28 38.20±0.14 10.29±0.29 43.99 21,883±62 

    N C H S O* 

USWWP  0.18±0.02  49.34±0.24   6.14±0.04  <0.1  44.04  

CAWWP  0.76±0.01  47.70±0.16   5.05±1.10  <0.1  45.22  

ELC  1.54±0.05 76.41±0.60  5.10±1.23  < 1.0  15.08  

VC  1.31±0.00  92.57±1.12   3.61±0.03  < 1.0  2.20  

* determined by difference 

 

2.1. Sample Preparation For TGA 

Samples of 10 g were oven dried at 105 C for 4 hours and the weight is checked after the 

third hour every 20 minutes to ensure a constant weight is obtained. Then the samples are 

cooled in a desiccator and crushed in a mortar and pestle to homogenise them for sieving to 

less than 80 µm particles, and stored in sealed containers for further analysis. The published 

studies have shown that in TGA experiments, the pulverized coal or biomass are within the 

particle size 63-100 µm [2, 47-50]. The small particle size is necessary for the TGA testing to 

ensure uniform heat distribution and gas diffusion within the sample particles, and to 

eliminate the effect of particle size on the rate of pyrolysis [51]. 5 mg  5% of each fuel type 

were used in the TGA tests to achieve consistency and uniform heat transfer throughout the 

sample particles. 

2.2. Thermogravimetric Analysis (TGA) 

The TGA experiments were performed with the Perkin-Elmer Pyris 1 TGA analyser in two 

steps.  First, is the pyrolysis with an inert gas (nitrogen) to a certain temperature and hold 
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the temperature constant until a steady weight is achieved, then the sample is subjected to 

air flow for the char combustion until a constant weight is obtained. 

For pyrolysis step, pure oxygen-free nitrogen gas was used as the inert gas with a total flow 

rate 40 mL min-1 at room temperature. The gas flowrate is controlled by a gas station control 

valve. Samples of 5 mg  5% were placed in a platinum pan of 5 mm diameter and 1 mm 

height in a 10-mm diameter furnace.  

The nitrogen was kept purging the furnace for 20 minutes before the heating step to 

eliminate any air in the furnace tube and stabilize the balance reading. Then, the sample 

was heated to 110 C and held for 20 min to remove any moisture, then heated to the final 

temperature at a constant heating rate of 100 C min-1. Iso-thermal conditions at the final 

temperature were continued until a steady weight was achieved. Afterwards, the purging gas 

was switched to air for char Combustion in the same flowrate and temperature. The test was 

ended when the final residue mass was constant. Tests were repeated twice for each 

operating condition.  

This method of devolatilization followed by immediate char combustion without cooling and 

reheating to the combustion temperature is analogues to the proximate analysis of solid 

fuels used by Ottaway [52] to calculate the volatiles and char components of coal. Although, 

extensive research has been carried out on the coal char combustion treating the fuel in two 

separate steps; first, the devolatilization under an inert gas then cooling the produced char, 

reheat it under oxidizing conditions in different temperatures and gas pressure, the TGA 

experimental matrix is designed in a separate way in this study. The approach is to resemble 

the conditions demonstrated in the industrial scale of pulverized combustion where the fuel 

particles are devolatilized and combusted at the same time. In addition, the consistency of 

the devolatilization and the char combustion temperatures produces better prediction of the 

char structure alteration with temperature increase, and the cooling step effects on the char 

structure, is avoided.  

3. MATHEMATICAL MODEL OF THE CHAR COMBUSTION 

The char combustion rate obtained from the TGA data can be simply represented by the rate 

law of a single particle combustion as follows [2]:  

𝑅𝑚 =
1

(1−𝑎)𝑧 .
𝑑𝛼

𝑑𝑡
= 𝐾𝑜. [𝐶𝑜]𝑛         (8) 

𝑤ℎ𝑒𝑟𝑒; 

𝑅𝑚: 𝑟𝑒𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, 𝑔𝑟𝑎𝑚 𝑐𝑎𝑟𝑏𝑜𝑛 𝑟𝑒𝑎𝑐𝑡𝑒𝑑 𝑝𝑒𝑟 𝑔𝑟𝑎𝑚 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐ℎ𝑎𝑟 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑. (𝑠−1) 

𝛼 ∶ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑟𝑦 − 𝑎𝑠ℎ − 𝑓𝑟𝑒𝑒 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑐𝑎𝑟𝑏𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡. 

𝐾𝑜: 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, (kg. m−2. 𝑠−1. [. 𝑚−3]−𝑛) 
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[𝐶𝑜]: 𝑏𝑢𝑙𝑘 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑔𝑎𝑠 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛, (kg. 𝑚−3) 

𝑧, 𝑛: 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 𝑓𝑜𝑟 𝑐𝑎𝑟𝑏𝑜𝑛 𝑎𝑛𝑑 𝑜𝑥𝑖𝑑𝑎𝑛𝑡  

𝑡: 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒, (𝑠) 

However, in order to understand the overall reactivity, the porous characteristics of the char 

requires the consideration of the local gas concentration on the external and internal surface 

area of the char pores. In addition to the diffusion limitations of the reactant gas through the 

boundary layer, the gas diffusion to the internal pore voids is another factor of the reaction 

rate to be considered. Thus, the true chemical reaction rate of the char combustion (the 

intrinsic rate), is the reaction rate per unit surface area of the internal or external pore 

surface area where there is no heat or mass transfer limitations [30].  

In 1978, Laurendeau [31] described the global intrinsic surface reaction rate (per unit of 

surface area) 𝑅̈ as a function of the concentration of the carbon atoms per surface area of 

the pore and the local concentration of the oxidant gas as follows: 

𝑅̈ = 𝑚𝑐  . 𝑟𝑠([𝐶𝑡]. [𝐶𝑠] . 𝑇])              (9) 

𝑤ℎ𝑒𝑟𝑒,   

𝑅̈: 𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑒𝑡𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑐ℎ𝑎𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛, (𝑘𝑔 𝑐𝑎𝑟𝑏𝑜𝑛. 𝑚−2. 𝑠−1)  

𝑚𝑐 ∶ 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑎𝑡𝑜𝑚 (𝑘𝑔. 𝑎𝑡𝑜𝑚−1)  

𝑟𝑠 ∶ 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑎𝑡𝑜𝑚𝑠 𝑓𝑟𝑜𝑚 𝑠𝑜𝑙𝑖𝑑 𝑡𝑜 𝑔𝑎𝑠 (𝑐𝑎𝑟𝑏𝑜𝑛 𝑎𝑡𝑜𝑚. 𝑚−2. 𝑠−1)  

[𝐶𝑡] ∶ 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑎𝑟𝑏𝑜𝑛 𝑠𝑖𝑡𝑒𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎, (𝑎𝑡𝑜𝑚. 𝑚−2) 

[𝐶𝑠] ∶ 𝑙𝑜𝑐𝑎𝑙 𝑔𝑎𝑠 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛, (𝑘𝑔. 𝑚−3)  

If we approximate the carbon chemical rate as follows: 

𝑟𝑠 = 𝑘. [𝐶𝑡]. [𝐶𝑠]𝑚         (10) 

then, we obtain, 

𝑅̈ = 𝑚𝑐 . 𝑘. [𝐶𝑡]. [𝐶𝑠]𝑚         (11) 

𝑅̈ = 𝐾̈. [𝐶𝑠]𝑚          (12) 

𝑤ℎ𝑒𝑟𝑒,   

𝑚 ∶ 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟  

𝑘: 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑟𝑎𝑡𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑠−1)   

𝐾̈: 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑟𝑎𝑡𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑚𝑐. 𝑘. [𝐶𝑡], (kg. m−2. s−1. (kg. m−3)−m)  

The relation between the overall burn-out rate and the intrinsic rate on the particle surface 𝑅̈𝑠 

is frequently expressed as follows [30, 31]: 

𝑅𝑚 = (. 𝐴𝑔 + 𝐴𝑒). 𝑅̈𝑠         (13) 
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Then we obtain 

𝑅𝑚 = (. 𝐴𝑔 + 𝐴𝑒). 𝐾̈. [𝐶𝑠]𝑚         (14) 

𝑤ℎ𝑒𝑟𝑒,   

: 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 ( ≤ 1).  

𝐼𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑎𝑠 𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑒  

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  [33] 

𝐼𝑛 𝑐ℎ𝑎𝑟 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 𝑖𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝐴𝑔 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 

 𝑓𝑜𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑟𝑎𝑡𝑒 𝑤𝑎𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑡𝑜 𝑅̈𝑠  [31].  

𝐴𝑔: 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑜𝑟𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎, (𝑚2. 𝑘𝑔−1) 

𝐴𝑒: 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎, (𝑚2. 𝑘𝑔−1) 

[𝐶𝑠]𝑚 ∶ 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑎𝑠 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒, (𝑘𝑔. 𝑚−3)m 

In most cases . 𝐴𝑔  ≫  𝐴𝑒 then we obtain:  

𝑅𝑚 = . 𝐴𝑔. 𝐾̈. [𝐶𝑠]𝑚          (15) 

The effectiveness factor is a function of the Thiele modulus ∅ and it can be calculated from 

the following relation [2]: 

[
∅2.(𝑚+1)

2
] =

 𝛾.𝑅𝑚(𝑚+1)

[8.𝐷𝑒.𝐶𝑠]
          (16) 

𝑤ℎ𝑒𝑟𝑒,   

∅: 𝑇ℎ𝑖𝑒𝑙𝑒 𝑚𝑜𝑑𝑢𝑙𝑢𝑠   

𝐷𝑒: 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, (𝑚2. 𝑠−1) 

The right hand side of Eq. (16) can be calculated from the experimental data, then  can be 

calculated from the relation between  and 2 as derived by Mehta and Aris [31]. 

The effective diffusion coefficient is related to the overall diffusion coefficient of the gas 

through the particle internal and external surface area as proposed by Satterfield [53]: 

𝐷𝑒 =  
𝐷.

2             (17) 

𝑤ℎ𝑒𝑟𝑒,   

𝐷 ∶ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑜𝑟𝑒 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓. (𝑚2. 𝑠−1) 

 ∶ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 

2: 𝑡𝑜𝑟𝑡𝑢𝑜𝑠𝑖𝑡𝑦 = (sin)−1
, 

𝑤ℎ𝑒𝑟𝑒  𝑖𝑠 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑝𝑜𝑟𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎.  

It is assumed that   = 45𝑜 [31], hence, 𝜏 = √2.  

The overall diffusion coefficient 𝐷 is calculated according to the capillary diffusion of the 

single pore theory [31]. According to this theory, the oxygen diffusion through a single 

cylindrical pore comprises the molecular diffusion and Knudsen diffusion modes. Molecular 

diffusion (𝐷𝑎) is a function of both the temperature and pressure as in Eq. (18). The Knudsen 
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diffusion (𝐷𝑘) characterizes the transport caused by the collision of oxygen atoms with the 

pore wall, and is given by Eq. (19). When the pore size is very small (<1 m), the Knudsen 

diffusion is predominant [2].  

𝐷 =   (
1

𝐷𝑎
+

1

𝐷𝑘
)

−1
          (18) 

𝐷𝑎 =  𝐷𝑜  (
𝑇

𝑇𝑜
)

7/4
.

𝑃

𝑃𝑜
          (19) 

𝑤ℎ𝑒𝑟𝑒,   

𝐷𝑜: 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑎𝑡 𝑆𝑇𝑃. (𝑚2. 𝑠−1) 

𝑃: 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑎𝑡𝑚), 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑒𝑛𝑜𝑡𝑒 (𝑜)𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝐷𝑘 =   
𝜎

3
(

8𝑅𝑇

𝜋.𝑀𝑂2
)

1/2
          (20) 

𝑤ℎ𝑒𝑟𝑒,   

𝜎: 𝑝𝑜𝑟𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑚) 

𝑅: 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 8. 314459 (𝑘𝑔. 𝑚2. 𝑠−2. 𝑚𝑜𝑙−1. 𝐾−1) 

𝑀𝑂2: 𝑜𝑥𝑦𝑔𝑒𝑛 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔. 𝑘𝑚𝑜𝑙−1) 

The pore mean radius 𝑟𝑝  can be calculated from the following equation [2]: 

𝑟𝑝 = 20.5/𝐴𝑔𝜌𝑝          (21)  

𝑤ℎ𝑒𝑟𝑒,  

𝜌𝑃 ∶ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐ℎ𝑎𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, (𝑘𝑔. 𝑚−3 )      

The surface concentration of the oxidant gas [Cs] can be calculated from the application of 

Fick’s law to the boundary layer diffusion to calculate the overall mass transfer coefficient 

and it can be substituted into the overall particle reaction rate [31] to obtain the final relation 

as follows: 

𝑅𝑚 =   
12  𝐷𝑎

𝜌𝑃.𝑑𝑝
2 (𝐶𝑜 − 𝐶𝑠)         (22) 

        

∴ 𝐶𝑠 = 𝐶𝑜 −
𝑅𝑚.𝜌𝑃.𝑑𝑝 

2

12  𝐷𝑎
         (23) 

𝑤ℎ𝑒𝑟𝑒,  

𝑑𝑃 ∶ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 , (𝑚)   

 ∶ 𝑔𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,  = 𝑀𝑐 . (𝑔.𝑀𝑔)−1 

𝑀𝑐 , 𝑀𝑔 ∶ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑎𝑛𝑑 𝑜𝑥𝑖𝑑𝑖𝑧𝑖𝑛𝑔 𝑔𝑎𝑠, (𝑘𝑔. 𝑘𝑚𝑜𝑙−1)   

𝑔 ∶ 𝑚𝑜𝑙𝑎𝑟 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

For the char combustion the primary product is assumed to be CO therefore = 3/4.  
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The char particle size and density vary with the type of the parent coal, the heating rate 

during devolatilization, and the combustion temperatures. The mass losses in the TGA 

samples are due either to the size reduction or density decrease. At any time in the char 

burn-off, we assume the particles are spherical; 

1 −  𝛼 =
𝑑𝑝

3𝜌𝑝

𝑑𝑝𝑜
3 𝜌𝑝𝑜

          (24) 

𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 (𝑜)𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  

𝑑𝑃𝑜 ∶ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 , (𝑚)   

𝜌𝑃𝑜 ∶ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐ℎ𝑎𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, (𝑘𝑔. 𝑚−3)  

 

3.1. COMBUSTION ZONE I   

It is established that in Zone I (the combustion occurs at temperatures below 900 K) the 

reaction occurs with a deep penetration of oxygen to the internal pores due to the slow 

reaction at the lower temperatures [20]. Thus, the pore diffusion limitation is insignificant, 

and the rate coefficient 𝐾̈ is independent of the particle size [2, 14, 31, 54]. In this case 

 = 1 (∅ ≤ 0.5 ) and the oxygen concentration at the surface is equal to the bulk 

concentration (𝐶𝑠 =  𝐶𝑜) and the value of 𝐾̈and m can be calculated from the overall reaction 

rate as follows: 

𝑅𝑚 = 𝐴𝑔. 𝐾̈. [𝐶𝑠]𝑚          (25) 

The apparent activation energy of the reaction characterizes the intrinsic (true) reactivity of 

the char particles. In support of this model, Adanez et al. [40] illustrated the effectiveness of 

this model in predicting the kinetic parameters of five wood species [40]. Also, Dupont et al. 

[29] expressed the kinetic reaction rate by calculating the activation energy Ea of a reference 

sample and applied it to 21 samples of wood chips multiplied by an integral parameter that 

represents the differences between the wood species due to the mineral content of each 

one. They demonstrated that this parameter is linked to the ratio of the potassium/silicon 

content in the fuel.  

3.2. COMBUSTION ZONE II 

At high-temperature char combustion, where the reaction is under both the control of the 

chemical kinetic rate and oxygen diffusion rate to the pore walls, the effect of oxygen 

pressure and the particle size are both equally important. Thus both particle size and density 

are reduced [31]. The char pore structure is assumed to be large spherical vesicles with a 

porous structure on the walls [47]. The effectiveness factor decreases with increasing 

temperatures as the surface area available for the reaction decreases, hence  =
1

∅
 𝑓𝑜𝑟 ∅ ≥

5.0. Essenhigh [55] approximated the Thiele modulus as follows: 
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∅𝑚 = 𝛾. [
𝐴𝑔.𝜌𝑝.𝐾̈.𝐶𝑠

𝑚

.𝐷𝑒.𝐶𝑠
]

1/2

          (26) 

Substituting , and 𝛾 = 𝑑𝑝/6 for spherical particles in Eq. (15), the overall reaction rate for 

Zone II becomes: 

𝑅𝑚 =
6

𝑑𝑝
[
.𝐷𝑒𝐴𝑔.𝐾.̈ 𝐶𝑠

𝑚+1

𝜌𝑝
]

1/2

         (27) 

From the experimental value of 𝑅𝑚 the intrinsic rate coefficient 𝐾̈ can be calculated. 

This model combines the effects of particle size and the oxygen pressure on the overall rate 

of the char combustion. It can be seen from Eq. (27) that the overall particle reaction rate is 

inversely proportional to the particle size and to the square rout of the particle density. 

Laurendeau [31] reached the same conclusion for the combustion in Zone II. Essenhigh [55] 

also concluded that there is a negative dependence of the char combustion rate on the initial 

char density. 

However, from the mathematical derivation of the rate model, the dependence of the intrinsic 

reaction rate 𝑅̈ and coefficient 𝐾̈ on the initial char density is negligible, and the reason for 

this is the inverse dependence of the effectiveness factor  and the surface gas 

concentration Cs on the particle density and thus these two effects cancel each other.  

Comparing Eq. (25) and (27), the apparent order and activation energy can be related to the 

intrinsic values; =
𝑚+1

2
 , and 𝐸𝑎 =

𝐸𝑡

2
 . 

 

4. CALCULATIONS OF THE CHAR PHYSICAL PROPERTIES  

The structural composition of biomass (cellulose, hemicellulose, lignin and ash) and the 

petrography of coal constituents (vitrinite, exinite and intertinite) determine the physical 

properties of the char produced, thus affecting its initial and evolved properties during char 

burn off. The physical properties, such as internal pore surface area, particle apparent 

density, true density, porosity, pore diameter, and particle diameter, are important to explain 

the char behaviour during combustion. The char specific surface area is a defining 

parameter of its intrinsic reactivity in the chemical control zone as shown in Eq. (25). 

Whereas, the other properties are important in the diffusion limitations zone as shown in Eq. 

(27). Moreover, those properties can be different for the same char produced at different 

temperatures. 

Due to the experimental design of the TGA data in this study, it was difficult to have the char 

samples tested for their physical properties before the combustion step. Therefore, a review 

of the published experimental data on white wood and coal particles is performed to examine 

the change in physical properties of the char with the parent fuel composition and the char 
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preparation temperature. Gan et al. [56] related the coal surface area Ag to the carbon 

content of coal and found that the CO2 surface area decreases with an increase of C% from 

70 to75% and then increases again with higher carbon content. However the Ag values are 

not on one line but in a band of 80 m2 g-1. Chan et al. [47] plotted Ag of three bituminous coal 

chars versus the char preparation temperature. They found that the minimum surface areas 

were of chars produced in the temperature range 773 – 973 K. However, both correlations 

cannot be applied for all ranges of carbon content and temperatures.  

Williams et al. [35] correlated the initial surface area of the coal chars produced at a 

temperature 1573 K in a drop tube reactor with the fixed carbon content of the parent coal 

and they found the following model: 

𝐴𝑔 = 4764.2𝐶2 − 7324.9𝐶 + 2912.9  (28) 

However, this model cannot be applied to the temperature range 773-973 K of this study as 

it is based on data of higher temperatures. Consequently, the published data of coal chars 

surface area in the literature were examined for correlation with the coal composition and the 

char preparation temperature. Data from Nandi [45], Harding et al. [57], Zhu et al. [44], 

Arenillas [58], Chan [47], Masnadi [59], and Williams et al. [35] were selected for the 

correlation of the coal char surface area with the temperature and the coal constituents.  

The criteria for data selection were as follows: (a) the method of measurement was CO2 

absorption, (b) the particle size close to the particle size of the samples in this study, (c) the 

char preparation temperature and method, and (d) the temperature range (773 – 1273 K).  

Figure 1 illustrates the dependence of coal char surface area on various parameters such as 

Cdaf, the ashdb and the VMdb and the char preparation temperature. Interestingly, the data in 

Fig. 1-(a) shows a minor dependence of the specific char surface area Ag with a wide range 

of the coal carbon content (daf), in the temperature range 773 to 1073 K. The linear 

regression is poor and has only 0.075-0.647 coefficient of determination R-Squared, and a 

low slope range of -0.104 – 0.704, whereas, at the temperature 1273 K, the Ag behaviour is 

completely different, as the Ag trend is parabolic and has a minimum at carbon content 86-

87%. The regression R-Squared is 0.598, and the correlation equation at 1273 K is: 

𝐴𝑔 = 9677.537 − 218.132𝐶𝑑𝑎𝑓 + 1.249𝐶𝑑𝑎𝑓
2       (29) 

Higher effect of the ash content on the Ag can be observed in Fig.1-(b). The linear increase 

of Ag with the ash content of the coal is more consistent in the temperature range 773-1173 

K, and it is shown in the high regression R-Squared at 0.946-0.999 with a higher slope range 

at 1.642- 1.807, whereas, the behaviour of Ag with the ash content at 1273 K is parabolic 

with 0.816 R-Squared and the correlation equation is as follows: 
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𝐴𝑔 = 286.547 − 35.516𝐴𝑠ℎ + 2.525𝐴𝑠ℎ2      (30) 

Like the effect of carbon content, a trivial effect is observed on the Ag with the increase of the 

VM content of the coal as can be seen in Fig. 1-(c). The linear regression has only 0.062-

0.535 R-Square, and a low slope range of -0.339 – 0.056, whereas, at the temperature 1273 

K, the Ag trend can be assumed parabolic, with R-Squared 0.612, and the correlation 

equation at 1273 K is: 

𝐴𝑔 = 296.616 − 15.407𝑉𝑀 + 0.348𝑉𝑀2      (31) 

Likewise, the preparation temperature effect on the Ag is linear until 1173 K, and then a 

sudden exponential increase or decrease occurs in the char surface area depending on the 

coal carbon content as shown in Fig. 1-(d).  

These correlations suggest that at low temperatures until 1173 K, the char preparation 

temperature and the ash content in the coal have the most significant effects on the char 

specific surface area, and at higher temperatures the carbon content is the leading 

parameter in the change of the char specific surface area. 

In the case of biomass, data from Suliman et al. [60], Masnadi et al. [59], Lopez-Gonzalez et 

al. [61], Vallejos-Burgos et al. [62], Chowdhury et al. [61], and Abdul Halim & Swithenbank 

[63], were also examined with the biomass composition and the temperature. In contrast to 

coal, the leading parameter is the volatile matter not the ash content, in addition to the char 

preparation temperature. This result can be explained by the high volatile matter content in 

wood that is released at lower temperatures than coal leading to a char with higher surface 

area and higher porosity. 

Based on above observations, the published data were used to correlate the Ag to the VM 

and the temperature in the case of biomass, and the ash content and temperature for coal 

using OriginPro 2017 to find a non-linear multivariable fitting function for the correlation. 
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Fig. 1. Correlation of the char surface area to the composition of the parent fuel: (a ) 
Cdaf%, (b) ash content, (c) VM content, and (d) temperature. 

In the same manner, data on the true and apparent densities of the coal char from Nandi et 

al. [45], Smith [64],  Smith & Tyler [32], Lu et al. [65], Matsuoka et al. [66], and Chan et al. 

[47], and data of the biomass char true and apparent densities published by Suliman et al. 

[60], Guo & Lua [67], Vaughn et al. [68], Pastor-Villegas et al. [69] and other wood pellets 

data from the Energy research Centre of the Netherlands ECN database of biomass char 

[70-75] were selected to correlate the char apparent and true densities to the fuel 

composition and the temperature. As the carbon content is the major parameter that affects 

the density, data were plotted versus carbon content and temperature as shown in Fig. 2. 

Clearly, it can be seen from Fig. 2 that the true density of the coal char increases with both 

C% and the temperature by a band of 1000 kg m-3, whereas, the influence on the char 

density of biomass is less evident and more random than on the coal char. The linear 

regressions in Figure 2-a prove this observation. The slope of coal char Ag is 55.27±5.25, 

whereas for biomass the slope is 15.46±6.95. Also, the regression factor R-Squared is 0.834 

for coal char and 0.553 for biomass. Figure 2-b shows linear regression for biomass char Ag 

in a trivial slope of 0.837±0.5446 and R-Squared 0.371. Again, the reviewed data were 
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correlated to generate a multivariable function of the char density to the fuel constituents and 

the temperature, using OriginPro 2017 program.  
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Fig. 2. Dependence of the true density of char on (a) C% (daf), and (b) temperature. 

 

5. RESULTS & DISCUSSION 

5.1. CALCULATION OF CHAR PHYSICAL PROPERTIES 

5.1.1. SPECIFIC SURFACE AREA 

For biomass char the best correlation of Ag with VM and the temperature was found, with an 

average error of 11.0%, to be: 

𝐴𝑔 = 1.65𝑉𝑀1.13 + 44𝑇0.5 − 1248       (32) 

The sensitivity analysis showed that the leading parameter in the correlation is the 

temperature, with a 1% increase in Ag for every 10 K increase in the temperature. Also, the 

volatile matter is an important parameter as for every 1% increase in the VM, the Ag 

increases by 1%. 

Similar correlation attempt for the coal was performed, however, due to the change in the 

char structure at a temperature higher than 1073 K, two correlations were found for the 

surface area of the coal char; one for the temperature region 773-973 K as in Eq. 2 with a 

13.8% error, and another correlation for the temperature region 1073-1273 K as shown in 

Eq. 3 with a 15.3% error: 

𝐴𝑔 = 0.1𝐴𝑠ℎ0.7 + 𝑇0.07 + 103        (33) 

𝐴𝑔 = 2.5𝐴𝑠ℎ0.89 + 43 𝑇0.5 − 1370        (34) 

Yet in this case, the sensitivity analysis showed that Ag of the coal char is more stable with 

the change of ash content and the temperature in the region of 773-973 K, as such for every 

10 K increase in temperature there is only a 0.4% increase in the Ag. Also, the ash content 

had insignificant effect on Ag, in which every 5% increase in the ash content, the surface 
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area increases by 0.1%. It was found that the carbon and the volatile matter contents had 

no significant effect on the char surface area. In contrast, at higher region of the 

temperature, the Ag is highly sensitive to the ash content as for every 1% increase in the ash 

content, the Ag increases by 2-4%, and for every 10 K increase in the temperature results to 

a 5.0% increase in the Ag.  

Equations (1), (2) and (3) were used to predict the char specific surface area of each sample 

used in this study at different temperatures. 

5.1.2. INITIAL CHAR TRUE DENSITY 

a correlation was derived for the true density of the char based on C% (daf) and the 

preparation temperature. For biomass, the true density formula was found to be the 

following, with 4.76% error: 

𝜌t = 9750 − 386.0𝐶 + 4.221𝑇 + 3.70056𝐶2 + 0.00221𝑇2  (Error! No 

text of specified style in document.35) 

As expected, the sensitivity analysis showed a higher dependence of the true density on the 

carbon content than the temperature. The true density of the biomass varies by (0.0-2.4%) 

for every 1% increase in the carbon content, whereas a 20 K change in the temperature 

results to a  1.5% change in the true density. 

A similar equation was found for the coal data with a higher dependence on the carbon 

content with an error of 9.08% as follows: 

𝜌t = 3490 − 99.8𝐶 − 0.567𝑇 + 0.87496𝐶2 + 0.00071𝑇2  (Error! No 

text of specified style in document.36) 

Like the biomass, the sensitivity of the coal char true density to the carbon content was 

higher than to the temperature. The true density increases by 3.5% with the carbon content 

increase of 1%. On the other hand, the variance in the true density with temperature is like 

that of biomass, namely for every 20 K change in temperature the true density undergoes a 

1.4% change. 

5.1.3. INITIAL CHAR APPARENT DENSITY 

Published data on the char apparent density were used to determine the dependence of the 

apparent char density with parent fuel carbon content and temperature. A non-linear 

multivariable function was generated by OriginPro 2017. The resultant correlation for 

biomass char, with 7.34% error is given as follows: 
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𝜌A = 11581 − 393.7𝐶 + 1.441𝑇 + 3.301𝐶2 − 0.00059𝑇2    (37) 

And, for coal char with a maximum 4.63% error: 

𝜌A = 10253 − 245.3C − 0.085T + 1.5956C2 + 0.00032𝑇2     (38)  

Analogous to the true density, the apparent density showed a high dependency on the 

carbon content. The increase in carbon content of 1% resulted in a 3.7% increase in the 

apparent density, whereas for every 20 K variance in the temperature, only a 0.0-1.0% 

increase in the apparent density is witnessed. This result is in agreement with the findings of 

Chan et al. [47]. 

5.1.4. Initial Char Particle Size 

Although the particle size has a great influence on the char properties [2, 14, 31, 64], it was 

difficult to correlate the char particle size to the fuel constituents due to the limited available 

data. In this study, the mean diameter of the char particles is determined from the relation 

between the degree of conversion (VM mass release) during devolatilization and the density, 

using equation (24): 

The calculated initial physical properties of the four fuel chars are listed in Table 2. 

Generally, the resultant values agree with the published data. For example, Zhu et al. [44] 

reported that the total surface area of the ELC sample at a temperature 1273 K as            

227 m2 g-1. Compared to the correlation results in this study, of 192 m2 g-1, the variance falls 

within the expected 15.3% error. Another example for coal char Ag, Arenillas et al. [58] 

measured the CO2 surface area of bituminous coals at 1123 K and found a range of 143 – 

151 m2 g-1 similar to the ELC result in this study at 1173 K of 159 m2 g-1. Ellis et al. [76] 

reported the specific surface area of the Canadian wood pellets char prepared at 1173 K at 

468.1 m2 g-1, which is in agreement with the results of this study (429 m2 g-1). All the Ag 

results are within the expected range of char surface area, i.e. 100- 600 m2 g-1, and the 

apparent density of the coal char is within the expected range of 900-1400 kg.m-3 [31]. 

However, neglecting the swelling/shrinking effect in the apparent density may affect the 

results of the density at the intermediate temperature range of 973-1073 K. Therefore, the 

minimum/maximum limits of the calculated surface area were used to correct for this effect. 

Table 2 

Calculated initial physical properties of char at temperature range of 773-1273 k. 

 

T  Ag 
Apparent 
Density 

 True 
Density Particle Size Porosity 

  K m2 g-1 Kg m-3 Kg m-3 m   

 
773 230 693 841 3.95E-05 0.18 

 
873 306 883 986 3.73E-05 0.10 

USWWP 
973 379 923 1151 3.61E-05 0.20 

1073 448 963 1335 3.50E-05 0.28 
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1173 513 1003 1540 3.37E-05 0.35 

1273 576 1043 1764 3.17E-05 0.41 

 
773 224 834 845 4.18E-05 0.10 

 
873 300 874 990 4.00E-05 0.12 

CAWWP 

973 373 914 1154 3.88E-05 0.21 

1073 442 954 1339 3.72E-05 0.29 

1173 507 994 1544 3.62E-05 0.36 

1273 570 1034 1768 3.40E-05 0.42 

 
773 157 952 995 7.78E-05 0.04 

 
873 164 997 1055 7.46E-05 0.06 

ELC 

973 171 1048 1130 7.29E-05 0.07 

1073 178 1106 1219 7.10E-05 0.09 

1173 185 1170 1322 7.07E-05 0.11 

1273 192 1241 1439 6.98E-05 0.14 

 
773 

     
 

873 165 1390 1798 7.94E-05 0.23 

VC 

973 172 1441 1872 7.73E-05 0.23 

1073 179 1499 1961 7.67E-05 0.24 

1173 186 1563 2064 7.54E-05 0.24 

1273 233 1634 2181 7.40E-05 0.25 

 

5.2. PYROLYSIS BEHAVIOUR 

The complete thermal treatment profiles of the mass loss with time of the four samples are 

illustrated in Fig. 3. It can be seen from Fig. 3, that the biomass did not witness a meaningful 

change in the volatile matter (VM) release with the increase of the final pyrolysis temperature 

in the range 773-1273 K. In contrast to biomass, ELC samples have clearly shown different 

mass losses with the temperature increase. Whereas, VC had a very small devolatilization 

step due to its low volatile matter content.  

The DTG curves of the pyrolysis step of the four fuels are illustrated in Fig. 4. The USWWP 

and CAWWP DTG had onset temperatures at 603 and 588 K, respectively, with a shoulder 

at 350 C (623 K). This shoulder is attributed to the hemicellulose decomposition. While the 

ELC onset is at a temperature 708 K. On the other hand, the VC samples failed to release 

significant amounts of volatiles at a temperature 773 K independent of the pyrolysis time. 

Therefore, it was eliminated from the study. The VC onset temperature is found at 726 K. 

The pyrolysis onset and peak temperatures are listed in Table 3.  

Table 3 

Pyrolysis characteristic temperatures of four fuels.   

Sample 
Onset T, 

K Peak T, K 
Peak end 

T, K 

Peak degree of 

conv. () 

USWWP 603 696 731 0.68 

CAWWP 588 693 728 0.67 

ElC 708 776 849 0.39 
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VC 726 946 1273 0.51 
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Fig. 3. TGA profile (wt% vs. time) for non-isothermal pyrolysis up to the temperatures 773, 
873, 973, 1073, 1173, 1273 K in 40 mL/min N2 then iso-thermal char combustion step 
in 40 mL/min air:(a) USWWP, (b) CAWWP, (c) ELC, and (d) VC. 

 

(a) 

(b) 
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Fig. 4. DTG curves during the pyrolysis step (wt%.K -1) of the four fuels heated to 

the temperatures 773, 873, 973, 1073, 1173, 1273 k in 40 ml.min-1 N2:            

(a)USWWP, (b)CAWWP, (c)ELC, and (d)VC. 

5.2.1. DEVOLATILIZATION YIELD  

Figure 5 illustrates the increase of VM yield with the temperature increase. As expected, the 

VM yield of the biomass during devolatilization is higher than the VM yield of the coal, and 

found to be 79-87% 76-84%, 27-41%, and 3-8% for USWWP, CAWWP, ELC, and VC, 

respectively. The increase of volatile yield in both wooden biomass samples was 2% for 

every 100 K temperature increase. Whereas, the increase in both coal samples was 10% for 

the ELC and 33% for the VC, respectively.  

These results suggest that biomass can release 90% of its VM at low temperatures. The 

higher release of VM from biomass species at lower temperatures compared to coal can be 

attributed to the difference in volatile matter composition in the two types of fuel. The linear 

chains of polysaccharides constituents of cellulose and hemicellulose, containing a high 

percent of oxygen and water content can be easily released in the temperature range 473 – 

673 K. While the coal lamella consists of  polynuclear aromatic, and hydroaromatic clusters 

linked together by aliphatic chains [31]. The aromatic clusters constitute 75% of the coal and 

they are responsible for the char formation. Whereas the hydroaromatic is 17% of the coal 

mass and this is responsible for the tar formation during pyrolysis. The aliphatic carbon 
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chains are only 8% and produce CH4, CO and CO2 [77]. Therefore, coal requires higher 

temperatures to release heavier aromatic compounds during the devolatilization. This 

characteristic of the biomass gives more stability and higher reactivity during devolatilization 

step with less temperature dependence in the temperature range 800-1300 K. While for coal, 

a complete devolatilization occurs only at temperatures higher than 1273 K.  

On the other hand, the mineral content of the VC also differentiates the pyrolysis rate of the 

VC from the rate of the ELC pyrolysis. The higher mineral content, the more temperature 

sensitive is the devolatilization process. During pyrolysis, the mineral compounds are 

transformed to metal oxides in the char, forming ash component.  

It can be argued, therefore, that the higher ash comprising coal faces mineral diffusion 

through the pores, causing resistance to the release of volatile matter due to the blockage of 

the pores and the devolatilization rate ultimately decreases. The failure of VC devolatilization 

in the temperature 773 K is an evidence to support this argument.  

 

 
FIG. 5. Yield of volatile matter as a function of the pyrolysis temperature increase 

as mass%. 

5.3  CHAR COMBUSTION BEHAVIOUR 

Figure 6 shows the DTG curves of USWWP, CAWWP, ELC and VC char combustion. In 

contrast to the devolatilization step, the increase in the char combustion rate of both biomass 

samples with the temperature increase is significant, as well as for the coal samples. The 

burn off rates of the four char samples at 1273 K are about twice the burn off rate at a 

temperature 773 K. The four fuels showed single peaks with a wide area indicating complex 

steps of combustion of residual volatiles and carbon occurring simultaneously. Furthermore, 

the peaks at low temperatures have a long tail with a longer half-time than the peaks at the 

higher combustion temperatures.  
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Fig. 6. DTG curves of the char combustion: (a) USWWP (b) CAWWP (c) ELC (d) 

VC, at various combustion temperatures.  

 

5.3.1 CHAR BURN OFF RATE 

The fractional burn off () of the four fuel chars are calculated as dry-ash-free and plotted as 

a function of time in Fig.7. Clearly, both biomass chars have distinctly similar burn off rates in 

all combustion temperatures. Despite the alteration in their parent biomass compositions, it 

is likely that the pyrolysis step has eliminated the differences and produced very similar char 

behaviour. Moreover, both biomass chars needed the third of the coal chars time for a 

complete burnout in the temperature range of combustion. This indicates the higher burn off 

rates of biomass in comparison to coal.  

To better understand the char combustion behaviour during burn off, the rate at which the 

burn off fraction () changes with the burn off progress for the four fuel samples, are plotted 

in Fig. 8. In general, the rate increases at the higher combustion temperatures at any degree 

of the burn off. At a temperature 773 K both biomass samples had the maximum burn off 

rate at 30-40% conversion. Whereas, both the ELC and VC had their maximum reaction rate 

at low conversions i.e. 20-30%. Likewise, Fermoso et al. [17] reported the maximum 

reactivity of bituminous chars at 20-30% conversion. These results differs from that of Lizzio 
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et al. [15] who found the maximum rate of bituminous char combustion at 30-40% burn off. 

The reason for this dissimilarity, is the lower combustion temperatures (673 K) in which the 

TGA experiments were performed in comparison to the temperatures of this work. 

At higher temperatures, the burn off rate value becomes steadier for the range of 20-80% 

conversion. There is a sharp increase in the burn off rate within the first 5% burn off for all 

samples. One reason for this increase in the burn off rate is the quick combustion of the 

remaining aromatic hydrocarbons that eliminates the diffusional limitations, thus enabling the 

reactant gas to reach the smaller pores of the char particle. It was found that at temperatures 

higher than 1173 K, the char micropores increase at the first stages of burn off due to the 

rapid destruction of the molecular sieve structure and the total surface area increases [78, 

79]. On the other hand, thermal annealing starts at temperatures between 973 and 1373 K, 

the micro porosity and carbon edges are lost, and the char structure becomes more 

graphitic, hence the active sites are lost [31].  

It can be noticed from Figure 8, that at higher temperatures the burn off rate of VC char is 

higher than the ELC corresponding values despite the similar carbon (daf) content. This 

difference is due to the significantly higher mineral content that not only acts as a reaction 

catalyst but also inhibits the thermal annealing and graphitic structure formation by 

maintaining the dislocations and carbon edges, even at higher temperatures of combustion. 

In favour of this explanation is the work of Solomon et al. [80] on the crosslinking behaviour 

during the coal pyrolysis. They found that demineralization of lignite decreases the 

crosslinking reactions while the bituminous coals undergo early crosslinking during pyrolysis 

due to the presence of carboxyl groups. A recent study on pinewood char reactivity, Nanou 

et al. [81], enhanced the steam gasification reactivity by impregnation of ash into the wood 

char. It was found that the higher is the volatile matter content of a fuel, the higher is its char 

reactivity [82]. Similar conclusions are reported elsewhere in the literature [17, 83]. 
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Fig. 7. Char fractional burn off () of USWWP, CAWWP, ELC and VC compared for 

each final pyrolysis temperature at 773, 873, 973, 1073, 1173, and 1273 K. 
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Fig. 8. Rate of fractional burn off change da/dt with the fraction of burn off (), for 

the USWWP, CAWWP, ELC and VC in the temperature range 773-1273 K.  

 

5.3.2 REACTIVITY INDEX 

The reactivity index RI of the char oxidation rate is a parameter commonly used to compare 

the reactivity of different fuel chars [17]. The higher is the RI the higher char reactivity is: 

𝑹𝑰 =
𝟎.𝟓

𝒕𝟎.𝟓
,   

𝟏

𝒔
         (39) 

𝒘𝒉𝒆𝒓𝒆, 𝒕𝟎.𝟓: 𝒊𝒔 𝒕𝒉𝒆 𝒕𝒊𝒎𝒆 𝒐𝒇 𝟓𝟎% 𝒄𝒂𝒓𝒃𝒐𝒏 𝒃𝒖𝒓𝒏 𝒐𝒖𝒕.  

The reactivity index values of the char oxidation at 0.2 oxygen partial pressure and 

temperature range 773 – 1273 K are listed in Table 4, with ±3E-4 average uncertainty. As 

expected, the reactivity index of the biomass samples is higher than those of the coal 

samples. The USWWP and CAWWP have increased RI values from 0.008 and 0.007 s-1 at a 

temperature 773 K to 0.015 and 0.014 s-1 at 1273 K, respectively. The RI values of both coal 

samples increases more quickly, however they show less variability in temperatures above 

973 K and increase from 0.002 to 0.005 s-1.  
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Table 4 

Reactivity index (RI) at 0.2 oxygen partial pressure and temperature range 773-
1273 K. 

 RI, s-1 

T, K USWWP CAWWP ElC VC 

773 0.00794 0.00704 0.00158 
 

873 0.00962 0.00893 0.00301 0.00220 

973 0.01064 0.01020 0.00354 0.00370 

1073 0.01250 0.01087 0.00420 0.00403 

1173 0.01316 0.01250 0.00450 0.00472 

1273 0.01471 0.01429 0.00454 0.00485 

 

Figure 9 shows the reactivity index variation with temperature. The trend RI increasing with 

the temperature can reveal the reactivity zones. From Figure 5-11, it can be observed that 

the biomass samples have Zone I reactivity in the temperature range of 773-873 K, then an 

intermediate zone at 873 K-1173 K for the USWWP, and 873-1073 K for the CAWWP, and 

finally Zone II at 1173 – 1273 K. In a separate way, the coal samples show a first reactivity 

zone in the temperature range 773-973 K, and then two steady reactivity zones between 

973-1073 K and 1173-1273 K. These results can only be confirmed by the results of the char 

oxidation reaction kinetic parameters that are calculated in section 5.3.4. 

 

Fig. 9. Reactivity index of USWWP, CAWWP, ELC and VC at 0.2 oxygen partial 

pressure and variable temperatures 
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5.3.3 INTRINSIC CHAR REACTIVITY  

The derived intrinsic reactivity model in section 3 for the char combustion is applied on the 

set of isothermal experiments to calculate the intrinsic reaction rate and the Arrhenius triplet 

(activation energy, pre-exponential factor and the reaction order) of char combustion. 

The overall reaction rate Rm was calculated according to Eq. (8) from the TGA data range of 

the peak conversion. Then the global intrinsic reaction rate coefficient 𝐾̈ was calculated 

according to Eq. (27) and the Arrhenius rate constant (𝑘) is calculated from Eq. (11). The 

Arrhenius plots of ln(𝑘) as a function of the temperature reciprocal T-1 are shown in Fig.10.  

Significantly, all the fuel types have exhibited more than one linear region. These regions are 

correlated by linear functions with least square coefficients  0.90. The biomass samples 

exhibited three regions of reactivity; and, the coal samples have shown mainly two regions. 

Never the less, all the samples had the same reactivity in the temperature region 773-873 K, 

and this is an unmistakable evidence of chemically controlled reactivity in the combustion 

Zone I. In the temperature range 873-973 K, the biomass samples exhibited a considerable 

change in reactivity, in which the higher porosity resulting from the pyrolysis step increases 

the char surface area and ultimately increases the char reactivity. By contrast, the coal char 

samples exhibit a continuous behaviour in the temperature range 773- 973 K, and this is 

because of the suggestively lower surface area than in the biomass.  

As shown in section 4.3.2, the reactivity of the coal chars is lower than that of the biomass 

char. In that order, the intrinsic reactivity of combustion Zone II of the coal char is lower than 

the intrinsic reactivity of the biomass char, however, tending to exceed the biomass reactivity 

at higher temperatures than 1273 K (combustion Zone III), where the diffusion limitations 

dominate the reaction rate [2, 20, 31]. 

Interestingly, the dependence of the intrinsic reactivity on the initial particle density, whether 

apparent or true, is proved to be negative through the calculations. This finding supports the 

argument made earlier in Section 3.2. 

 

5.3.4 ARRHENIUS KINETIC PARAMETERS 

The reaction order for oxygen in the temperature Zone I (773-873 K) was assumed to be 

0.5-order for all samples. In the case of the VC, the sample failed to devolatilise at 773 K 

due to its high ash and low volatile matter contents, however at a temperature 873 K the 

reaction order was 0.5. This assumption is based on the published data that assumes the 

intrinsic reaction order value is between 0.5 – 1.0 for Zone I combustion [20, 64]. The 

reaction order of char combustion rate in Zone II was assumed to be first-order as reported 
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in the literature for the chars of various coal ranks [2], and assumed to be first-order in the 

absence of experimental data [30]. Young & Smith [84] experimentally found a value of  

n=0.4 for the char combustion at a steady-state flow combustor in a temperature range of 

940-1420 K (combustion Zone II). However, the discrepancy of these results with the 

assumption in this study can be explained by the effect of the transport phenomena that is 

eliminated in the TGA kinetics.  

 

Fig. 10. Arrhenius plot of Ln(k) with reciprocal temperature. 

 

The intrinsic activation energy and pre-exponential factor were calculated from the slop and 

intercept of the regression lines in the combustion Zone I. The results of the intrinsic 

activation energy Em and the pre-exponential factor A in Zones I and II are summarized in 

Table 6. 

As can be seen from Table 6, the intrinsic activation energy Em in the combustion Zone I of 

the USWWP and CAWWP are 180 and 182 kJ mol-1 respectively, and the pre-exponential 

factor was 2.85E+12 and 3.04E+12 for the USWWP and CAWWP, respectively. To date, the 

published work on biomass intrinsic reactivity is rarely found in the literature. Recent studies 

on wood pellets char reactivity under CO2 and steam gasification, used the Random Pore 

model (RPM) to calculate the kinetic parameters, and found a value for the Em                  
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220-251 kJ mol-1 at temperatures in the range 873-1173 K [76, 85]. Yet, these results cannot 

be directly compared to the results of this study due to the different combustion conditions.  

 

Table 5 
Global intrinsic kinetic parameters 

 
ZONE I 

 
ZONE II   

  
Em   

kJ mol-1 A, s-1 
R-
Squared    

En  
kJ mol-1 A, s-1 

R-
Squared EII / EI 

USWWP 180±5 2.85E+12 1 
 

42±5 3.87E+05 0.9255 0.23 
CAWWP 182±5 3.04E+12 1 

 
47±6 6.33E+05 0.9960 0.26 

ELC 153±12 6.15E+10 1 
 

67±11 1.79E+06 0.9960 0.44 
VC 167± 4.23E+11 1 

 
75±9 4.17E+07 0.9629 0.45 

 

The ELC and VC have values of Em 153±3 and 167±4 kJ mol-1, and the A values are 

6.15E+10 and 4.23E+11, respectively. These results are in a good agreement with the 

published data on the intrinsic coal char reactivity at atmospheric pressure of oxygen. The 

intrinsic activation energy Em of semi-anthracite was found to be 167 kJ mol-1 [86], knowing 

that the VC rank is considered as semi-anthracite, 134 kJ mol-1 for brown-coal char [14], 136 

kJ mol-1 for lignite char [30], 138 kJ.mol-1 for sub-bituminous coal [18], and 155 kJ mol-1 for 

anthracite coal [39].  

Although the values of the coal char Em are significantly lower than the biomass 

corresponding values, the higher values of the pre-exponential factors for the biomass chars 

appear to be inversely affecting the reaction rates, namely increasing the collision 

frequencies. Ultimately, the resultant reactivities are very similar as have been shown in 

Figure 10. 

In combustion Zone II, the higher reactivity of the biomass char is translated in a lower 

activation energy to burn compared to the coal chars. The values of Ea for the USWWP, 

CAWWP, ELC and VC are 42, 47, 67 and 75 kJ mol-1, respectively. As shown in section 

3.2.2, the relation between the activation energies in combustion Zone I and II has been 

derived. Ea in Zone II is expected to be half of Ea observed in Zone I [14, 20]. Experimentally, 

the biomass chars show a reduction in the activation energy to 0.25Em from Zone I to Zone 

II, while the ratio for the coal chars are like the theoretically expected values at 0.5 i.e. 0.44 

and 0.45 for the ELC and the VC, respectively. These results suggest that the carbon 

oxidation in the biomass takes place at a notably lower diffusion limitation in combustion 

Zone II.  
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5.3.5 VALIDATION OF KINETIC PARAMETERS RESULTS 

In 1978 and 1982, Smith [2, 30] reviewed all the published data on intrinsic coal char 

reactivity. He unified the intrinsic reaction rate 𝑅̈ data on the basis of the oxygen pressure 

being 1atm and plotted the intrinsic rate versus the reciprocal of the temperature. His plot 

exhibits a regression line of activation energy at 179kJ mol-1 for chars of various ranks of 

coal. Although the differences in the pore size and surface area have been eliminated, the 

variation of the reactivity fell in the range of four orders of magnitude. He attributed these 

variations to the carbon structure and catalytic or inhibition effects of the impurities.  

Accordingly, the reactivity of the chars in this study is recalculated at1atm oxygen pressure 

at g cm-2 s-1 units to examine the comparability in the calculated intrinsic kinetic parameters, 

and pointed the results on Smith’s plot. Fig. 11 presents the reactivities of four fuels, namely 

the USWWP, CAWWP, ELC and VC on the Smith reactivity plot. The temperature 

dependence of the four fuel chars is clearly shown in Fig. 11, and the alignment with the 179 

kJ.mol-1 activation energy fitted line is notably good. This observation supports the 

assumptions made for the reaction orders in combustion Zones I and II. Moreover, all the 

char reactivity values were comparable in combustion Zone I. Also, the higher intrinsic 

reactivity of the biomass char in combustion Zone II reflects the lower activation energy than 

that of the coal char. 
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Fig. 11. Char intrinsic reactivity of USWWP, CAWWP, ELC and VC highlighted on 

Smith reactivity plot. (Ref: Smith 1982 [2]) 

 

6 CONCLUSIONS 

The purpose of the current study was to investigate the pyrolysis behaviour and the char 

combustion kinetics of the wood pellets in comparison to coal under various temperatures. 

Although the char burn-off rate of the biomass was higher than that of the coal char, both 

types of fuel have shown similar intrinsic reactivities in the combustion Zone I (see Table 5- 

reactivities in the temperature 873 K). This proves the independence of intrinsic reactivity on 

the fuel type and rank. Conversely, in the combustion Zone II (in the temperature 1273 K), 

the intrinsic biomass char combustion reactivity was 2-3 times higher than that of the coal 

chars due to the highly porous char structure produced at higher temperatures. Both 

biomass and coal chars exhibited an intermediate combustion zone between 973 K and 

1173 K.  

The results of this study support the notion that the higher oxygen content of the biomass 

promotes early crosslinking during char combustion thus resulting in a higher porosity and 

surface area of the char produced. Equally, the high mineral content of the VC promotes the 

catalytic effect during the char combustion, therefore leading to a higher reactivity.  

A noteworthy finding in this study is that the biomass can release 90% of its volatile matter in 

a low temperature such as 773 K. While the coal releases less than 38-66% of its volatile 

matter in this temperature, thus the coal needs higher temperatures than a temperature 

1273 K for complete devolatilization and this depends on the coal rank.  

A limitation of this study is that the assumptions of the spherical shape and the pore model 

of the coal char applied on the biomass are not accurate to predict the actual activation 

energy in the combustion Zone II. Thus, it is recommended that further work be carried out 

to determine a better pore structure model, and the particle shape factor of the biomass to 

better predict the biomass char reactivity. Further experimental investigations of the gaseous 

products from the TGA experiments can improve the understanding of the complexity of the 

biomass pyrolysis and char combustion mechanisms.  
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