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Tracking and diameter estimation of retinal vessels
using Gaussian process and Radon transform
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aTarbiat Modares University, Faculty of Electrical and Computer Engineering, Tehran, Iran
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Abstract. Extraction of blood vessels in retinal images is an important step for computer-aided diagnosis of
ophthalmic pathologies. We propose an approach for blood vessel tracking and diameter estimation. We hypoth-
esize that the curvature and the diameter of blood vessels are Gaussian processes (GPs). Local Radon trans-
form, which is robust against noise, is subsequently used to compute the features and train the GPs. By learning
the kernelized covariance matrix from training data, vessel direction and its diameter are estimated. In order to
detect bifurcations, multiple GPs are used and the difference between their corresponding predicted directions is
quantified. The combination of Radon features and GP results in a good performance in the presence of noise.
The proposed method successfully deals with typically difficult cases such as bifurcations and central arterial
reflex, and also tracks thin vessels with high accuracy. Experiments are conducted on the publicly available
DRIVE, STARE, CHASEDB1, and high-resolution fundus databases evaluating sensitivity, specificity, and
Matthew’s correlation coefficient (MCC). Experimental results on these datasets show that the proposed method
reaches an average sensitivity of 75.67%, specificity of 97.46%, and MCC of 72.18% which is comparable to the
state-of-the-art. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.XX.XXXXXX]

Keywords: diameter estimation; Gaussian process; Radon transform; retinal imaging; vessel tracking.

Paper 17019RR received Jan. 24, 2017; accepted for publication Aug. 9, 2017.

1 Introduction

Analysis of vascular structures in retinal images can be impor-

tant for diagnosis of several pathologies related to diabetes,

cardiovascular disorders, and hypertension.1,2 For instance, dia-

betic retinopathy can be detected early by examining morpho-

logical variations in vasculatures, preventing vision loss and

blindness.3–5 To quantify these complications, accurate retinal

vessel detection and diameter estimation are often required.6

Generally, semiautomatic or automatic vessel segmentation

tools are preferred over manual delineation, because the latter

is difficult and user-dependent. However, due to imaging imper-

fections and noise, accurate delineation imposes a special chal-

lenge on nonmanual methods, particularly when thin vessels are

of concern.7

A wide range of vessel extraction methods from medical

images has been proposed in the literature. Interested readers

are referred to Patton et al.,8 Lesage et al.,9 Mookiah et al.,10

and Fraz et al.11 for detailed reviews. However, each method

only excels in a few particular quality aspects such as computa-

tional load, robustness to variation of region of interest, and im-

aging modality. The performance of vessel segmentation

methods can usually be improved by a preprocessing step.12

The aim of this stage is to intensify valuable information and

eliminate noise, which could otherwise adversely affect the

final outcome. Different methods have been proposed for this

purpose.13,14 Even though a preprocessing step could improve

segmentation, it can lead to loss of important features, particu-

larly at edges and narrow vessels. Therefore, despite some

relative successes, vessel extraction still remains an active

research area.

Sun15 classified blood vessel detection strategies into two

major categories: tracking- and scanning (pixel-based)-based

approaches. In scanning methods, a number of features are com-

puted for every pixel, and based on these features, each pixel is

individually classified as a vessel or nonvessel sample. Since

each pixel is classified independently, a disadvantage of such

methods is that gaps can appear in the segmented vessels, lead-

ing to an unconnected vessel network.16 In contrast, tracking

approaches track a single vessel at a time, rather than detecting

the entire vascular network. Tracking consists of following the

vessel centerlines guided by local information, usually search-

ing for a path that best matches a given vessel intensity model

profile.17 Compared to pixel-based methods, the main problem

with tracking algorithms is the complexity of dealing with

bifurcations.8 Furthermore, tracking approaches need initial

seed points, which can be selected manually or automatically.

The main advantage of the tracking approaches is the guaranteed

connectedness in the acquired vessel segments.15 In addition,

tracking approaches can provide accurate vessel specific widths

and other structural information that is often unavailable using

other methods.11 Owing to these properties, a probabilistic ves-

sel tracking approach is proposed that is able to handle thin ves-

sels and detect bifurcations.

Aylward and Bullitt18 proposed an algorithm for blood vessel

tracking based on eigenvalue and eigenvector decomposition of

the image Hessian matrix. Due to the fact that Hessian matrix is

a second-order derivative descriptor for the local structure of

the image, the algorithm’s efficacy is adversely and highly
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influenced by the background noise, in particular when thin ves-

sels are considered. To alleviate this, Xu et al.19 combined

Aylward’s method with the recursive geometrical tracking

approach proposed by Sun.15 In contrast, Tavakoli et al.20

and Pourreza et al.21 proposed a tracking algorithm which

uses Radon transform to compute local line integrals of the

image, thus not relying on the Hessian. As a result their pro-

posed method performs relatively well in the presence of

noise. Zhang and Couloigner22 proposed an algorithm to

increase the sensitivity of the Radon transform-based

approaches when handling thick tubular objects. However, in

these methods, the vessel trajectory is detected by searching

for peak projection values in Radon space, which can be difficult

and unreliable. In addition, these methods do not utilize any

prior knowledge about the vascular structures (such as continu-

ity and constraint of the curvature of the vessels).

Chutatape et al.,23 on the basis of given training samples,

designed a second-order derivative Gaussian matched filter to

position the centerline points and estimated the width of the

cross-sectional profile. Yin et al.16 proposed a probabilistic

tracking method that used vessel sectional intensity profile

for detection. In their approach, a vessel’s edge points and

new directions were updated using a maximum a posteriori cri-

terion, considering the local gray level statistics and the vessel’s

continuity properties. However, due to using a Gaussian model

to approximate the vessel’s cross-sectional intensity profile, the

performance of their method is suboptimal when the vessel’s

sectional intensity deviates from a Gaussian pattern. Other meth-

ods for vessel tracking in the literature include Refs. 24–26. The

majority of these methods lack the required efficiency when

dealing with noisy images and small vessels. Our method is par-

ticularly designed to address these complications.

For robust tracking of blood vessels, a prior knowledge of the

structures of vessels can be very useful. Continuity of centerline,

curvature, and diameter of tubular vessel segments has been

exploited by Sun.15 Gooya et al.,27 on the other hand, proposed

a level set-based shape regularization scheme for vessel segmen-

tation that improved the continuity of the extracted structures,

preventing gaps, however, the technique was computationally

expensive. Aylward and Bullitt18 used the inner product of tan-

gents to centerlines to compare and update the vessel direction

for effective tracking. Thus, the use of prior information has

been exploited in different ways to extract vascular structures.

The recent highlighted papers in this area are as follows:

Azzopardi et al.28 proposed a filter based on a combination

of shifted filter responses that is sensitive to vessels.

Continuing the previous work, Strisciuglio et al.29 selected

the filters in an automatic process that opts for the best-perform-

ing ones. Orlando et al.30 utilized a conditional random field

model and fully connected pairwise potentials to extract retinal

vasculature. Deep neural networks have recently entered the

retinal image segmentation field by Liskowski and Krawiec.31

After applying a preprocessing step, they use several deep learn-

ing architectures to segment vessels. Second-order locally adap-

tive derivatives have been used in several papers for extracting

vessel structures; Zhang et al.32 proposed a simpler version of

this method by avoiding a computation of full Laplacian in ves-

sel enhancements (geometric diffusions), which is much easier

to understand and reproduce.

In this study, a new approach is proposed to track blood ves-

sel centerlines and their diameters. For a single fragment of a

vessel having no bifurcations, the curvature and the diameter

often vary smoothly in such a way that the new direction and

diameter can be statistically predicted from past values. We

exploit these properties as prior information and hypothesize

that the curvature and the diameter of blood vessels are

Gaussian processes (GPs). To gain further noise robustness,

we train the GPs by computing the local features, which are

line integral descriptors, using Radon transform. Furthermore,

in order to determine bifurcations, multiple GPs are deployed

for estimation of the directions. The increased difference

between estimated directions from each of these GPs is used

to detect bifurcations. Combining GPs with Radon features

results in a significantly improved performance in dealing

with thin and noisy vessels.

The rest of this paper is organized as follows. A brief review

of GP regression is presented in Sec. 2, and this is followed by

the proposed method for vessel tracking and diameter measure-

ment in Sec. 3. Experimental results and comparison to the state-

of-the-art are described and discussed in Sec. 4, and finally,

some concluding remarks are drawn in Sec. 5.

2 Gaussian Process

A GP is a supervised learning method, which addresses the

problem of learning input-output mappings from training

data. GP provides a principal, practical, and probabilistic

approach to learn these relations using kernels.33 In GP, having

observed N input vectors x1; : : : ; xN , and their corresponding

output variables t1; : : : ; tN , we wish to make a prediction for

new input xNþ1 that we have not seen in the training dataset.34

For linear regression of values of t, we define the model pre-

dicted values using yðxÞ ¼ wTϕðxÞ, a linear combination of

M fixed basis functions given by the elements of the vector

ϕðxÞ, where w is anM-dimensional weight vector. The relation-

ship between the observed and predicted variables is modeled as

tn ¼ yn þ εn, where yn ¼ yðxnÞ and εn is a Gaussian noise var-

iable. If the values of y1; · · · ; yN become jointly Gaussian dis-

tributed, the function yðxÞ is said to be a GP.

Thus, we are interested in the joint Gaussian distribution of

the function values yðx1Þ; : : : ; yðxNÞ, which is denoted by the

vector y given by

EQ-TARGET;temp:intralink-;e001;326;322y ¼ Φw; (1)

where Φ is the design matrix. In practice, since we do not have

any prior knowledge about the mean of yðxÞ, it is set to zero.

This assumption is equal to choosing the mean of the prior over

the weight values, i.e., pðwjαÞ, to be zero in the basis function

viewpoint.

Under these hypotheses, the joint distribution of the target

values tN ¼ ðt1; : : : ; tNÞ
T conditioned on the values of

yN ¼ ðy1; : : : ; yNÞ
T is given by an isotropic Gaussian

EQ-TARGET;temp:intralink-;e002;326;203pðtN jyNÞ ¼ N ðtN jyN ; β
−1INÞ; (2)

where IN denotes the N × N identity matrix, and β is the pre-

cision of the random noise.

According to the definition of GP, the marginal distribution

pðyNÞ is a Gaussian distribution of zero mean and its covariance

is defined by a Gram matrix K

EQ-TARGET;temp:intralink-;e003;326;116pðyNÞ ¼ N ðyN j0;KÞ: (3)

The kernel function, which determines K, is typically

defined to show the property that for close enough points of
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xn and xm, the corresponding values yðxnÞ and yðxmÞ are more

correlated than the points with considerably different values.

Integrating over y extracts the marginal distribution pðtNÞ,
conditioned on the input values x1; : : : ; xN , which is given by

EQ-TARGET;temp:intralink-;e004;63;708pðtNÞ ¼

Z

pðtN ; yNÞdyN ¼

Z

pðtN jyNÞpðyNÞdyN

¼ N ðtN j0;CNÞ; (4)

where the elements of covariance matrix CN are

EQ-TARGET;temp:intralink-;e005;63;637Cðxn; xmÞ ¼ kðxn; xmÞ þ β−1δnm: (5)

Thus far, a model for the joint Gaussian distribution over sets

of data points is built using a GP viewpoint. Given a set of train-

ing data, the main goal in regression is to make predictions of

the target variables. In other words, in order to predict the

target values, the predictive distribution pðtNþ1jtNÞ should be

evaluated. According to Eq. (4), the joint distribution over

tNþ1 ¼ ðt1; : : : ; tNþ1Þ
T is given as

EQ-TARGET;temp:intralink-;e006;63;528pðtNþ1Þ ¼ N ðtNþ1j0;CNþ1Þ; (6)

where the elements of covariance matrix CNþ1 are given by

Eq. (5). It can be shown that the conditional distribution

pðtNþ1jtNÞ is a Gaussian distribution with the mean and covari-

ance given as

EQ-TARGET;temp:intralink-;e007;63;453mðxNþ1Þ ¼ kTC−1
N tN ; (7)

EQ-TARGET;temp:intralink-;e008;63;422σ2ðxNþ1Þ ¼ c − kTC−1
N k; (8)

where CN is a covariance matrix with elements given by Eq. (5),

k is a vector with elements kðxn; xNþ1Þ for n ¼ 1; : : : ; N, and

the scalar c ¼ kðxNþ1; xNþ1Þ þ βð−1Þ. These equations are the

key results that define a GP regression.

The prediction values in GP are strongly controlled by

covariance function.35 From a practical point of view, instead

of defining a fixed covariance function, a parametric family

of functions is used where their parameters are estimated

from the data. Typical techniques to train the hyperparameters

are based on the evaluation of the likelihood function pðtN jθÞ,
where the hyperparameters of the GP are denoted by θ. By esti-

mating θ and maximizing the log likelihood function, the hyper-

parameters’ value can be obtained.

3 Proposed Method

In what follows, first, we describe our blood vessel centerline

tracking method using GP regression and Radon transform.

Next, we extend the method to detect the bifurcations and

track the diameters using multiple GPs. For better illustration,

the proposed method is divided into three main steps: develop-

ing a probabilistic algorithm for tracking the centerline in a sim-

ple vessel which is the base algorithm, generalizing the basic

algorithm to detect bifurcations and extracting the whole vessel

tree, and estimating the diameters of the vessel lumen through an

approach similar to the basic algorithm.

3.1 Vessel Centerline Tracking Method

In order to track blood vessel centerlines, we assume that in a

single vessel fragment with no bifurcations, the curvature varies

smoothly and has a Gaussian distribution. Therefore, we

hypothesize that the curvature of blood vessels, by differentiat-

ing their positive and negative values, is a GP with a zero mean

given by

EQ-TARGET;temp:intralink-;e009;326;708pðtNÞ ¼ N ðtN j0;CNÞ; (9)

where tN ¼ ðt1; : : : ; tNÞ
T indicates the curvature along the ves-

sel. As shown in Fig. 1, curvature has a direct relationship with

the directional variation, and the deduction is that the directional

variation along a vessel is a zero mean GP. According to Fig. 1,

as the curvature increases, the corresponding directional varia-

tion also increases. An advantage of using directional variation,

however, is that the positive and negative curvature values can

be easily discerned. In this paper, we consider clockwise and

anticlockwise directions as having positive and negative

signs, respectively.

The first step to track the centerlines is feature extraction.

These features are extracted by Radon transform and used as

an input (xN) to the GP. The Radon transform in two dimensions

(2-D) is given by integrating along lines having different dis-

tance (ρ) and angle (θ) values from the origin. In a 2-D

Euclidean space, the Radon transform of a function gðx; yÞ is

defined as

EQ-TARGET;temp:intralink-;e010;326;490Rðρ; θÞ ¼

Z

þ∞

−∞

Z

þ∞

−∞

gðx; yÞδðρ − x cos θ − y sin θÞdx dy;

(10)

where δðrÞ is the Dirac function whose value is infinite at zero

and zero in other arguments. Owing to cancelation of noise by

the process of integration, Radon transform is robust to the pres-

ence of noise.36 To extract features for vessel centerline tracking,

a Radon transform is computed with the following settings:

EQ-TARGET;temp:intralink-;e011;326;379ρ ¼ 0; (11)

EQ-TARGET;temp:intralink-;e012;326;349

θ ¼ θN − 89 deg; : : : ; θN − 1 deg; θN ; θN

þ 1 deg; : : : ; θN þ 89 deg; (12)

where θN is the vessel direction in the previous (N’th) step

(which for starting the process is selected manually).

O3

O2

O1

R1

R2

R3

θ  0

θ  1 θ  2

θ  3

t1

t2 t3O0

Fig. 1 The assumption to track blood vessel is that the curvature (the
reciprocal of the local radius Rn) along the vessel can be represented
as a zero mean GP. Since the curvature has a direct relationship with
directional variation (t i ), we can assume that directional variation is a
zero mean GP too.
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Figure 2(a) schematically shows our Radon transform-based

feature extraction algorithm. Before using Radon transform,

weights are defined for each pixel on the basis of distance

from the centerline point ON . Since the closest pixels to ON

have more valuable information, the corresponding weights

are higher (weights close to 1). Based on a cubic interpolation,

the weighted line integrals are computed and form a vector con-

taining 179 elements. Figure 2(b) shows an example of the

extracted features. For this example, we assume that vessels

are darker than the background (for retinal images), hence it

is obvious that the middle elements of the extracted vector

have smaller values compared to marginal ones.

In each step, our goal is to make a prediction of the direc-

tional variation tNþ1 for a new input vector xNþ1 by evaluating

the predictive distribution pðtNþ1jtN ; x1; : : : ; xN ; xNþ1Þ. Using
Eq. (9), the distribution over target values is directly given by

EQ-TARGET;temp:intralink-;e013;63;242pðtNþ1Þ ¼ N ðtNþ1j0;CNþ1Þ: (13)

Consequently, as mentioned in Sec. 2, pðtNþ1jtNÞ will be a

Gaussian distribution whose mean and covariance are given by

Eqs. (7) and (8), respectively. That is

EQ-TARGET;temp:intralink-;e014;63;178pðtNþ1jtNÞ ¼ N tNþ1jmðxNþ1Þ; σ
2ðxNþ1Þ�: (14)

Since pðtNþ1jtNÞ has a Gaussian distribution, the most prob-

able value for tNþ1 is a Gaussian distribution’s mean mðxNþ1Þ.
Therefore,

EQ-TARGET;temp:intralink-;e015;63;113tNþ1 ¼ mðxNþ1Þ (15)

and the new vessel direction (θNþ1) is calculated by

EQ-TARGET;temp:intralink-;e016;326;418θNþ1 ¼ θN þ tNþ1; (16)

where θN is the vessel’s previous direction. For instance,

mðxNþ1Þ ¼ 0 means no change in the local direction (zero cur-

vature), and mðxÞ ≫ 0 means high curvature (high directional

variation) in a vessel.

In order to find a new centerline point, we move forward a

step in the new vessel direction (θNþ1). The step length has an

inverse relationship with tNþ1, i.e., when the curvature

increases, the step length decreases, and vice versa. More spe-

cifically, we use the following relation to obtain the step length,

d, at each iteration:

EQ-TARGET;temp:intralink-;e017;326;289d ¼
1

π

�

π

2
− tNþ1

�

: (17)

To generate training data, shown in Figs. 2(d), 4(b), and 5(d),

synthetic images are designed to simulate vascular structure.

Vessels with various curvatures and diameters and also different

kinds of bifurcations are modeled for both uniformly dark ves-

sels and those having reflections around their centerlines which

frequently occur in retinal images, caused by light reflection

from vessel surfaces that are parallel to the incident light.37

By moving along the centerline in the synthetic images and

computing Radon transform, two sets of training data are gen-

erated for tracking both the directional variation and diameter of

the lumen. To further enrich the training data, some noise was

also added to the synthetic images before computing the Radon

features. Examples of these synthetic images are shown in

Fig. 3. Each training data has a target value corresponding to

the directional variation. For instance, in Fig. 2(d), the corre-

sponding target value for the dotted, solid, and dashed lines
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Fig. 2 Radon features and tracking of a simple vessel: (a) ai shows the result of Radon transform in each
direction. (b) A real extracted feature vector. (c) Schematic of blood centerline tracking algorithm, O i , θi ,
and t i represent the centerline points, vessel local directions, and its variation, respectively. (d) Samples
of synthetically generated training data with their corresponding target directional variations at −40 deg,
0 deg, and 40 deg, respectively.
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are −40 deg, 0 deg, and þ40 deg, respectively, showing direc-

tional variation for each one.

In summary, our vessel centerline tracking method can be

explained as follows [see Fig. 2(c)]. First, a seed point is selected

and its corresponding feature vector is computed using the

Radon transform. Then, a target directional variation is com-

puted using Eq. (7). Finally, by adding this variation to the pre-

vious direction, a new vessel direction is calculated. Moving a

step forward along the new direction, this process continues

until the end of the vessel is reached.

3.1.1 Estimation of the Kernel hyperparameter

The update process given in Eq. (16) requires evaluating a

covariance matrix whose elements, in this paper, are defined

using a radial basis function given by

EQ-TARGET;temp:intralink-;e018;63;400kðxn; xmÞ ¼ expð−αkxn − xmk
2Þ; (18)

where α is a hyperparameter controlling the degree of the cor-

relation between the data points. We learn the latter from the

training data by maximizing the likelihood function pðtN jαÞ
with regard to α. In practice, we use a gradient descent approach,

where we update the values of α by moving along the gradient

direction until convergence. Using the definition of a standard

multivariate Gaussian distribution, the log likelihood function

can be written as

EQ-TARGET;temp:intralink-;e019;326;752 ln pðtjαÞ ¼ −
1

2
ln jCN j −

1

2
tTC−1

N t −
N

2
lnð2πÞ: (19)

Therefore, the gradient of the log likelihood function with

respect to the parameter α is calculated as

EQ-TARGET;temp:intralink-;e020;326;698

∂

∂α
ln pðtjαÞ ¼ −

1

2
tr

�

C−1
N

∂CN

∂α

�

þ
1

2
tTC−1

N

∂CN

∂α
C−1

N t:

(20)

Furthermore, with respect to the predefined kernel [Eq. (18)],
∂CN

∂α
elements are evaluated using

EQ-TARGET;temp:intralink-;e021;326;618

∂Cðxn; xmÞ

∂α
¼ −kxn − xmk

2 expð−αkxn − xmk
2Þ

¼ −kxn − xmk
2kðxn; xmÞ: (21)

By following Eqs. (20) and (21), a good convergence is often

achieved after 110 gradient iterations, taking less than 1 min.

3.2 Bifurcation Detection

Thus far, tracking of only simple vessels with no bifurcations

was described. To obtain a more comprehensive description

of the entire vascular tree, bifurcations must be detected and

used to initiate further tracking. Note that, facing a bifurcation,

the proposed algorithm in Sec. 3.1 will track the path with the

smaller directional change, because it is hypothesized that cur-

vature in a blood vessel has a zero mean Gaussian distribution.

Therefore, using only one GP, a branch with a larger deviation

angle can be dismissed. To address this problem, we will,

therefore, use multiple GP’s to enable tracking through both

branches.

A different set of Radon transform-based features are used to

detect the branching points. As shown in Fig. 4(a), in the case of

a bifurcation, the obtained feature vector may indicate two local

minimums that correspond to the existing branches. Therefore,

in order to track both, two directions are predicted in each step.

To achieve this, we use a simple approach where two indepen-

dent GPs are implemented to track the smaller and larger

deviation angles, respectively.

In the N’th step, let tN;1 and tN;2 be targets of the two inde-

pendent GPs. We assume that tN;1 and tN;2 indicate the left and

right branches, respectively, thus tN;1 ≤ tN;2. For example in

Fig. 4(b), we have tN;1 ¼ −40 and tN;2 ¼ þ20. In order to

train GPs, bifurcation training data should also be added to
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Fig. 4 Extracted feature in a bifurcation: (a) a real extracted feature vector. (b) A synthetic feature vector
with the corresponding target values at tN;1 ¼ −40 and tN;2 ¼ þ20.

Fig. 3 Examples of synthetic images to generate training data are
shown: (a, b) simple vessel, (c) vessel with central vessel reflex,
(d) bifurcation, and (e, f) crossover.
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the previous data. Hence, for each training data, tN;1 and tN;2,

take different or the same values to represent a bifurcation or

simple vessel points, respectively. For example, in Fig. 2(d)

for the doted profile, we define tN;1 ¼ tN;2 ¼ −40, whereas

for the bifurcation shown in Fig. 4(b), the corresponding targets

are set as tN;1 ¼ −40 and tN;2 ¼ þ20.

Having the training data, the kernel parameter is first

estimated (see Sec. 3.1.1). Next, at each step, two Gaussian

distributions, i.e., pðtNþ1;1jtN;1Þ and pðtNþ1;2jtN;2Þ are used to

estimate the new target values at the means given by

EQ-TARGET;temp:intralink-;e022;63;642tNþ1;1 ¼ m1ðxNþ1Þ ¼ kTC−1
N tN;1; (22)

EQ-TARGET;temp:intralink-;e023;63;611tNþ1;2 ¼ m2ðxNþ1Þ ¼ kTC−1
N tN;2; (23)

where tN;1 and tN;2 denote the left- and right-hand side branch

values, respectively.

The difference between tNþ1;1 and tNþ1;2 directions is

considered to be an indicator of a branching point. More

specifically, if this difference becomes larger than 30 deg, we

consider the current position as a bifurcation point. This thresh-

old has been selected based on cross-validation experiments,

minimizing the detection error on training data with known

bifurcation points. Finally, when the difference between the

estimated directional variations becomes less than the specified

threshold, the smaller value is chosen for moving along the

vessel centerline.

3.3 Diameter Estimation

In addition to the vessel centerline, diameter values are also

tracked using an independent GP. Here, we assume that the

diameter varies smoothly around its initial value following

a nonzero mean Gaussian distribution given by

EQ-TARGET;temp:intralink-;e024;326;690pðrNÞ ¼ N ðrN jr0; JNÞ; (24)

where r0 and JN represent the vessel’s initial diameter and

covariance matrix, respectively.

The process of diameter tracking remains similar to before

with exceptions due to some minor alterations due to the

nonzero mean property of the GP. More specifically, Eq. (7) is

reformulated as follows:

EQ-TARGET;temp:intralink-;e025;326;593mðzNþ1Þ ¼ aþ kTJ−1N ðr − aÞ: (25)

a and zNþ1 denote the mean of the GP and the feature vector

in the N þ 1’th step, respectively. JN and k are the kernelized

covariance and similarity vector defined as earlier [see Eq. (18)].

Note that in this section, we use a different set of Radon

features which are more appropriate for thickness detection.

Namely, in each step after estimating vessel direction, we let

α ¼ θNþ1, and vary ρ to generate diameter sensitive features

as shown in Fig. 5(b). In this way, the line integrals are com-

puted along the vessel direction, resulting in more robustness

to random intensity variations across the vessel lumen. An

example of such an extracted feature is shown in Fig. 5(c).

A brief review of the proposed method is given in Algorithm 1.
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Fig. 5 Feature extraction method for diameter estimation: (a) we assume that vessel diameter changes
smoothly along the initial diameter, (b) setting α ¼ θNþ1, we compute Radon transform for various values
of ρ, (c) an example of extracted profile for diameter estimation using a real image data, and (d) an exam-
ple of synthetic training data generated for diameter estimation.
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4 Experimental Results

In this section, we briefly introduce the criteria that are used to

quantify the performance of the proposed algorithm and review

the characteristics of the data sets. Next, using various noisy

images, the robustness of the methods is investigated and com-

pared with other state-of-the-art techniques.

4.1 Performance Criteria

The performance is evaluated based on classification of pixels

into positive (vessel) and negative (background) groups. At the

final stage of the tracking step, the centerline and diameter

tracking results are used to construct a binary image, segment-

ing the vascular network from the background. Pixels in the

neighborhood of each centerline point with radius d are con-

sidered as vessel, where d indicates the corresponding diam-

eter. By comparing the segmentation result to the reference

labeled data, we are able to quantify segmentation quality.

We evaluate sensitivity, specificity, and Matthew’s correlation

coefficient (MCC).

Sensitivity (SN), measured by the ratio of the number of cor-

rectly classified vessel pixels to the total number of vessel pixels

in the image field of view [TP∕ðTPþ FNÞ], reflects the ability
of the algorithm to detect the vessel pixels. Specificity (SP) is the

ability to detect nonvessel pixels and is measured by the ratio of

the number of correctly classified background pixels to the total

number of background pixels [TN∕ðTNþ FPÞ].
The MCC is often used to measure the quality of a binary

classification system when the size of samples in the two classes

varies substantially. In retinal fundus images, around 10% of the

pixels belong to the vessels; therefore, the MCC can be used to

evaluate the algorithm’s performance. The MCC is defined as

EQ-TARGET;temp:intralink-;e026;326;675MCC ¼
TP∕N − S × P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P × S × ð1 − SÞ × ð1 − PÞ
p ; (26)

whereN ¼ TPþ TNþ FPþ FN is the total number of pixels of

the image, S ¼ ðTPþ FNÞ∕N, and P ¼ ðTPþ FPÞ∕N. MCC

returns a value between −1 and þ1, where þ1 indicates a per-

fect prediction, 0 indicates a random prediction, and −1 indi-

cates a completely wrong prediction.

4.2 Databases

The DRIVE, STARE, CHASEDB1, and high-resolution fundus

(HRF) databases are common databases used in this research to

evaluate the performance of the proposed methods. The DRIVE

database38 consists of 40 color retinal images divided into train-

ing and test sets, and obtained from a diabetic retinopathy

screening program in The Netherlands. Each image has a

size of 565 × 584 pixels with eight bits per color channel.

For the test images, two manual segmentations are available,

set A and set B. 12.7% and 12.3% of pixels were marked as

vessels in sets A and B, respectively. The performance is evalu-

ated on the test set using set A, which is the ground truth.

The STARE database39 consists of 20 color retinal images

with sizes of 700 × 605 pixels and eight bits per color channel

each, and are available in the PPM format. The database con-

tains two sets of manual segmentations acquired by two differ-

ent observers. The first observer segmented 10.4% of the pixels

as vessels and the second one segmented 14.9%. Performance is

evaluated using the first observer as the ground truth.

The CHASEDB1 dataset40 consists of 28 color retinal fundus

images with sizes of 999 × 960 pixels, acquired from both the

left and right eyes of 14 child subjects enrolled in the program

Child Heart And Health Study in England. The data set contains

two groups of manually segmented images provided by two

observers. The public HRF image dataset41 contains 45 images

with the size of 3504 × 2336 pixels, divided into healthy, glau-

coma, and diabetic retinopathy groups. Ground truth segmenta-

tion for these images has been made by a group of experts.

For these datasets, we use green channel images as they provide

a maximal contrast between vessels and the background.42

4.3 Qualitative Sample Results

The method described in Sec. 3.1 is able to track locally linear

vessels without bifurcations. Figure 6 shows results obtained

from this algorithm when applied to real and synthetic data.

The method is able to successfully track narrow and low con-

trasted vessels as well as considerable diameter variations, sim-

ulating stenoses and vasodilations in a synthetic vessel [see

Fig. 6(b)].

Figure 7 shows the performance of the same algorithm when

applied to simulated and real vessels having bifurcations. As

shown in Figs. 7(a) and 7(c), in addition to the missing branches,

the bifurcation points are erroneously displaced in both cases.

This error can be explained due to the use of a single GP,

Algorithm 1 Blood vessel tracking algorithm.

Input: Seed point and vessel initial diameter

Output: Vessel direction and diameter

1. Compute the vessel direction-related features using Radon
transform (ρ ¼ 0)

2. Estimate the kernel’s hyperparameter value

3. Generate the covariance matrix used to estimate the directional
variation

4. Calculate t1 and t2 based on Eqs. (22) and (23)

5. if (t1 − t2 > 30) then

6. {Bifurcation:}

7. Estimate new vessel directions for each branch

8. else

9. {Simple Vessel}

10. Select minimum of t1 or t2 as directional variation

11. Estimate new direction

12. end if

13. Compute diameter-related features using Radon transform
(θ ¼ θNþ1)

14. Generate the covariance matrix used to estimate the vessel
diameter

15. Estimate the vessel diameter (rNþ1) using Eq. (25)

16. return θNþ1 and rNþ1
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which allows for tracking only one branch at a time, and the

intensity information from the missing branch disturbs the proc-

ess and causes deviations of the predicted centerline in the vicin-

ity of the bifurcation. By using two GPs, as shown in Figs. 7(b)

and 7(d), we can both resolve the localization problem and

effectively detect the bifurcations.

By moving forward along the vessel centerlines without

bifurcations, a negligible difference between t1 and t2 is detected

and by approaching bifurcations, the difference increases. This

is demonstrated using simulated and real images in Figs. 8(a)

and 8(b), respectively. As seen, the difference between t1 and t2
also shows the angle in the given bifurcation. In this paper, we

apply a simple thresholding on jt1 − t2j to detect bifurcations.

To determine its value, we run cross validation experiments

using 20 DRIVE data sets, where the threshold value is opti-

mized to minimize the detection error. This process results in

30 deg as the optimal threshold. The example results in using

multiple GPs for tracking narrow vessels in noisy images, and

vessels with reflections on the centerlines are shown in Fig. 9.

It is worth noting that there are crossover points in retinal

images that are required to be detected. The algorithm is able

to track the main branches when two branches are perpendicular.

However, approaching a crossover where the branches are not
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Fig. 8 Approaching the bifurcations, the difference between t1 and t2 (the predicted directional changes)
increases. Examples of (a) phantom and (b) retinal images.

Fig. 7 Performance of the proposed algorithm in bifurcation. (a, c) Centerline deviation in bifurcations
using a single GP and (b, d) bifurcation detection using two independent GPs.

Fig. 6 Examples of vessel tracking and diameter estimation are
shown: (a) tracking a simple vessel fragment (extracted from DRIVE
data sets) with no bifurcation and (b) tracking diameter variability in
a synthetic vessel fragment.
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perpendicular, the algorithm behaves the same as bifurcations

and tracks both branches. In the final step, for generating a

binary image, the algorithm eliminates the overlapped points.

4.4 Quantitative Results

The proposed algorithm is robust against the imaging noise

owing to using the Radon transform and application of GP.

In this section, we quantify its robustness by segmenting a

few sets of synthetic images degraded with variable degrees

of Gaussian noise. The maximum and minimum levels of inten-

sities in these images are set to be zero and one. For visual

examination, some of these phantom images along with the

acquired segmentations are shown in Fig. 10. The quantitative

results are also shown in Table 1. Despite adding a strong

Gaussian noise with a variance of 0.5, the algorithm segments

the images with an average sensitivity of 62.81%. Furthermore,

the obtained segmentation matches the target vessels to a large

extent.

Table 1 also shows the capability of the algorithm in tracking

the vessels until their end, even in the presence of excessive

noise. In general, sensitivity decreases as the variance of noise

increases, which can be associated with the poor accuracy in

the estimated diameters. As the integration region for diameter

Fig. 10 Phantom images affected by various levels of Gaussian noise (left) used to evaluate the robust-
ness of the proposed algorithm, and their corresponding results (right). Variances in each row are (a) 0,
(b) 0.05, and (c) 0.5, respectively.

Fig. 9 Sample vessel tracking and bifurcations detection in retinal images. The original images (left) and
their corresponding results (right) in: (a, b) narrow vessels, (c) noisy images, and (d) vessels with
reflections.
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estimation is far smaller than that for direction estimation,

features obtained for the former can be noisy, leading to the

degraded performance, hence a reduction in the sensitivity.

4.5 Comparison with Other State-of-the-Art
Techniques

The proposed method has been compared to the state-of-the-art

based on the values of sensitivity, specificity, and MCC mea-

sures, reported in the literature. Tables 2 and 3 show the results

obtained for each of the test images in the DRIVE and STARE

databases, respectively. It can be noticed that the proposed

Table 1 Results obtained from segmentation of images in Fig. 10 by
adding different values of Gaussian noise. lin, bif, cir, and sin indicate
linear, bifurcation, circle, and sinuous phantom, respectively.

Noise variance Image SN SP MCC

0 lin 0.9989 0.9999 0.9989

bif 0.9632 0.9993 0.9760

cir 0.9996 0.9962 0.9406

sin 0.9262 0.9970 0.9411

Avg 0.9720 0.9981 0.9641

0.01 lin 0.9970 0.9992 0.9880

bif 0.8979 0.9994 0.9355

cir 0.9947 0.9970 0.9642

sin 0.9097 0.9977 0.9357

Avg 0.9498 0.9983 0.9558

0.05 lin 0.9357 0.9999 0.9669

bif 0.9139 0.9997 0.9507

cir 0.9139 0.9992 0.9417

sin 0.9121 0.9970 0.9330

Avg 0.9189 0.9989 0.9481

0.1 lin 0.8224 0.9999 0.9017

bif 0.8207 0.9996 0.8972

cir 0.8372 0.9997 0.9074

sin 0.8359 0.9983 0.8965

Avg 0.8291 0.9993 0.9007

0.5 lin 0.6211 0.9999 0.7813

bif 0.6391 0.9991 0.7754

cir 0.6463 0.9995 0.7893

sin 0.6061 0.9996 0.7626

Avg 0.6281 0.9995 0.7772

Table 2 Segmentation performance of the proposed method on the
DRIVE database.

Image no. SN SP MCC

1 0.7521 0.9718 0.7559

2 0.7369 0.9823 0.7723

3 0.7169 0.9780 0.7495

4 0.7316 0.9790 0.7624

5 0.7300 0.9793 0.7591

6 0.6735 0.9798 0.6996

7 0.7769 0.9711 0.7598

8 0.7762 0.9667 0.7410

9 0.7181 0.9709 0.7014

10 0.8042 0.9636 0.7590

11 0.7550 0.9678 0.7155

12 0.7822 0.9621 0.7470

13 0.7112 0.9759 0.7341

14 0.7662 0.9723 0.7239

15 0.7635 0.9722 0.7562

16 0.7394 0.9705 0.7417

17 0.7486 0.9702 0.7387

18 0.7051 0.9789 0.7404

19 0.7622 0.9741 0.7596

20 0.7054 0.9768 0.7393

Average 0.7428 0.9732 0.7428

Standard deviation 0.0320 0.0056 0.0199

Table 3 Segmentation performance of the proposed method on
the STARE database.

Image no. SN SP MCC

1 0.7100 0.9719 0.7049

2 0.7241 0.9822 0.7421

3 0.7317 0.9623 0.6134

4 0.7688 0.9807 0.7851

5 0.7046 0.9830 0.7583

6 0.6933 0.9823 0.7401

7 0.7323 0.9740 0.7304
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method reaches an average sensitivity of 74.28% and 74.19%,

specificity of 97.32% and 97.06%, and MCC of 74.28% and

72.48% on the DRIVE and STARE databases, respectively.

Table 4 reports the results achieved on the new published

CHASEDB1 and HRF databases. Results are increased in terms

of specificity. An average sensitivity of 75.35% and 77.15%,

specificity of 97.67% and 97.57%, and MCC of 70.62% and

72.09% are achieved on the CHASEDB1 and HRF databases,

respectively. Table 4 compares the performance of the proposed

algorithm with other state-of-the-art techniques on the DRIVE,

STARE, CHASEDB1, and HRF databases. Overall, MCC is

improved on average on the CHASEDB1 dataset, when com-

pared to Refs. 41 and 30.

The proposed algorithm is able to successfully track tiny

vessels. This is due to integration of the local intensities that

are used to compute the Radon transformations in conjunction

with the smoothness in the centerlines made by GP. However,

missing some branches due to blood vessel discontinuity, which

is one disadvantage of the tracking approach, adversely affects

the sensitivity of the algorithm.

The quantified results can be interpreted as follows: the

specificity of the proposed algorithm is relatively high due to

using local information around blood vessels and ignoring back-

ground pixels and regions far away from the vessel centerline.

However, the algorithm suffers from undesirable properties. The

hypothesis for diameter estimation is that the corresponding

distribution of vessel diameter is Gaussian with a mean at the

initial diameter value. Considering the symmetry of Gaussian

distribution, the hypothesis assumed is equivalent to equality of

the diameter frequencies with smaller and larger values than

Table 3 (Continued).

Image no. SN SP MCC

8 0.7104 0.9725 0.7262

9 0.7461 0.9627 0.7077

10 0.7308 0.9636 0.6930

11 0.7456 0.9718 0.7074

12 0.7700 0.9711 0.7503

13 0.7549 0.9697 0.7341

14 0.7427 0.9766 0.7453

15 0.7395 0.9725 0.7391

16 0.7490 0.9726 0.7575

17 0.7248 0.9719 0.7273

18 0.7838 0.9576 0.7182

19 0.7682 0.9545 0.6972

20 0.8067 0.9583 0.7178

Average 0.7419 0.9706 0.7248

Standard deviation 0.0282 0.0084 0.0348

Table 4 Comparison of the proposed algorithm with existing methods using the DRIVE, STARE, CHASEDB1, and HRF databases.

DRIVE STARE CHASEDB1 HRF

Methodology Year SN SP MCC SN SP MCC SN SP MCC SN SP MCC

Human observer — 0.7760 0.9730 0.7601 0.8951 0.9387 0.7225 0.7425 0.9793 0.7475 — — —

Martinez-Perez et al.43 2007 0.7246 0.9655 — 0.7506 0.9569 — — — — — — —

Al-Diri et al.44 2009 0.7282 0.9551 — 0.7521 0.9681 — — — — — — —

Marn et al.42 2011 0.7067 0.9801 — 0.6944 0.9819 — — — — — — —

You et al.45 2011 0.7410 0.9751 — 0.7260 0.9756 — — — — — — —

Miri and Mahloojifar46 2011 0.7352 0.9795 — — — — — — — — — —

Odstrcilik et al.41 2013 0.7060 0.9693 — 0.7847 0.9512 — — — — 0.7741 0.9669 —

Zhao et al.7 2014 0.7354 0.9789 — 0.7187 0.9767 — — — — — — —

Roychowdhury et al.47 2015 0.7390 0.9780 — 0.7320 0.9840 — — — — — — —

Azzopardi et al.28 2015 0.7655 0.9704 0.7475 0.7716 0.9701 0.7335 0.7585 0.9587 0.6802 — — —

Zhang et al.32 2016 0.7743 0.9725 — 0.7791 0.9758 — 0.7626 0.9661 — 0.7978 0.9717 0.7410

Strisciuglio et al.29 2016 0.7777 0.9702 0.7525 0.8046 0.9710 0.7536 — — — — — —

Annunziata et al.48 2016 — — — 0.7128 0.9836 — — — — 0.7128 0.9836 —

Orlando et al.30 2017 0.7897 0.9684 0.7556 0.7680 0.9738 0.7417 0.7277 0.9712 0.7046 0.7874 0.9584 0.6897

Proposed method 2017 0.7428 0.9732 0.7428 0.7419 0.9706 0.7248 0.7535 0.9767 0.7062 0.7715 0.9757 0.7209
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the initial diameter. However, since in retinal images vascular

diameters decrease when moving away from the optic disk,

the frequency of vessels with diameters smaller than the initial

diameter is often greater. Thus, the diameters of narrow vessels

are often overestimated as larger, lowering the specificity. This

limitation happens at bifurcation and crossover points where the

vessel width might not be continuous. Nevertheless, in contrary

to pixel-based methods, the proposed tracking method provides

direct diameter estimations and decomposes the vascular tree

into constitutive branches. Sample segmentations obtained

using our method are shown in Fig. 11, which shows a reason-

able resemblance to the reference segmentations.

The average processing time per image in DRIVE and

STARE databases is about 90 s (Ubuntu 14.04 64 bit, used one

processor core of Intel Core i7 @ 2.40 GHz and 8 GB RAM).

It is worth noting that computational complexity for inverting a

covariance matrix is Oðn3Þ and this fact along with the present

integration in Radon transform would lead to more computa-

tional complexity compared with the other methods.

5 Discussion and Conclusion

Considering the outbreak of diabetes, its effect on retinal ves-

sels, and the growing demand for periodical examination of reti-

nal images, the automatic analysis of retinal images is a relevant

problem in medical image processing. In this paper, we

presented a new approach to track blood vessel centerlines

and their diameters based on GP and Radon transform. We

assumed that for a single fragment of a vessel, its curvature

and diameter are GPs whose kernel parameters are optimized

by maximizing the likelihood of the data.

In order to test the performance of the algorithm, the retinal

images in DRIVE, STARE, CHASEDB1, and HRF databases,

with ground truth pixel labels, were used. We showed that the

proposed method is robust to noise and thus able to track thin

structures and central arterial reflex, where the signal quality

drops significantly. This property is first due to integration of

the local intensities used to compute the Radon transformations.

Furthermore, the smoothness in the centerlines is enforced by

spatial correlations of the predictions made by GP. The result

is an increased specificity level when compared to other meth-

ods. The proposed method directly measures the vessel diame-

ters and detects the bifurcation points that can be useful for

further postquantitative and compositional analysis.

The proposed method relies on inverting covariance matrices

and computing line integrals for Radon transformations, which

can be computationally expensive. One possible interesting

research direction is the development of a mechanism to

make the algorithm computationally more efficient. This can

be achieved using methods such as sparse GPs49,50 or Fourier

transforms to compute the Radon features.51,52

Fig. 11 Sample segmented results of retinal images from the DRIVE, STARE, CHASEDB1, and HRF
databases using the proposed method: (a) the original images, (b) the corresponding obtained segmen-
tations, and (c) the manual segmentations.
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