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Abstract

Background and Objective: Retinal vascular tree extraction plays an important role in computer-aided diagnosis and surgical
operations. Junction point detection and classification provide useful information about the structure of the vascular network,
facilitating objective analysis of retinal diseases.
Methods: In this study, we present a new machine learning algorithm for joint classification and tracking of retinal blood vessels.
Our method is based on a hierarchical probabilistic framework, where the local intensity cross sections are classified as either
junction or vessel points. Gaussian basis functions are used for intensity interpolation, and the corresponding linear coefficients
are assumed to be samples from class-specific Gamma distributions. Hence, a directed Probabilistic Graphical Model (PGM) is
proposed and the hyperparameters are estimated using a Maximum Likelihood (ML) solution based on Laplace approximation.
Results: The performance of proposed method is evaluated using precision and recall rates on the REVIEW database. Our
experiments show the proposed approach reaches promising results in bifurcation point detection and classification, achieving
88.67% precision and 88.67% recall rates.
Conclusions: This technique results in a classifier with high precision and recall when comparing it with Xu’s method.

Keywords: Bifurcation, Classification, Machine learning, Probabilistic Graphical Model, Retinal blood vessel tracking.

1 Introduction

Retina is one of the most important organs in eye and acts

as a detector for the incident light, enabling human vision. It

consists of unique types of cells that are referred as sensory

receptors. The retinal blood vessel network provides nutrition

to eyes and removes waste from the retinal systems. Several

retinal implications have been related to vascular anomalies

and structural changes, which includes diabetic retinopathy,

glaucoma, retinal artery occlusion and macular degeneration

[1, 2]. In the field of medical diagnosis and surgical planning,

vascular reconstruction and bifurcation detection in retinal

images are basic steps for computerized analysis. Vascular

bifurcation and branching in retinal images usually helps

predicting diseases [3, 4]. Additionally, changes in the retinal

vascular can be observed by the modification of bifurcation

patterns.

Generally speaking, blood vessel segmentation methods

can be divided into two main categories: pixel-based clas-

sification approaches, and center line tracking methods [5].

In the former group, pixels are represented by their corre-

sponding feature vectors representing local properties, e.g.

intensity and its higher order of derivatives. Next, these

vectors are either classified using a ground truth data in

a supervised fashion, or clustered through an unsupervised

mechanism into homogeneous sets of vessel/non-vessel pix-

els. A complete review of these methods can be found in

[5] and is beyond the scope of this paper. To outline our

contributions in the proper context, each category is briefly

discussed through a few exemplary methods.

Several supervised methods are introduced in [6, 7], where

artificial neural networks have been explored for segmenting

vascular features and making classification. Marin et al. [7]

presented a neural network scheme for pixel classification.

This methodology uses a 7-D feature vector composed of

gray-level and moment invariants-based features for pixel

representation. Similarly, Franklin et al. [8] presented a

multilayer perceptron neural network, for which the inputs

are derived from the Gabor and moment invariants-based fea-

tures computed from the images. A supervised segmentation

technique based on the deep neural networks is proposed in

[9], where the neural network is trained on the large sample

of database. Then the structure prediction network is used

to classify multiple pixels. Fu et al. [10] utilized the convo-

lutional neural network (CNN) combined with Conditional

Random Field (CRF) to model long-range pixel interactions.

Ricci et al. [11] proposed using line detection operators

to compute feature vectors and Support Vector Machines

(SVM) for pixel classification. Also, You et al. [12] exploited

the radial projection and semi-supervised classification using

SVM for vessel segmentation. A supervised method for

retinal blood vessel segmentation is presented in [13]. They

designed the feature vectors by combining local area and

shape information with the multi-scale statistical features

based on gray level values. Finally a support vector classifier

is used for classification of pixels belonging to vasculatures.

The application of a 2-D Gabor filter and Gaussian mixture

model classifier has been demonstrated by Soares et al. [14].

Osareh et al. [15] proposed an automatic retinal blood vessel
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segmentation technique, where a feature vector is computed

using properties of scale and orientation selective Gabor

filters. The extracted features are then classified using the

Gaussian mixture model and SVM classifiers.

Similarly, various unsupervised pixel labeling approaches

have been proposed. Segmentation of retinal blood vessels

by combining a Difference of Offset Gaussian (DoOG) filter

and morphological reconstruction is described in [16]. Kande

et al. in [17] proposed an unsupervised fuzzy clustering algo-

rithm which uses matched filtering to enhance vessels and

background. An MRA fuzzy c-Means vessel segmentation

algorithm based on the vascular feature, presented by Yang et

al. [18], where the combination of both the tubular structural

information and gray value scale information are utilized

to segment cerebral vessels. The template matching is also

a pixel based method which is an unsupervised technique.

Matching filter based detection has been suggested to detect

piecewise linear segments of blood vessels in [19–23]. For

instance, Chaudhuri et al. use a two-dimensional linear

kernel with a Gaussian profile to search for vessel segments

along twelve directions [23]. Hoover et al. [24] benefit

from combination of local and regional properties of retinal

blood vessels for segmentation. They use a threshold probing

technique on a matched filter response image.

Although pixel based approaches have been significantly

developed due to their ease of implementation, they do not

guarantee connectedness in the segmented structures, and

hence topologically correct vessels. Tracking based methods,

on the other hand, generate connected vessel centerlines

and provide structural information describing the bifurcation

points and the branches, which can be useful for composi-

tional analysis of the vascular trees.

Vessel tracking algorithms start from seed points on the

vessels, placed either automatically or manually, and follow

centerlines using local structural information [25, 26]. These

techniques usually find the path that best matches a vessel

profile model. An adaptive tracking algorithm is described in

[27], which identifies the incremental size of progression by

exploiting the spatial continuity of the vessels centerline and

orientation, ignoring bifurcations. Zhou at al. [28] developed

an algorithm for quantification of centerline, diameter and

tortuosity of a vessel segments. In this technique, a matched

filter is combined with a prior knowledge to automatically

detect edges and track the centerline. To model vessel

intensity profiles. Gaussian functions were used that are not

always realistic approximations.

The fuzzy c-mean clustering algorithm employed in [19]

automatically track fundus vessels using linguistic descrip-

tions like vessel and non-vessel. This iterative fuzzy vessel

tracking algorithm is based on finding the membership

functions of the two linguistic values. The method does not

rely on edge information to locate the exact location of the

vessels, which reduces the effects of noise in the tracking

process. In the other technique, the use of Gaussian and

Kalman filter for retinal blood vessel detection and tracking

has been demonstrated by Chutatape et al. [26].

The multiscale second order derivatives of an image

(Hessian) is examined by [29] with the context of developing

a vessel enhancement filter. The eigenvalue analysis of the

Hessian is used to find out the direction of least intensity

variations and, hence, the local vessel orientation. Aylward

et al. [30] successfully applied this information for centerline

extraction and showed the robustness to presence of bifurca-

tions but did not explicitly detect them. An improved vessel

centerline tracking method is described by Xu et al. [31] that

combines the recursive geometrical tracking method of Sun

et al.’s algorithm [27] and the eigenvector of the Hessian

used in Aylward et al.’s approach [30].

Delibasis et al. [32] have proposed an automatic model

based tracking algorithm, which also estimates the diameter

of the vessels. The algorithm utilizes a parametric model

of a vessel and a measure of match (MoM) that quantifies

the similarity between the model and the given angiographic

image path. The initialization of seed pixels for vessel

tracking is also done according to Frangi’s vesselness filter

[29]. Generally speaking, these model based approaches

perform reasonably well in tracking centerlines of linear

vessel segments but do not generalize well in handling

complex bifurcation patterns.

Nayebifar et al. [33] presented a vessel tracking approach

based on particle filtering. This method does not perform

any patch based processing to extract the vessels based on

some prior geometric model. Instead, the particle filter uses

a probability density function (PDF) to describe the blood

vessels. The product of the green and blue channels of the

RGB retinal images is considered as a PDF for tracking

procedure. Also, the Bayesian theory has been employed in

vessel tracking [34–36]. To detect and track vessels, these

methods consider a prior probability, which depends on the

number of large intensity transitions on a semi-circular cross

section.

In addition to vessels, detection of bifurcations have

been investigated by a series of researchers. An automatic

detection and classification of retinal vessel tree bifurca-

tions and crossovers is proposed in [37]. In this method,

morphological filters are utilized for detection. In [38] the

geometrical properties are used to detect tree landmarks,

which are then classified as bifurcations, branches and cross

overs. Baboiu et al. [39] proposed a bifurcation detection

method that is based on the scale space behavior of those

structures. An analytical model for the bifurcation evolution

with increasing scale is combined with eigenvalue analysis to

create a bifurcationness filter. The COSFIRE (Combination

Of Shifted FIlter REsponses) filter is presented for the

detection of bifurcations in segmented retinal images [40].

COSFIRE filters are trainable keypoint detection operators,

which are selective for a number of prototype bifurcations.

In summary, the majority of the existing attempts do not

jointly detect the bifurcations and extract the centerlines at

the same time. Therefore, a full description for the geometry

of the branches and the locations of the bifurcations often

remains missing.

In this paper, a new vessel tracking approach is proposed

that can provide joint descriptions of the centerlines and

the branching points. We demonstrate a machine learning

algorithm, based on a hierarchical probabilistic framework,
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to detect and classify normal blood vessel and bifurcation

points. Our paper presents a directed Probabilistic Graphical

Model (PGM) where the hyperparameters are estimated us-

ing a Maximum Likelihood (ML) solution based on Laplace

approximation.

The rest of the paper is organized as follows: Next

section gives a general description and formulation of our

method, including the concept of linear regression model

and representations of probability distributions using proba-

bilistic graphical models. Section 3 illustrates the analyses.

Experimental results and the discussion are given in sections

4 and 5, respectively. Eventually, we conclude the paper in

section 6.

2 Proposed vessel extraction method

Our algorithm is an iterative process consisting of two

major steps: tracking and classification. At each tracking

step, the cross-sectional vessel profile is regressed using a

linear model. It’s then classified using the proposed graph-

ical model. In this paper, two types of vessel structure

are considered: normal and bifurcation points, which are

illustrated in Fig. 1a. As seen, in a normal point, only one

vessel exists in the search window, whereas in a bifurcation

point, a single vessel is divided into two branches in the

searching region. Given that in retina images vessels are

darker than background, the centerlines become intensity

valleys. Therefore in general, the intensity profile with only

one valley is often described as the normal point and the

intensity profiles having two large valleys imply a bifurcation

structure. However, to classify a tracking position, the pro-

posed algorithm does not rely on counting these features. The

method can be described as a joint regression classification

approach, where the distribution of the intensity regression

coefficients derives the classification. More intuitively, for

a branching point, this distribution should allow for more

incidence of large regression coefficients (of basis function).

Whereas to regress a normal vessel structure, a fewer number

of active basis functions, thus larger precision in their

distribution, is required. The proposed PGM is a hierarchical

implementation of these concepts as follows.

2.1 Model Structure

At the given step n a dynamic searching region is defined

as an adaptive semi-circular cross section and vessel intensity

profile can be extracted in searching window. This profile is

expressed as observation data tn. In this model, tn ∈ R
L is

defined as a vessel intensity profile and L is the number of

sampling points on the semi-circular arc (see Fig. 1b). The

proposed algorithm tends to regress and classify tn as class

variable zn ∈ {0, 1}, where zn = 0 and zn = 1 represent

the normal and bifurcation vessel respectively.

The goal of regression is to predict the values of vessel

profiles vector tn. The target variable is expressed by vector

yn with additive white Gaussian noise, so that

tn = yn + ϵ (1)

(a)

(b)

Fig. 1. Sectional intensity profile of a blood vessel: (a) Illustration of two
types of blood vessel structures in the searching region (semi-circular
arc); (b) Sampling points on the semi-circular arc.

where ϵ is a zero mean normal distribution with precision

β.

The simplest linear model for regression is one that

involves a linear combination of the input variables. Thus

the estimated vessel profile yn is expressed as:

yn =











yn1
yn2

...

ynL











=











ϕT (l1)wn

ϕT (l2)wn

...

ϕT (lL)wn











=











ϕT (l1)

ϕT (l2)
...

ϕT (lL)











wn (2)

where ϕT = (φ0, φ1, . . . , φM−1) and φ(·) are nonlinear

functions of the input variables li and known basis functions.

li is the length of the semi-circular arc corresponding to the

i sampling point and wn = (wn0, wn1, . . . , wnM−1)
T are

weighting variables. Linear combinations of these functions

are supposed to extend the class of model. In this study,

features can be expressed in term of basis functions and M
denotes the number of features.

In the retinal images, vessel’s sectional intensity profile

can be approximated as a Gaussian curve [23]. We also use

Gaussian basis functions, however because of regression, the

profiles are not constrained to be Gaussian in this paper.

Therefore, the basis functions utilized here is as following:

φj(li) = −exp{− (li − ξj)
2

2σ2
} (3)
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Fig. 2. Illustration of Gaussian basis functions for M = 8.

where the ξj for j = (1, ...,M) denotes the location of basis

functions in the input space, and the parameter σ controls

the width of the functions (see Fig. 2).

Note that using (1), the conditional distribution of tn given

the weighting variables wn is specified as:

p(tn|wn) = N (tn|Φwn, β
−1IL×L) (4)

where according to (2), Φ is an L×M design matrix, whose

elements are defined by Φij = φj(li). Thus it is expressed

by

Φ =











φ0(l1) φ1(l1) · · · φM−1(l1)
φ0(l2) φ1(l2) · · · φM−1(l2)

...
...

. . .
...

φ0(lL) φ1(lL) · · · φM−1(lL)











. (5)

To construct a graphical representation of the data, we treat

the weighting variables wn as independent random samples

from a Gaussian probability distribution, which is conjugate

to the distribution given in (4). Hence, the probability of wn

is modelled as following:

p(wn|an) =
M−1
∏

m=0

p(wnm|anm) (6)

=
M−1
∏

m=0

N (wnm|0, a−1
nm)

where the vector an specifies the precision of the normal

distribution. Finally, at the highest level, these precision

variables are assumed to be random samples from class

dependent Gamma distributions, conjugate to distributions

in (6). More specifically, we define

p(an|zn) =
(

M−1
∏

m=0

Gam(anm; k0, θ0)

)(1−zn)

(7)

×
(

M−1
∏

m=0

Gam(anm; k1, θ1)

)(zn)

=
M−1
∏

m=0

(

ak0−1
nm

Γ(k0)θ
k0

0

e
−

anm

θ0

)(1−zn)

×
(

ak1−1
nm

Γ(k1)θ
k1

1

e
−

anm

θ1

)(zn)

where kc, θc are class dependent shape and scale hyper

parameters (c denotes the number of classes, e.g. vessel and

bifurcation type).

2.2 Proposed PGM

Probabilistic graphical models are well used to describe

machine learning and pattern recognition algorithms. In this

study, a Bayesian network (directed graphical model) is

proposed to illustrate causal relationships between variables

(see Fig. 3a). We suppose data set of N observations {tn}
and {zn}, where n = 1, ..., N , with corresponding latent

variables {wn} and {an}. The actual observed data {tn}
and {zn} are known as incomplete data set. As shown in Fig.

3b, for N observation, θ = {θ0, θ1}, β and k = {k0, k1} are

hyperparameters. We estimate the values of hyperparameters

θ0, θ1 and β by maximizing the marginal likelihood function

and manually set the values of k0 and k1 for simplicity.

The graphical representation leads to express the like-

lihood function simply by concept of i.i.d (independent

identically distributed). The marginal likelihood function (or

the evidence function) is evaluated in the next subsection.

2.3 Evidence Function

The marginal likelihood function (or model evidence) is

obtained by integrating over vectors wn and an, so that

p(t, z|θ, β) =
∫∫

a,w

p(t, z,a,w|θ, β) da dw (8)

=
N
∏

n=1

∫∫

an,wn

p(tn, zn,an,wn|θ, β) dan dwn.

The marginalization with respect to an is as the follows:

M−1
∏

m=0

∫

anm

p(wnm|anm) p(anm|zn) danm (9)

=
M−1
∏

m=0

C(θ0, θ1, k0, k1, zn)√
2π

×
∫

anm

a

(

1
2+(k0−1)(1−zn)+(k1−1)zn

)

nm

×e
−anm

(

w2

nm
+

1−zn
θ0

+
zn
θ1

)

danm
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(a) (b)

Fig. 3. (a) Proposed directed graphical model and (b) shows the same graph model as in (a) using the plate notation for n = 1, ..., N observations.

where C =
((

Γ(k0) θ
k0

0

)(1−zn) (

Γ(k1) θ
k1

1

)(zn) )
−1

.

Since the probability density function is nonnegative ev-

erywhere and its integral over the entire space is equal

to one, therefore we can use
∫

x

Gam(x; a, b) dx =
∫

x

ba

Γ(a)x
a−1 e−bx dx = 1 to simplify the right-hand side of

(9) as:

M−1
∏

m=0

C(θ0, θ1, k0, k1, zn)√
2π

(10)

×Γ
(

3
2 + (k0 − 1)(1− zn) + (k1 − 1)zn

)

×
(

w2
nm + 1−zn

θ0
+ zn

θ1
)
)

−

(

3
2+(k0−1)(1−zn)+(k1−1)zn

)

The maximum likelihood solution for the hyperparame-

ters has no closed-form analytical solution. Therefore, we

evaluate the integral with respect to wn, using the Laplace

approximation, which is based on a local Gaussian approx-

imation centered on the mode of the function f(wnm) =
(

w2
nm + 1−zn

θ0
+ zn

θ1

)

−

(

3
2+(k0−1)(1−zn)+(k1−1)zn

)

. This

provides a practical alternative to the evidence framework.

A Gaussian approximation of the function f(wnm) can be

expressed as (please refer to the Appendix section):

f(wnm) (11)

≃
(1

θ

)

−(k+
1
2 )

√
2π

√

2θ(k + 1
2 )

N
(

wnm|0,
(

2θ(k + 1
2 )
)

−1
)

.

Hence the Laplace method leads to a simple closed-form

analytical solution for the hyperparameters. Therefore, the

evidence function (8) can be simplified to (12).

p(t, z|θ, β) =
N
∏

n=1

(2k + 1)
−

M
2

(

Γ(k + 0.5)

Γ(k)

)M

(12)

×
∫

wn

N (tn|Φwn, β
−1IL×L)N

(

wn|0, b−1
n IM×M

)

dwn

where M denotes the dimensionality of wn and bn =
2(k + 0.5)/( 1−zn

θ0
+ zn

θ1
). The parameter bn specifies the

precision of distribution over wn which consists of class

variables zn to classify the intensity profiles by the weighting

variables wn.

To evaluate the integral in (12), we use the result of Bayes

theorem for conditional distribution in a linear-Gaussian

model. Also, we evaluate the integral by computing a

quadratic form in the exponent and making use of it for

the normalization coefficient of Gaussian. Therefore, the

evidence function can be rewritten as:

p(t, z|θ, β) =
N
∏

n=1

(2k + 1)
−

M
2

(

Γ(k + 0.5)

Γ(k)

)M

(13)

×
(

β

2π

)

L
2
(

bn
2π

)

M
2
∫

wn

exp {−E (wn)} dwn.

The total error function is given by

E (wn) =
β

2
∥tn −Φwn∥2 +

bn
2
wT

nwn (14)

where the term
bn
2

is considered to regulize the error

function. It has the property that if bn is sufficiently large;

some of the components of wn are driven to zero, leading to

a sparse model in which the corresponding basis functions

play no role. Also the value of hyperparameters θ0 and θ1
modify value of bn in each class.

Using the result of Bayes theorem for conditional dis-

tribution, we have p(wn|tn) = N (wn|µn,A
−1
n ). Where

µn = βA−1
n ΦT tn and An = bnIM×M+βΦTΦ. Therefore,

square error over wn can be expressed as:

E (wn) = E (µn) +
1

2
(wn − µn)

TAn(wn − µn) (15)

where An corresponds to the Hessian matrix of the error

function, and

E (µn) =
β

2
∥tn −Φµn∥2 +

bn
2
µT

nµn. (16)
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Thus the maximum weight vector is expressed by w∗

n = µn

and sectional intensity profiles are provided by yn(l,w
∗

n).
The hyperparameters can be estimated by maximizing the

logarithm of marginal likelihood in the next subsection.

2.4 Hyperparameter Estimation

In this section, the logarithm of evidence function is

maximized with respect to hyperparameters θ and β. In the

other word, the best hyperparameters are

θ̂, β̂ = argmax
θ,β

{ln p(t, z|θ, β)}. (17)

The value of β that maximizes the marginal likelihood can

be obtained as:

1

β
=

1

NL−
N
∑

n=1
ρn

N
∑

n=1

L
∑

i=1

(

tni − µT
nϕ(li)

)2
. (18)

where the quantity ρn can be written ρn =
M
∑

i=1

(νi/(νi + bn))

and νi are the eigenvalues of βΦTΦ matrix.

This shows that β is obtained using an implicit solution

technique. Thus a chosen initial value of β can be used

to calculate µn and ρn and then re-estimate β by (18),

repeating until convergence. Similarly, the values of θ can

be determined using maximizing the logarithm of evidence

function with respect to θ0 and θ1.

θ0 =
MN0

2(k + 0.5)
( N
∑

n=1
µn

Tµn +
N
∑

n=1

M
∑

i=1

1
νi+bn

)

. (19)

θ1 =
MN1

2(k + 0.5)
( N
∑

n=1
µn

Tµn +
N
∑

n=1

M
∑

i=1

1
νi+bn

)

. (20)

where N = N0 + N1, N0 and N1 represent the number

of data belongs to normal vessels and bifurcation points,

respectively.

Note that the presented equations are also implicit solu-

tions for θ, because the parameter bn and matrix µn depend

on θ. Thus, the solution is an iterative procedure in which

an initial choice is made for θ and uses to determine µn,

as well as bn. These values are then used to re-estimate

hyperparameters θ0 , θ1 using (19) and (20).

3 Analysis

Fig. 4 shows the schematic diagram of our proposed

approach for retinal vessel tracking. As a preprocessing step,

we extract green channel from RGB image. This algorithm

is performed on this particular channel, because this channel

provides the highest contrast between the retinal vessels

and background. The green channel usually has considerable

image information while red channel is the brightest color

channel and has low contrast, and the blue channel is rather

dark and does not contain any information [41]. In the

first stage, several vessel’s intensity profiles are extracted

from chosen section of image in two different classes.

These intensity profiles organize the training and test data

for cross validation. Then the proposed machine learning

process is used to estimate the model hyperparameters and

predict the class of blood vessels. In this paper, leave-one-

out cross validation is employed to estimate how accurate

our predictive model performs in practice. On the other

hand, the goal algorithm is to achieve accurate estimation

yn and the class label parameters consequently. Therefore,

to determine the best value of M the square error value

between the observed and predicted profiles, i.e. tn and yn,

can be evaluated for training and test data set. In the second

stage, the following iterative process is used to describe the

tracking and classification algorithm:

The tracking progress is similar to the method proposed in

[34] but with difference that the cross-sectional vessel profile

is regressed using a linear regression model at each tracking

step and then classified by the proposed graphical model.

• Initialization: At first, two initial edge points are man-

ually selected diametrically on the desired vessel, and

the middle point of current edges is expressed as initial

center point (see Fig. 5a).

• Tracking: At the current iteration, the intensity profile

tn is extracted in a semi-circular search window. Then

this profile is estimated as yn using the proposed linear

regression mentioned in (2). Therefore, the ridge of es-

timated profile yn is considered as the center point On.

At step n, we define vessel edge points Un, Vn, center

point On, direction
−→
Dn and diameter dn. The tracking

direction
−→
Dn is

−−−−−→
On−1On and local vessel diameter is

defined as dn = |−−−→UnVn| (see Fig. 5b). The next vessel

edge points are searched in a dynamic search window.

These edges are identified by the defined threshold in

[27].

Using vessel diameter value resulted from previous step,

a semi-circle can be adapted automatically with the

radius of 1.2dn−1. Also the value of σ (mentioned in

(3)) is upgraded by σ =
dn
4

.

• Classification: During the tracking, vessel structure

should be identified automatically. According to ob-

tained hyperparameters, semi-circular intensity profiles

are classified by predictive distribution, which is defined

as follows:

p(zn|tn, t, z, θ, β) (21)

=

∫∫

an,wn

p(zn|tn,wn,an, t, z, θ0, θ1, β)

×p(wn|an)p(an|zn), dan dwn

∝
∫∫

an,wn

p(zn)p(tn|zn,wn)p(wn|an)p(an|zn) dan dwn

The prior probability has the expression

p(zn) =
(N0

N

)(1−zn)(N1

N

)(zn)
(22)

which is weighted by the number of training data belong-

ing to normal and bifurcation structures. Using (12) and
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Fig. 4. Schematic diagram of the proposed method.

(a)

(b)

Fig. 5. Definition of dynamic searching region and tracking process.

the result of Bayes theorem, predictive distribution can be

simplified into the following

p(zn|tn, t, z, θ, β) =
(N0

N

)(1−zn)(N1

N

)(zn)
(23)

× (2k + 1)
−

M
2

(

Γ(k + 0.5)

Γ(k)

)M

×N (tn|0, β−1IL×L +Φb−1
n IM×MΦT ).

It should be noted that the proposed tracking method is

reasonably robust to a non-optimal initial point selection.

The tracking based methods usually require the user to

define the initial points. In our method two diametrical

initial points are used to define the radius of semi-circle

arc in the first step. Therefore non-optimal selection for

one point only leads to an increase in d and the radius

of the first semi-circular window consequently. At the next

step the proposed algorithm automatically modifies diameter

using the threshold resulted from the previous semi-circular

window.

In general, this tracking process automatically stops when

the vessel diameter is less than five pixels. Besides, where the

bifurcation points are found the tracking method continues

in larger branch and the other one is tracked subsequently.

4 Experimental results

To evaluate the performance of our proposed method,

the retinal images from the REVIEW [42] and DRIVE

[43] databases are used to assess the performance of vessel

classification algorithm. The REVIEW database consists of

four datasets HRIS, VDIS, CLRIS and KPIS, including 16

images with 193 vessel segments, demonstrating a variety of

pathologies and vessel types. Images are assessed by three

independent experts, who marked the vessel edges. Also,

the DRIVE database consists of 89 color fundus images of

which 84 contain signs of the diabetic retinopathy and 5 are

considered as healthy.

We evaluate the accuracy of both bifurcation and normal

points, in the manually graded images by an expert compared

to the output images produced by our method. Since vessel

crossing configuration is not considered in the proposed

model, the proposed algorithm is applied to regions without

significant crossing patterns.

Some examples of vessel tracking and classification in

HRIS database are shown in Fig. 6. The first and second

rows show healthy and disease subimages respectively, in

which the disease images include retinal pathologies. Fig. 7

shows the experimental results of our algorithm in DRIVE

database. The corresponding results using our tracking and

classification method are shown on the green channel. These

results are obtained by stopping the proposed tracking pro-

cess manually. The cross sectional intensity profiles are

classified as bifurcation points, shown by 1 (purple) and the

normal vessels determined by 0 (green).
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Examples of vessel tracking and classification in the HRIS database: (a)-(c) and (d)-(f) present the results of proposed method on the healthy and
disease images respectively.

In this paper, the Gaussian model has been proposed which

fits the intensity profile of a retinal vessel. Hence, in some

cases where the central vessel reflex, retinal pathologies or

hardly noise are presented, the profile model can further

complicate and misjudgment occurs in class detection (see

Fig. 6e).

As previously mentioned in section 3, to determine the

best value of M the residual value of E (w∗

n) mentioned in

(16), can be evaluated for training and test data set. It is

more convenient to use the root-mean-square (RMS) error

defined by

ERMS =
√

2E (w∗

n)/L (24)

Fig. 8 shows the RMS error, evaluated on the training set

and an independent test set for various values of M . The

residual data error is reduced from M = 8 and M = 9. The

generalization error is roughly constant between M = 10
and M = 20. However, M = 10 is simplest model which

gives a good description for the observed data.

Fig. 9a shows the real and regressed intensity profile

from the normal blood vessel. The coefficient parameters

w∗

n is proportional to normal structure (see Fig. 9b). The

bifurcation structure is shown in Fig. 9c and Fig. 9d which

two elements of parameters w∗

n are larger than the other, thus

the corresponding Gaussian basis functions is more effective

to estimate bifurcation intensity profile.

5 Discussion

In the proposed classification model, any vessel section

is classified either as normal vessel or junction points. Con-

sequently, there are four events, where TP (true positives)

represents the number of true bifurcation points detected;

FP (false positives) is the number of falsely detected Bifur-

cation points; TN (true negatives) indicates the number of

correctly detected normal vessels and FN (false negatives)

is the number of falsely detected normal vessels.

Hence, for evaluation of the proposed classification algo-

rithm, we introduce two criteria: the precision and recall of

class prediction. They are defined as follows:

Precision =
TP

TP + FP
(25)

Recall =
TP

TP + FN
(26)

Table I shows these criteria with various number of basis

function in N data set, with the best results achieved in

M = 10. It confirm the results of RMS error evaluation.

To analysis bifurcation point detection, we use the criteria

defined in (25) and (26). Table II shows the precision and

recall rates resulted from the proposed method and Xu et

al.’s method [31] on REVIEW database.

In this section, we compare our method to Xu et al.’s

method proposed in [31]. In contrary to our method, they
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(a) (b)

Fig. 7. Examples of vessel tracking and classification in the DRIVE database.

Fig. 8. Graphs of the root-mean-square error, evaluated on the training set
and on an independent test set for various values of M .

TABLE I.
Results for bifurcation classification with various number of basis
functions.

M 8 9 10 11 12 13 14 15

Recall % 60.0 60.0 83.3 80.0 50.0 60.0 66.6 66.6

Precision % 50.0 37.5 78.1 57.1 50.0 50.0 57.1 57.1

directly use the intensity features obtained from the cross

sections as follows: Inferring the directions of the vessels

using a combination of approaches outlined in [27] and [30],

the intensity profiles on the cross sections are convolved

with a matched filter. The expected pattern for vessel cross-

sectional intensity profile is assumed to be a rectangular

in shape with width equal to 2R+1. These widths are then

classified as either normal vessel or bifurcation points using

a heuristic rule.

Table II summaries our comparisons showing that the

TABLE II.
Evaluation of bifurcation points detected on REVIEW database.

Total Healthy Disease*

Proposed
method

Recall% 88.67 100.00 83.78

Precision% 88.67 94.11 86.11

Xu et al.’s
method [31]

Recall% 64.15 77.77 57.14

Precision% 66.66 70.00 64.51

*Images contain retinal pathologies.

proposed method is more precise than Xu et al.’s method

[31]. This can be due to the fact that the classification rules

in [31] are only heuristic and thus not always optimal.

In general, detected results in table II show that precision

and recall rates have the same values for the proposed

algorithm. It can be concluded from (25) and (26) that

FP = FN . This demonstrates our model can recognize

number of bifurcation branches successfully. In the healthy

images, all bifurcation points are identified and only in few

cases (5.89%) extra bifurcation structure are detected. In

the disease cases, the model was successful in identifying

the majority of the bifurcation points (83.78%) and in the

13.89% of cases determined false bifurcations.

Table III, shows the three criterions to compare the

performance of the proposed method: TPR (recall), TNR

and Accuracy (Acc) on the REVIEW and DRIVE databases.

These metrics are defined as

TNR =
TN

TN + FP
= 1− FPR (27)

Accuracy =
TP + TN

TP + TN + FP + FN
(28)

TPR measures the rate of real junction points correctly

classified while TNR measures the rate of real normal

vessels versus all the points classified as a normal vessel.
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(a) (b)

(c) (d)

Fig. 9. (a) The real and regressed cross-sectional intensity profile of the normal structure. (b) Coefficient parameter (w∗

n
) distribution belongs to the normal

structure. (d) The real and regressed cross-sectional intensity profile of the bifurcation structure. (d) Coefficient parameter (w∗

n
) distribution belongs to the

bifurcation configuration.

TABLE III.
Comparison of different methods for retinal vessel classification on the
REVIEW and DRIVE databases.

Acc TPR 1-FPR=TNR

REVIEW
Proposed method 0.984 0.886 0.991

Xu et al.’s method [31] 0.952 0.641 0.975

DRIVE
Proposed method 0.970 0.796 0.989

Xu et al.’s method [31] 0.968 0.666 0.968

In general, our method obtains better Acc score in the

vessel classification and the main improvement comes in

the TPR rate, due to the presented method do not use the

intensity features for classification. It automatically reduces

the dimensionality of the feature space and removes the noise

before classification, due to its hierarchical structure. Also,

the proposed method is more successful in the REVIEW

database, because this database contains higher resolution

images.

In this paper, all implementation have been done using

MATLAB, on a Corei7 2.10 GHz Laptop PC running Win-

dows 7 OS. The average processing time for the proposed

algorithm (Edge detection, centerline detection and classifi-

cation) on an image (720 × 715) was 28.1 s. The average

processing time for Xu et al.’s method [31] (centerline

detection and classification) on the same image was 27.7

s.

6 Conclusion

In this paper, we proposed a new vessel tracking method

that is able to classify vessels as either normal vessel or

bifurcation points. The retinal vascular tree is detected using

vessel information and classification of the detected points

conducted subsequently. The superiority of our tracking

method over previous researches is to describe centerline

and the bifurcation points simultaneously. We demonstrate

a new machine learning algorithm, based on hierarchical

probabilistic framework to detect and classify cross sectional

intensity profiles. Gaussian basis functions are proposed to

interpolate intensity profiles and the corresponding linear
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coefficients are considered to be samples from class-specific

Gamma distributions. Therefore, we presented a directed

probabilistic graphical model where the hyperparameters are

estimated using a maximum likelihood solution based on

Laplace approximation.

The advantages of the proposed method is that it can esti-

mate model hyperparameters without tuning these. Also, we

did not use the intensity features for classification because

these features can often contain noisy information lowering

the training quality. Our method automatically reduces the

dimensionality of the feature space and removes the noise

before classification, due to its hierarchical structure.

In the proposed algorithm, the edge detection process is

only an auxiliary method to update the radius of semi-circle

window based on vessel diameter. Thus, vessel centerlines

detection are obtained by using the regressed intensity pro-

file.

In general, we provided a tree map of normal vessel and

junction points on the vascular network, which can be used

in diagnosis of cardiovascular diseases, image registration,

biometrics or surgical applications. This novel algorithm is

applied on the retinal images from the REVIEW and DRIVE

databases. This technique results in a classifier with high

accuracy, precision and recall. In future, we will extend the

proposed framework to detect vessel crossings, in addition

to bifurcation points considered in this paper.

Appendix A

Laplace Approximation

The Laplace method is utilized to find a Gaussian approx-

imation q(x) that is located on a mode of the function f(x).
Point x0 is the mode of f(x). We consider a Taylor’s series

expansion of lnf(x) around the peak x0 :

lnf(x) ≃ lnf(x0)−
1

2
A(x− x0)

where

A = − d2

dx2
lnf(x)|x=x0

We then approximate f(x) by an unnormalized Gaussian

f(x) ≃ f(x0) exp{−
A

2
(x− x0)

2}

When the precision A is nonnegative, the Gaussian ap-

proximation could be well defined. That means the point

x0 be required to a local maximum. Hence, the second

derivative of f(x) at the stationary point x0 is negative.

Here, we have

f(wnm) =























(

w2
nm +

1

θ0

)

−

(

k0+
1
2

)

if zn = 0,

(

w2
nm +

1

θ1

)

−

(

k1+
1
2

)

if zn = 1.

The stationary point found as w0 = 0, then the Hessian

matrix at this mode expressed as follows:

A = − d2

dw2
lnf(w)|w=0 = 2θ

(

k + 1
2

)

Therefore, f(wnm) can be express as:

f(wnm) ≃
(

1

θ

)

−(k+
1
2 )

exp{−θ
(

k + 1
2

)

wnm
2}

and

2θ
(

k + 1
2

)

> 0 =⇒ k > − 1
2
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