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Objectives: We evaluate the alternative use of texture analysis for evaluating the role of 
blood–brain barrier (BBB) in small vessel disease (SVD).

Methods: We used brain magnetic resonance imaging from 204 stroke patients, 
acquired before and 20 min after intravenous gadolinium administration. We segmented 
tissues, white matter hyperintensities (WMH) and applied validated visual scores. We 
measured textural features in all tissues pre- and post-contrast and used ANCOVA to 
evaluate the effect of SVD indicators on the pre-/post-contrast change, Kruskal–Wallis 
for significance between patient groups and linear mixed models for pre-/post-contrast 
variations in cerebrospinal fluid (CSF) with Fazekas scores.

results: Textural “homogeneity” increase in normal tissues with higher presence of SVD 
indicators was consistently more overt than in abnormal tissues. Textural “homogeneity” 
increased with age, basal ganglia perivascular spaces scores (p < 0.01) and SVD scores 
(p < 0.05) and was significantly higher in hypertensive patients (p < 0.002) and lacu-
nar stroke (p = 0.04). Hypertension (74% patients), WMH load (median = 1.5 ± 1.6% 
of intracranial volume), and age (mean  =  65.6  years, SD  =  11.3) predicted the pre/
post-contrast change in normal white matter, WMH, and index stroke lesion. CSF signal 
increased with increasing SVD post-contrast.

conclusion: A consistent general pattern of increasing textural “homogeneity” with 
increasing SVD and post-contrast change in CSF with increasing WMH suggest that 
texture analysis may be useful for the study of BBB integrity.

Keywords: texture analysis, cerebral small vessel disease, blood–brain barrier, hypertension, age, stroke, 
leukoaraiosis, perivascular spaces

Abbreviations: GLCM, gray level co-occurrence matrix; BBB, blood–brain barrier; BG-PVS, score of perivascular spaces in 
the basal ganglia; SVD, small vessel disease; WMH, white matter hyperintensities; NAWM, normal-appearing white matter; 
CSF, cerebrospinal fluid; DGM, deep gray matter; FLAIR, fluid-attenuation inversion recovery; DCE-MRI, dynamic contrast-
enhanced magnetic resonance imaging; IQR, interquartile range; CI, confidence interval.
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Figure 1 | Schematic representation of two groups of texture descriptors. Texture contrast, variance, and entropy express the disorder and variability in the tissue 
intensities. On the contrary, texture correlation, homogeneity, and energy express the homogeneity of the intensities in the tissue.
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KeY POinTs

•	 Texture analysis is useful to study small vessel disease (SVD) 
and blood–brain barrier.

•	 Results of texture analysis consistent with pathophysiology of 
SVD.

•	 Post-contrast texture change indicates more gadolinium in 
cerebrospinal fluid with increasing disease burden.

•	 Increasing textural homogeneity with disease severity confirms 
disease progression pattern.

inTrODucTiOn

Small vessel disease (SVD) describes “a syndrome of clini-
cal, cognitive, neuroimaging, and neuropathological findings 
thought to arise from disease affecting the perforating cerebral 
arterioles, capillaries, and venules, and the resulting brain dam-
age in the cerebral white and deep gray matter (DGM).” SVD is a 
common cause of dementia and causes about a fifth of all strokes 
worldwide (1). Although the cause of cerebral SVD is unknown, 
increasing evidence indicates that the microvessel endothelium, 
i.e., the blood–brain barrier (BBB), plays a key role in SVD 
pathogenesis (2–6).

Blood–brain barrier functional integrity is commonly studied 
through the analysis of quantitative data obtained using dynamic 
contrast-enhanced (DCE) magnetic resonance imaging (MRI) 
(7). Various approaches to assess BBB integrity exist, ranging 
from plotting the average signal enhancement in a tissue or 
region over time and calculating the area under the curve (8) 
to modeling the tracer kinetics in tissue assuming different 
conditions (7). However, scanner noise, drift, and intrinsic tissue 
properties affect the average signal enhancement and need to 
be accounted for, and lack of a valid method to determine the 
microvessel surface area limits current ability to estimate actual 
permeability (8, 9). Hence, we evaluate an alternative approach to 
document contrast leakage across the BBB through the analysis 
of some descriptors of cerebrospinal fluid (CSF) and tissues in 

fluid-attenuation inversion recovery (FLAIR) images before and 
after gadolinium-based intravenous contrast administration on 
individuals with SVD. FLAIR is sensitive to even small amounts 
of this contrast agent. If gadolinium manifests as high signal in 
CSF on FLAIR when injected intravenously, it can only have 
reached the CSF by crossing the BBB (10, 11). We hypothesized 
that the spatial statistical distribution of the signal intensity in a 
tissue type might provide useful information on tissue changes 
with changing degree of SVD and could reflect the BBB status 
including differences pre-/post-contrast injection.

rationale and Background of Our 
alternative approach
The property concerned with the spatial statistical distribution of 
image intensity levels is the “texture.” Image texture descriptors 
express, in different ways, the properties of the “patterns” of an 
image or a section of it: the perceived “lightness,” “uniformity,” “spa-
tial density,” “roughness” or “coarseness,” “regularity,” “linearity,”  
“directionality,” “randomness,” “fineness,” “smoothness,” “granu-
lation,” etc. There are some intuitive expectations for properties 
being represented by some descriptors. For example, one might 
expect the entropy descriptor to be higher if the appearance of 
the gray levels in a region on the image is “coarse” or “rough” and 
with irregular or non-recurrent patterns, rather than “smooth” or 
“uniform,” as entropy expresses randomness or “disorder.” There 
are other texture descriptors that, to a different degree, have 
similar tendency as entropy, like those that express the contrast 
or the variability of the gray levels in the region. These texture 
descriptors can be grouped to express the heterogeneity, or vari-
ability of the intensity levels of a region in an image, as opposed 
to others that represent homogeneity (Figure 1).

Texture descriptors have been used as input parameters in 
machine-learning approaches for human tissue classification  
(i.e., discriminating malignant vs. benign types of tumors) 
(12–23), for predicting response to cancer treatment (24–27), and 
for characterizing tumors (13, 28, 29). However, to the best of our 
knowledge, only one study on brain MRI from our group (30) 
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has analyzed texture descriptors to investigate the properties of 
apparently normal tissues on routine structural MRI on patients 
with SVD. It concluded that local signal intensity variations in 
normal tissues in patients with SVD could be associated with 
SVD markers, but lacked statistical power due to small sample 
size (i.e., 42 patients) and did not use contrast-enhanced MRI. 
We selected six texture descriptors out of the 14 formulated by 
Haralick et al. (31). These have been used in supervised and semi-
supervised machine-learning schemes to analyze DCE-MRI as 
an alternative to pharmacokinetic models or area under the 
signal enhancement curve in an attempt to address the low signal 
specificity (12, 16, 22, 32) and high variability in results (12, 14, 
22) (see Data Sheet S1 in Supplementary Material1).

scientific Questions and expected results
In the present study, we investigated, on a population known 
to have a wide range of SVD severity indicators, (1) whether a 
manifestation indicative of possible BBB leakage can be detected 
by texture analysis of FLAIR images comparing pre- vs. post-
intravenous contrast agent and (2) whether the level of “hetero-
geneity” differs in CSF, normal, and abnormal brain tissues for 
patients with more vs. less clinically and imaging evident SVD. 
If texture analysis is useful for the study of subtle BBB leakage, 
given that high SVD scores are correlated with increased BBB 
leakage (6, 33), we anticipate that: (A) the textural change post-
contrast (i.e., after injecting the contrast agent) vs. pre-contrast 
(i.e., before injecting the intravenous contrast agent) will be 
bigger in patients with more SVD; (B) a higher BBB leakage, 
which is more likely with more SVD markers, will make the 
texture of the signal in the normal and abnormal tissues smoother  
(i.e., more “homogeneous” texture) due to an increased BBB 
leakage uniformly distributed across the tissues; (C) indicators 
of textural “homogeneity” will be of higher values in tissues in 
patients that had a lacunar stroke rather than in those who had 
a cortical stroke (34), this being more evident post-contrast, as 
lacunar strokes provide a useful alert to the presence of SVD; 
and (D) the same effect (i.e., increased textural homogeneity in 
tissues) would be seen in patients with hypertension (35), with 
more perivascular spaces (PVS) seen in the basal ganglia (36) and 
with higher global SVD scores (33). These expected results will 
be consistent with the increase in the freedom of movement of 
the tissue water molecules (i.e., mean diffusivity) with age, which 
would favor an homogeneous appearance in pathophysiologically 
similar regions as seen in studies using diffusion tensor images 
(37, 38).

evaluations Done
To test our hypotheses, we evaluated (1) pre–post-contrast change 
in textural descriptors in CSF with severity of white matter disease 
and (2) textural characteristics of normal and abnormal tissues 
against indicators of SVD. As part of the latter, we specifically 
investigate (2.1) the influence of age on textural “heterogeneity” 
(i.e., expressed by the texture descriptors that express “variability”  
or “randomness” in the spatial distribution of the gray levels), 

1 http://hdl.handle.net/10283/2718.

expecting that textural “heterogeneity” will decrease in normal 
and abnormal tissues with increasing age as SVD indicators 
are more evident (33, 39); (2.2) the comparative values of a 
selection of the texture descriptors proposed by Haralick and 
colleagues in normal-appearing white matter (NAWM), DGM, 
CSF, and abnormal regions [i.e., index infarcts and white matter 
hyperintensities (WMH)] in patients with: (a) hypertension vs. 
normotension, (b) cortical vs. lacunar ischemic strokes, (c) few to 
many PVS in the basal ganglia region (33), (d) low to high WMH 
load evaluated using the Fazekas scale (40), and (d) low to high 
SVD scores (41, 42), pre- and post-contrast.

MaTerials anD MeThODs

subjects
We used data from a prospective study of patients recruited 
consecutively (n  =  204, 81 women) with lacunar (n  =  93) or 
mild (i.e., mRS <3) cortical (n = 111) ischemic stroke with mean 
age 65.6 years old (SD 11.3 years) who gave written consent to 
participate on a study of stroke mechanisms (6, 43) and had the 
valid brain MRI sequences required for the analysis presented 
here. Diabetes, hypertension, and other vascular risk factors were 
not criteria for exclusion. Patients with unstable hypertension 
or diabetes, other non-vascular neurological disorders, major 
medical conditions including renal failure, contraindications to 
MRI, unable to give consent, those who had hemorrhagic stroke 
or whose symptoms resolved within 24 h (i.e., transient ischemic 
attack) were excluded. The study was approved by the Lothian 
Ethics of Medical Research Committee (REC 09/81101/54) and 
the NHS Lothian R+D Office (2009/W/NEU/14) and conducted 
according to the principles expressed in the Declaration of 
Helsinki.

Brain Mri acquisition
Brain MRI for assessing BBB leakage was conducted between one 
and three months after stroke [median 38, interquartile range 
(IQR) 31–54  days], on a 1.5-T GE Signa LX clinical scanner 
(General Electric, Milwaukee, WI, USA), equipped with a self-
shielding gradient set and manufacturer supplied eight-channel-
phased array heal coil. In this study we analyze fluid-attenuated 
inversion recovery (FLAIR) images, acquired with TE 147 ms, TR 
9,002 ms, field of view 240 mm × 240 mm, acquisition matrix 
256 × 256, slice thickness 5 mm, 1 mm inter-slice gap, and voxel 
size 0.94 mm × 0.94 mm × 6.5 mm. This sequence was acquired 
twice: at the beginning of the imaging session (i.e., pre-contrast) 
and approximately 21 min after an intravenous bolus injection 
of 0.1  mmol/kg gadoterate meglumine (Gd-DOTA, Dotarem, 
Guerbet, France) (i.e., post-contrast) (44). However, for tissue 
segmentation, diffusion-weighted and structural T1-weighted, 
T2-weighted and gradient echo, acquired as specified elsewhere 
(43) were also used.

image Processing
Tissue segmentation was performed following the protocol 
described in Ref. (43). Briefly, binary masks of NAWM, CSF, and 
WMH were obtained using a multispectral segmentation method 
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(45)2 with manual editing to correct errors where necessary. Deep 
gray matter binary masks were obtained automatically using FSL 
tools3 [SUSAN (46), FIRST (47), and FLIRT (48)] and a relevant 
template (49) using a pipeline developed in-house followed 
by manual editing. Binary masks from the stroke lesions were 
obtained semi-automatically by thresholding on FLAIR using 
Analyze 12.0™ guided by the diffusion-weighted images and 
neuroradiological advice followed by manual editing. For tissue 
segmentation all images were co-registered to the pre-contrast 
FLAIR sequence using FLIRT.

All binary masks (i.e., from NAWM, DGM, WMH, CSF, and 
stroke lesions) were applied to the pre-contrast and post-contrast 
FLAIR images thus obtaining images of pre-/post-contrast FLAIR 
intensities in each tissue type for each patient. Inter-rater reli-
ability on the generation of these masks was: mean dissimilarity 
index 0.3 and mean volumetric differences on the range of 1.4% 
(SD 19.7%) to 4.4% (SD 18.7%) of the volumes measured (43). 
To avoid possible effects of random noise and non-uniformities 
due to different intensity ranges, intensities were normalized and 
quantized (i.e., grouped) into 8, 16, 32, and 64 equally spaced 
“bins” as a trade-off between the number of gray levels and the 
computational cost of the calculation of the texture descriptors.

For each pre-/post-contrast FLAIR tissue/lesion image, we 
computed the texture descriptors of six second order statistics 
that intuitively expressed either “variability” or “homogeneity” 
of the texture in the imaged tissue, selected from the 14 texture 
descriptors proposed by Haralick et al. (31); giving, therefore, six 
individual texture descriptors for each tissue type twice. They were 
all extracted from the gray level co-occurrence matrix (GLCM), 
which is a matrix reflecting the distribution of the relationships 
between pairs of pixels in a quantized 2D image (Figure 1; Figure 
S1 in Supplementary Material).

As images were quantized in 8, 16, 32, and 64 gray levels, we 
obtained GLCM matrices of 8 × 8, 16 × 16, 32 × 32, and 64 × 64 
sizes. The selected texture descriptors were as follows: GLCM 
contrast (a measure of intensity variations between a reference 
pixel and its neighbor), sum of squares (referred to as GLCM vari-
ance, a measure of the dispersion of the values around the mean 
of combinations of reference and neighboring pixels), entropy  
(an expression of the chaos or randomness in the texture), GLCM 
correlation (a measure of the linear dependency of intensities in 
the GLCM), homogeneity (measures the local homogeneity of the 
texture), and energy (measures the uniformity of a texture).

For each axial slice in a volume, four GLCMs of the same 
dimension (i.e., either 8 × 8 or 16 × 16 or 32 × 32 or 64 × 64) 
were calculated, each one with distance d  =  1 and a different 
orientation θ (0°, 45°, 90°, and 135°). For each orientation, we 
summed the GLCMs from all slices to obtain a global GLCM 
for each orientation θ on the whole volume. Subsequently, we 
normalized these four global GLCMs so that each one expressed 
a joint probability distribution of the co-occurrences of the voxels 
in a certain orientation θ and distance d. The texture descrip-
tors previously mentioned were calculated from each of the four 

2 www.sourceforge.com/projects/bric1936.
3 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.

“global” GLCMs. The final value of the texture descriptor on 
the FLAIR image of a tissue type was obtained by averaging its 
components in the four directions. This last step provided some 
invariance to rotation.

statistical analyses
To evaluate tendency in the pre-/post-contrast changes in CSF 
with severity of white matter disease, a linear mixed model was 
fitted for each texture variable. This accounted for there being two 
(pre- and post-contrast) measurements per patient. Model fit was 
checked by examining residual plots and collinearity by variance 
inflation factors and condition indices. Predictors were chosen on 
grounds of clinical plausibility, namely, index stroke subtype, age, 
PVS score in the basal ganglia and centrum semiovale, Fazekas 
score, mean arterial pressure, and diagnosis of diabetes, with a 
binary predictor to indicate whether the outcome variable had 
been measured pre- or post-contrast. We then added an interac-
tion term to each model to see if the difference between pre- and 
post-contrast measurements varied with Fazekas scores. We used 
PROC MIXED in SAS 9.44.

To evaluate the influence of the intravenous contrast agent 
on the distributions of the intensities in normal and abnormal 
tissues, we analyzed the pre-/post-contrast difference in the 
variance-to-mean ratio (DVMR, equals to VMR post-contrast 
minus VMR pre-contrast) on the FLAIR signal intensities [see 
equation (9) in Supplementary Material]. To evaluate the effect 
of age, hypertension, WMH load and basal ganglia PVS scores 
on the pre-/post-intravenous contrast differences (50), we used 
ANCOVA.

To evaluate the textural characteristics of normal and abnormal 
tissues against indicators of SVD, we used the Kruskal–Wallis test 
in IBM SPSS Statistics ver. 21 testing the null hypothesis that the 
distribution of the values of the six texture descriptors selected in 
the tissues/lesions (i.e., NAWM, WMH, etc.) was the same across 
all patient categories (i.e., hypertensive vs. normotensive, lacunar 
vs. cortical, SVD scores, etc.). The Mood’s Median test, also in 
IBM SPSS Statistics ver. 21, was used to evaluate the null hypoth-
esis that the medians of the texture descriptors in the tissues 
were the same across different categories (i.e., hypertensive vs. 
normotensive, lacunar vs. cortical stroke, different basal ganglia 
PVS scores and different SVD scores).

Of note, although we are presenting the results obtained from 
GLCMs of N = 16 (i.e., the gray levels of the intensity normal-
ized FLAIR images were reduced to 16 after applying uniform 
quantization), different quantization levels (i.e., N = 8, N = 32, 
and N  =  64) yielded almost identical results and are available 
upon request.

Finally, to validate our analyses, we evaluated the interhemi-
spheric differences (i.e. ipsilateral vs. contralateral) within-patient 
in the entropy values on regions of interest (ROIs) manually 
placed on one slice of the NAWM (43) in a subsample of 39 
patients randomly selected using Wilcoxon’s test, and the differ-
ences between the ROIs using the Friedman’s test.

4 www.sas.com.
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TaBle 1 | Clinical and imaging variables from the sample relevant for this study.

clinical/imaging variable no. of patients (% with respect to the total)

hypertension
Hypertensive 151 (74%)
Normotensive 53 (26%)

index stroke type
Cortical 111 (54.4%)
Lacunar 93 (45.6%)

Fazekas white matter hyperintensities scores
0 7 (3.43%)
1 16 (7.84%)
2 76 (37.26%)
3 23 (11.27%)
4 30 (14.71%)
5 20 (9.80%)
6 32 (15.69%)

Basal ganglia perivascular spaces score
0 4 (2%)
1 103 (50.5%)
2 55 (27%)
3 26 (12.7%)
4 16 (7.8%)

small vessel disease score
0 69 (33.8%)
1 49 (24%)
2 47 (23%)
3 26 (12.7%)
4 13 (6.4%)
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resulTs

sample characteristics
The sample clinical characteristics have been published previ-
ously (44). Those included in our analyses, which are relevant to 
this study are summarized in Table 1.

Texture before (i.e., Pre-) vs. after  
(i.e., Post-) the intravenous  
contrast injection
Post-Contrast Changes in Texture
All texture descriptors experienced a post-contrast change with 
respect to their pre-contrast values (Table S2.1 in Supplementary 
Material). The pre-/post-contrast differences were small, and 
there was no distinct pattern of pre-/post-contrast increase/
decrease “homogeneity” or “variability” in most tissues, except 
for CSF. The differences between pre- and post-contrast CSF tex-
ture (median and IQR values in the Table S2.1 in Supplementary 
Material) increased with worsening WMH (i.e., the Fazekas 
score) (Figures  2A,B). The trajectory post-contrast is steeper 
with increasing WMH burden, indicating that more gadolinium 
enters into the CSF with worsening white matter disease. Table 2 
shows the results of the linear mixed model for each textural 
feature extracted from the CSF on the pre- and post-contrast 
FLAIR images. The difference between pre- and post-contrast 
CSF measurements was always significant after adjustment for 
Fazekas scores, age, stroke subtype, PVS in the basal ganglia and 
centrum semiovale, mean arterial pressure, and diabetes for all 

outcome variables, tests of interaction between Fazekas scores 
and the pre- vs. post-contrast changes showed a significant inter-
action confirming the increased leakage of gadolinium into CSF 
with increasing WMH (Table 2). Residual plots suggested that 
the model fit varied from adequate-to-good for each outcome 
variable. Collinearity diagnostics were satisfactory, with all vari-
ance inflation factors under 2 and condition indices below 8.

The intravenous contrast seemed to affect the texture in the 
abnormal tissues more than in the normal tissues. This is shown 
by the higher dispersion of the pre-/post-contrast signal intensity 
differences in variance-to-mean ratios in the WMH (abnormal 
tissue) with respect to those in the NAWM (normal tissue) 
(Figure 3).

Predictors of Post-Contrast Change in Texture
The FLAIR post-contrast texture descriptors evaluated were 
strongly and significantly dependent on the pre-contrast texture in 
all tissue types and CSF, independent of the size of the GLCM. The 
pre-/post-contrast change in CSF texture was only predicted by 
age. The CSF texture after contrast became more “homogeneous”  
in older patients. Hypertension, Fazekas scores, and age predicted 
the pre-/post-contrast change captured by some of the texture 
descriptors in NAWM and WMH. Figures 2C–F show the GLCM 
homogeneity and GLCM contrast of the NAWM and WMH 
in pre- and post-contrast FLAIR images grouped by Fazekas 
scores (specifically 0–2, 3–4, and 5–6). The linear dependency 
of the intensities in the GLCM matrix (i.e., GLCM correlation) 
computed in the index stroke lesion experienced a post-contrast 
change partially influenced by age. However, textural differences 
before and after contrast in DGM, if any, were due to chance 
or unrelated to any of the vascular risk factors/SVD indicators 
analyzed or the type of stroke. Table 3 shows the results of the 
ANalysis of COVAriance for the parameters that, in addition 
to the pre-contrast signal, predicted the post-contrast signal for 
each tissue type and CSF for images quantized to N = 16 gray 
levels. Similar results were obtained for images quantized to 8, 
32, and 64 levels.

Tissues’ Texture and age
All texture descriptors in normal and abnormal tissues varied with 
age (both in pre- and in post-contrast). Those that expressed the 
“homogeneity” in texture increased with increasing age, whereas 
those that expressed variability decreased with increasing age. 
This tendency was more accentuated in abnormal tissues than in 
normal tissues (Figure 4; Figures S2.2 and S2.3 in Supplementary 
Material).

Tissues’ Texture in Patient groups
Medians and distributions of all texture descriptors differed 
significantly between all subgroups evaluated in DGM and in 
abnormal tissues like WMH and recent infarcts (i.e., patients who 
had hypertension vs. normotensive patients, patients who had 
lacunar vs. cortical strokes, patients with different PVS scores in 
the basal ganglia, and patients with different SVD scores). These 
differences were observed regardless of whether the parameters 
were obtained from images acquired before or 20 min after the 
contrast injection.

http://www.frontiersin.org/Neurology/
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Figure 2 | Measures of the pre- and post-contrast FLAIR homogeneity (a) and gray level co-occurrence matrix (GLCM) contrast (B) of the cerebrospinal fluid 
(CSF) for different total Fazekas scores showing the variation in CSF texture with increasing white matter hyperintensities (WMH) burden; and measures of pre- and 
post-contrast FLAIR GLCM homogeneity (c,e) and GLCM contrast (D,F) of the normal-appearing white matter (NAWM) (c,D) and WMH (e,F) for different Fazekas 
score groups.
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Hypertensive vs. Normotensive Patients
With the exception of GLCM variance, all texture descrip-
tors evaluated on DGM and WMH on pre- and post-contrast 
FLAIR images significantly differed between hypertensive and 

normotensive patients: they show more “homogeneity” in the 
tissues’ “texture” of FLAIR images from patients with hyperten-
sion than in those from normotensive patients. On NAWM, 
textural differences between these two groups of patients had the 
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Figure 3 | Difference in the variance-to-mean ratio in normal [normal-appearing white matter (NAWM)] and abnormal [white matter hyperintensities (WMH)] tissue 
between post-contrast and pre-contrast FLAIR images (y-axis) on the 204 datasets (x-axis).

TaBle 2 | Pre- vs. post-contrast in cerebrospinal fluid and Fazekas scores adjusted for each other and baseline stroke subtype, age, perivascular spaces in basal 
ganglia and centrum semiovale, mean arterial pressure, and baseline diagnosis of diabetes.

Outcome effect estimate interaction

B [95% confidence interval (ci)] p-Value Pre vs. post × Fazekas p-Value

Gray level co-occurrence matrix  
(GLCM) variance

Pre_vs_Post −1.069 (−1.173, −0.966) <0.0001 −0.0612 (−0.121, −0.00107) 0.046
Fazekas scores −0.0319 (−0.126, 0.0620) 0.50

GLCM contrast Pre_vs_Post −0.729 (−0.794, −0.665) <0.0001 −0.0294 (−0.0669, 0.00811) 0.12
Fazekas scores −0.109 (−0.182, −0.0353) 0.0039

GLCM correlation Pre_vs_Post 0.0111 (0.00888, 0.0132) <0.0001 0.000821 (−0.000450, 0.00209) 0.20
Fazekas scores 0.00555 (0.00195, 0.00914) 0.0026

Energy Pre_vs_Post 0.00142 (0.00111, 0.00173) <0.0001 0.000190 (0.0000120, 0.000368) 0.037
Fazekas scores 0.00101 (0.000332, 0.00170) 0.0038

Entropy Pre_vs_Post −0.140 (−0.156, −0.123) <0.0001 −0.0117 (−0.0213, −0.00211) 0.017
Fazekas scores −0.0329 (−0.0576, −0.00813) 0.0095

Homogeneity Pre_vs_Post 0.0186 (0.0166, 0.0206) <0.0001 0.00189 (0.000742, 0.00303) 0.0013
Fazekas scores 0.00529 (0.00171, 0.00887) 0.0040

Results are given as values (95% CI).
p < 0.05 and p < 0.001.
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same pattern as on DGM and WMH, but were only significant 
on post-contrast images (p < 0.017). Table 4 and Figure 5 show 
the results for homogeneity and GLCM contrast. Values for the 
rest of the texture descriptors can be found in Data Sheet S2 in 
Supplementary Material (Table S2.2 and Figures S2.3 and S2.4 in 
Supplementary Material).

Lacunar vs. Cortical Ischemic Stroke Patients
On textural variability distribution (i.e., Kruskal–Wallis test), 
there were differences in the texture of the DGM between lacunar 
and cortical stroke patients, but only with borderline significance 
(GLCM variance p  <  0.048 pre-contrast and p  <  0.043 post-
contrast): the texture in DGM was more “homogeneous” in 
patients with lacunar than cortical stroke, although the median 

values of the texture descriptors (i.e., from Mood’s Median test) 
did not differ significantly between these two patient groups. No 
significant differences between these two groups were observed 
in any of the texture descriptors measured in the NAWM or CSF.

In WMH, the medians of the entropy (pre- and post-contrast) 
(p  <  0.014) were significantly higher in patients with lacunar 
than cortical ischemic stroke. The entropy distributions dif-
fered significantly between the groups (p < 0.023) on pre- and 
post-contrast images. However, not all texture descriptors that 
express variability in tissue behaved in the same way in the 
WMH regions: the median of the GLCM variance was higher in 
the lacunar group whereas the GLCM contrast was higher in the 
cortical group. A similar pattern was noted in the medians of the 
characteristics that express homogeneity: GLCM correlation and 
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TaBle 3 | Results of the ANCOVA analysis of the pre-/post-contrast change as per the following model: texture after contrast = X1 × texture before 
contrast + X2 × Age + X3 × Fazekas scores + X4 × PVS scores in basal ganglia + X5 × Hypertension.

Textural descriptor Predictor cerebrospinal fluid normal tissues abnormal tissues

normal-appearing 
white matter

Deep gray Matter index stroke lesion White matter 
hyperintensities

Homogeneity Gray level 
co-occurrence 
matrix (GLCM) 
correlation

age −1.72 × 10−6; 0.99 −2.36 × 10−4; 0.087 −1.30 × 10−4; 0.38 9.84 × 10−4; 0.038* 1.18 × 10−4; 0.67

Fazekas scores 0.0014; 0.40 0.0019; 0.062 4.74 × 10−4; 0.68 6.09 × 10−4; 0.86 0.0037; 0.12
BG-PVS scores −0.0024; 0.37 −7.81 × 10−4; 0.64 3.47 × 10−4; 0.85 −0.0074; 0.20 0.0049; 0.14
hypertension −0.0023; 0.63 0.0091; 0.0038* 0.0027; 0.41 −0.0036; 0.73 0.0088; 0.16

Homogeneity Age 6.56 × 10−6; 0.99 −1.20 × 10−4; 0.30 −1.28 × 10−4; 0.44 1.64 × 10−4; 0.51 2.55 × 10−4; 0.10
Fazekas scores 0.0015; 0.63 0.0011; 0.20 −0.0016; 0.21 −8.36 × 10−5; 0.96 0.0037; 0.0042*
BG-PVS scores −0.0061; 0.22 4.52 × 10−5; 0.97 0.0013; 0.52 −3.11 × 10−4; 0.92 1.057 × 10−5; 0.99
Hypertension −0.0027; 0.77 0.0045; 0.091 3.68 × 10−4; 0.92 0.010; 0.068 0.0053; 0.13

Energy Age −5.57 × 10−4; 0.36 1.44 × 10−5; 0.67 −1.33 × 10−5; 0.71 −2.15 × 10−5; 0.54 2.57 × 10−5; 0.22
Fazekas scores −6.80 × 10−4; 0.88 2.22 × 10−4; 0.39 −2.78 × 10−4; 0.30 −2.32 × 10−4; 0.37 −5.98 × 10−5; 0.71
BG-PVS scores −0.0079; 0.29 2.39 × 10−4; 0.57 2.33 × 10−4; 0.60 3.63 × 10−4; 0.42 1.04 × 10−4; 0.69
Hypertension −0.0021; 0.88 −4.30 × 10−4; 0.58 −3.04 × 10−4; 0.71 5.42 × 10−4; 0.52 3.28 × 10−4; 0.49

Variability GLCM contrast age −0.0095; 0.058a 3.99 × 10−4; 0.57 1.71 × 10−4; 0.92 −0.022; 0.077 −0.017; 0.057a

Fazekas scores −0.052; 0.14 −0.010; 0.054a 0.0057; 0.68 0.016; 0.86 −0.16; 0.036*
BG-PVS scores 0.084; 0.14 0.0035; 0.69 −0.022; 0.31 0.064; 0.68 0.029; 0.79
hypertension 0.089; 0.40 −0.029; 0.072 0.027; 0.50 −0.21; 0.46 −0.41; 0.048*

GLCM variance age −0.015; 0.016* −0.0096; 0.042* −0.0097; 0.24 0.0065; 0.74 −0.019; 0.042*
Fazekas scores −0.057; 0.22 0.021; 0.55 0.038; 0.54 −0.0080; 0.95 −0.18; 0.013*
BG-PVS scores 0.114; 0.13 −0.036; 0.53 −0.13; 0.20 −0.12; 0.62 0.098; 0.40
Hypertension 0.190; 0.17 0.178; 0.096 0.27; 0.14 −0.39; 0.39 −0.20; 0.36

Entropy Age 0.0018; 0.69 −6.54 × 10−4; 0.44 9.63 × 10−5; 0.93 0.0014; 0.35 −9.68 × 10−4; 0.33
Fazekas scores −0.0068; 0.84 −0.0062; 0.34 0.0038; 0.64 0.0091; 0.39 0.0010; 0.89
BG-PVS scores 0.068; 0.21 −0.0038; 0.72 −0.015; 0.24 −0.017; 0.34 8.17 × 10−4; 0.95
Hypertension 0.035; 0.72 0.0069; 0.72 0.015; 0.54 −0.034; 0.32 −0.011; 0.62

Results are given as [predictor (estimate; p-value)].
*p < 0.05.
aBorderline significance.
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homogeneity were higher in the lacunar group whereas energy was 
higher in the cortical group (see Figure S2.6 in Supplementary 
Material). Nevertheless, these differences were not significant and 
disappeared on post-contrast images.

In index stroke lesions, the distributions and medians of all tex-
ture descriptors assessed pre- and post-contrast differed between 
the lacunar and cortical stroke patient groups (energy, GLCM 
correlation, homogeneity, GLCM contrast, and GLCM variance: 
p < 0.001, entropy: p < 0.006). As predicted, the medians of the tex-
ture descriptors that expressed “homogeneity” were significantly 
accentuated (i.e., had high values) if the stroke lesion was cortical 
and, in turn, more “heterogeneous” (textural variability indicators 
had higher values) if the stroke was of a lacunar type (Figure 6).

Patients with Different Basal Ganglia PVS Scores
Texture descriptors in CSF, DGM, and WMH differed significantly 
between patients grouped by PVS scores in the basal ganglia, show-
ing increasing “homogeneity” with higher PVS scores. There were 
no statistically significant differences between these groups in the 
distributions or in the medians in the NAWM. In the index stroke 
lesions, energy (p < 0.046 pre-contrast and p < 0.015 post-contrast) 
and entropy (p < 0.019 post-contrast) significantly differed between 

the PVS groups. Table 4 shows the results from the Kruskal–Wallis 
and Mood’s Median tests for GLCM homogeneity and GLCM con-
trast. The ranges of the values of these two variables assessed in CSF, 
DGM, and WMH according to basal ganglia PVS scores ranging 
from 0 to 4 are illustrated in the boxplots of Figure 7.

Patients Grouped by SVD Scores
Texture descriptors differed significantly in CSF, NAWM, DGM, 
and WMH between patients with low and high SVD scores. To 
illustrate these results, we selected GLCM homogeneity and GLCM 
contrast to represent, respectively, the “homogeneity” and “vari-
ability” of the texture in tissue (Table 4; Figure 8) (41). Boxplots 
(Figure 8) reveal that the texture was slightly more “homogeneous” 
as SVD score increased in all tissues in both pre- and post-contrast 
images. Also, there were marked pre-/post-contrast differences in 
the medians of the energy (p <  0.028) and the GLCM variance 
(p < 0.028) in the index stroke lesions, which are shown with the 
rest of the results, in the Data Sheet S2 in Supplementary Material.

Validation of the analysis
In the ROIs manually placed as depicted in Figure  9, entropy 
values did not differ significantly between hemispheres (mean 
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Figure 4 | Variation of homogeneity (a,c) and variability (B,D) of the textures with age. Examples show gray level co-occurrence matrix (GLCM) homogeneity and 
GLCM contrast in normal-appearing white matter (NAWM) (a,B) and white matter hyperintensities (WMH) (c,D) obtained from pre- and post-contrast FLAIR images.

TaBle 4 | Results of the significance (p-values) of the Kruskal–Wallis (K–W) and Mood’s Median tests for normotensive vs. hypertensive patients, patients grouped by 
scores of perivascular spaces in the basal ganglia and patients grouped by SVD scores 0–4.

cerebrospinal 
fluid

normal-
appearing white 

matter

Deep gray matter index stroke 
lesion

White matter 
hyperintensities

K–W Median K–W Median K–W Median K–W Median K–W Median

Normotensive vs. hypertensive 
patients

Homogeneity Pre-Gd 0.479 0.632 0.059 0.151 0.001** 0.002* 0.689 0.688 0.008* 0.007*
Post-Gd 0.508 0.632 0.010* 0.038* 0.002* 0.017* 0.482 1.000 0.002* 0.007*

Variability Pre-Gd 0.807 0.873 0.087 0.264 0.005* 0.002* 0.415 0.422 0.033* 0.025*
Post-Gd 0.662 0.632 0.013* 0.151 0.011* 0.017* 0.449 0.688 0.006* 0.011*

Patients grouped by BG-PVS 
scores

Homogeneity Pre-Gd 0.014* 0.097 0.310 0.459 0.001* 0.014* 0.627 0.532 0.001** 0.001**
Post-Gd 0.076 0.394 0.171 0.716 0.006* 0.072 0.680 0.615 0.001** 0.001**

Variability Pre-Gd 0.008* 0.013* 0.167 0.094 0.001** 0.002* 0.782 0.240 0.001** 0.001**
Post-Gd 0.030* 0.026* 0.072 0.374 0.001** 0.010* 0.721 0.240 0.001** 0.001**

Patients grouped by SVD scores 
(0–4)

Homogeneity Pre-Gd 0.002* 0.045* 0.149 0.167 0.001** 0.001* 0.291 0.362 0.001** 0.001**
Post-Gd 0.001* 0.006* 0.122 0.073 0.004* 0.110 0.330 0.463 0.001** 0.001**

Variability Pre-Gd 0.001* 0.003* 0.018* 0.007* 0.001** 0.001** 0.192 0.021* 0.001** 0.001**
Post-Gd 0.001** 0.001** 0.010* 0.013* 0.001** 0.001* 0.164 0.120 0.001** 0.001**

*p < 0.05.
**p < 0.001.
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Figure 5 | Measures of the pre-contrast FLAIR homogeneity (a,c) and variability (i.e. represented by the GLCM contrast) (B,D) of the textures corresponding to 
the deep gray matter (DGM) (a,B) and white matter hyperintensities (WMH) (c,D) of hypertensive vs. normotensive patients. Textures from post-contrast FLAIR 
images produced almost identical results.

Figure 6 | Measures of homogeneity (a) and variability (B) of the texture in the index stroke lesions between patients with lacunar and cortical ischemic stroke. 
The energy in panel (a) has been multiplied by 15 to give a similar range to the gray level co-occurrence matrix (GLCM) correlation and homogeneity, for visualization 
purposes (*p < 0.05; **p < 0.001). Median outputs from the six textural characteristics (i.e., three representing homogeneity and three representing variability in 
texture) are displayed grouped by cortical vs. lacunar, showing that texture in the index stroke lesion was more homogeneous in patients with cortical stroke rather 
than in those who had a lacunar stroke and that, consequently, heterogeneity was higher in lacunar than in cortical stroke lesions.
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Z  =  −0.643, p  =  0.52), and neither between ROIs (n  =  39, 
χ2 = 2.16, p = 0.54) of the same patient.

DiscussiOn

In this paper, a meaningful subset of texture descriptors is used 
to shed light on the imaging characteristics of a neurological 
syndrome, in this case: SVD. To the best of our knowledge, this is 
the first time that texture analysis has been applied for this purpose 
on a relatively large sample (n = 204) with a wide range of SVD 

degree, as opposed to its well-known use in machine-learning  
classifiers in oncology (12, 23, 32). The results of the evaluation of the 
selected texture descriptors on tissues segmented on FLAIR images 
of mild stroke patients showed that the texture in normal tissues 
and WMH is more homogeneous in patients with increasing age, 
SVD features, and basal ganglia PVS scores, and in hypertension vs. 
normotension. This also confirms our hypothesis that with increas-
ing age and SVD severity, already abnormal tissues become more 
uniformly abnormal (i.e., “homogenous”) while the differentiation 
between the “normal” and “abnormal” becomes less obvious.

Figure 7 | Measures of the homogeneity (a,c,e) and the variability (i.e. represented by the GLCM contrast) (B,D,F) of the textures corresponding to the 
cerebrospinal fluid (CSF) (a,B), deep gray matter (DGM) (c,D), and white matter hyperintensities (WMH) (e,F) of patients with different ratings of perivascular spaces 
(PVS) in the basal ganglia, obtained from pre-contrast FLAIR images. Similar results were obtained from post-contrast images.
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Figure 8 | Continued

As hypothesized, post-contrast texture change in CSF increased 
with respect to the pre-contrast texture with severity of white 
matter disease indicating more accumulation of gadolinium in 

CSF with increase of SVD burden. In general, the intravenous 
contrast seemed to affect more the texture in the tissues with more 
water content (i.e., more abnormal). From the clinical variables 
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at the same time that the brain tissue becomes, visibly, more 
heterogeneous. In this approach, we are not extracting the tex-
ture descriptors from anatomically relevant regions (e.g., brain 
lobes, brain stem, and substantia nigra) or from the whole brain 
tissue. Instead, the texture descriptors are calculated in regions 
with similar pathophysiological characteristics (i.e., NAWM 
separately from WMH or recent stroke lesions, DGM, CSF), tak-
ing care that other imaging features that are evidence of disease 
(i.e., cavities, hemorrhages, etc.) were excluded from these tissue 
types. For example, regions visibly heterogeneous and difficult 
to characterize like old stroke lesions were separately masked 
out and excluded from the analysis. As previous study on white 
matter integrity in older brains suggests (37), in all tissues, the 
water mobility in the interstitial space increases with increasing 
pathological indicator scores (i.e., Fazekas, basal ganglia PVS, and 
SVD scores) perhaps in part because the interstitial space itself 
increases with tissue rarefaction (52).

All texture descriptors that express textural variability had 
higher median values in recent ischemic lesions if these were 
of lacunar type than cortical (before and after the intravenous 
contrast injection), possibly reflecting a degree of active micro-
structural flux strong enough to cause macrostructural changes 
perceivable even after considerably reducing the bit resolution 
of the MR image. Similarly, the median of the textural entropy 
in WMH, which expresses the randomness or disorder of the 
intensity levels in the region, was significantly higher in WMH of 
patients that had a stroke of lacunar type rather than in patients 
with cortical stroke, perhaps reflecting the higher SVD burden in 
lacunar stroke. WMH texture descriptors had similar tendencies 
to those measured in normal tissues when comparing groups of 
patients with different PVS and SVD scores, and patients with vs. 
without hypertension. However, this was not the case while com-
paring patients that had lacunar vs. cortical strokes: while WMH 

Figure 8 | Measures of the pre-contrast FLAIR homogeneity (a,c,e,g) and the variability (i.e. represented by the GLCM contrast) (B,D,F,h) of the textures 
corresponding to the cerebrospinal fluid (CSF) (a,B), deep gray matter (DGM) (c,D), white matter hyperintensities (WMH) (e,F), and normal-appearing white matter 
(NAWM) (g,h) of patients with different small vessel disease (SVD) scores. Similar patterns were obtained post-contrast.

Figure 9 | Example of the regions of interest manually placed to validate the 
analyses, evaluating the influence of the stroke lesion location/hemisphere in 
the outcome of the results.

evaluated, Fazekas scores and age, known to be associated (51) 
and reported to be associated with increasing BBB permeability 
(6), predicted the post-contrast change in texture. These results 
indicate that, at macroscopic levels, the presence of the contrast 
agent in the central nervous system fluids as a consequence of an 
impaired BBB is more evident as the white matter burden is more 
abundant, thus confirming the usefulness of the texture analysis 
approach presented here in the study of the BBB.

It may seem a paradox that, with increasing age and presence 
of SVD indicators, the tissue texture becomes more “uniform” 
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texture descriptors differed between lacunar and cortical groups, 
texture descriptors in normal tissues did not differ significantly 
between these groups of patients.

Tissue texture descriptors are not quantitative measure-
ments of physiological BBB permeability indicators, but if 
sampled 20 min after intravenous contrast, the signal intensity 
changes in FLAIR MR images especially CSF are more likely to 
be indicative of a cumulative leakage in tissue (and CSF). The 
predictors of this textural change were SVD indicators previously 
related to subtle BBB dysfunction: age, hypertension and WMH 
burden represented by Fazekas scores (6, 33, 35, 53). Given the 
limitations of the existing DCE-MRI protocols for assessing 
BBB permeability without knowledge of vessel surface area  
(8, 9) alternative methods for assessing pre–post gadolinium dif-
ferences as markers of leakage are worth pursuing. The fact that 
GLCM of N = 16, 32, and 64 yielded essentially the same results 
suggests that the method could be implemented much faster by 
quantizing the data with little change to the results. It might be 
that the key drivers of the textural features are large changes in 
signal intensity. So, when we take out the small changes (e.g., by 
quantization), we obtain similar results. Thus meaning that voxel 
size changes/differences would probably not influence the overall 
results. However, further tests on determining whether this type 
of analysis would be optimum for a certain “scale” are needed.

This study incorporates patients imaged from 1 to 3 months 
after presenting to clinic with stroke symptoms, where surely 
BBB breakdown and remodeling were underway. We evaluated 
whether our conclusions could have been affected by the global 
approach taken in the tissue analyses and evaluated interhemi-
spheric textural differences in pairs of ROIs on similar anatomical 
regions, and differences in the textural variability between ROIs 
located in different arterial territories and distances with respect 
to the infarct. In agreement with previous studies (30, 54), the 
proximity/hemisphere of the infarcted region did not appear to 
have influenced our results.

This work has limitations. The results depend on the accu-
racy of previous tissue segmentation. We followed the image 
analysis protocol described in Ref. (43). Despite of its extensive 
validation and generalizability, it is recommended to always 
validate any segmentation protocol in the sample that the study 
uses. Furthermore, in this work only Haralick texture descrip-
tors were analyzed. There are other texture descriptors that have 
proven to be more efficient and have better power in texture 
segmentation and classification schemes and may be useful 
for the discrimination of subtle tissue differences in SVD. For 
example, sub-band filtering in the Fourier domain with a sec-
ond orientation pyramid and the use of local energy functions, 
granulometric size distributions and Gabor filters have all been 
used in medical imaging (55–57). However, their meaning is not 
intuitive, and as such, it is difficult to convey a clear message of 
the patterns of responses to the effects evaluated (i.e., burden of 
SVD, PVS, stroke subtype, and hypertension) on tissue images. 
The intuitiveness of the texture descriptors used here (i.e., not 
based on the results of the implementation of any dimensional-
ity reduction method like principal component analysis, Fisher 
discriminant analysis, etc.) could be considered another limita-
tion of this study. Future works should explore more texture 

descriptors followed by the application of a dimensionality 
reduction method.
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