
This is a repository copy of Verifying termination and error-freedom of logic programs with
block declarations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1208/

Article:

Smaus, J.-G., Hill, P.M. and King, A. (2001) Verifying termination and error-freedom of
logic programs with block declarations. Theory and Practice of Logic Programming, 1 (4).
pp. 447-486. ISSN 1471-0684

https://doi.org/10.1017/S1471068401001107

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

See Attached

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Theory and Practice of Logic Programming 1 (4): 447–486, July 2001.

Printed in the United Kingdom c© 2001 Cambridge University Press

447

Verifying termination and error-freedom of
logic programs with block declarations

JAN-GEORG SMAUSã

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

(e-mail: jan.smaus@cwi.nl)

PATRICIA M. HILL

School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK

(e-mail: hill@scs.leeds.ac.uk)

ANDY KING

University of Kent at Canterbury, Canterbury, CT2 7NF, UK

(e-mail: a.m.king@ukc.ac.uk)

Abstract

We present verification methods for logic programs with delay declarations. The verified prop-
erties are termination and freedom from errors related to built-ins. Concerning termination,
we present two approaches. The first approach tries to eliminate the well-known problem
of speculative output bindings. The second approach is based on identifying the predicates
for which the textual position of an atom using this predicate is irrelevant with respect to
termination. Three features are distinctive of this work: it allows for predicates to be used in
several modes; it shows that block declarations, which are a very simple delay construct, are
sufficient to ensure the desired properties; it takes the selection rule into account, assuming
it to be as in most Prolog implementations. The methods can be used to verify existing
programs and assist in writing new programs.

KEYWORDS: verification, delay declarations, termination, modes, types, selection rule, built-
ins, errors

1 Introduction

The standard selection rule in logic programming states that the leftmost atom in

a query is selected in each derivation step. However, there are some applications

for which this rule is inappropriate, e.g. multiple modes, the test-and-generate

paradigm (Naish, 1992) or parallel execution (Apt and Luitjes, 1995). To allow

for more user-defined control, several logic programming languages provide delay

declarations (Hill and Lloyd, 1994; SIC, 1998). An atom in a query is selected for

resolution only if its arguments are instantiated to a specified degree. This is essential

to ensure termination and to prevent runtime errors produced by built-in predicates

(built-ins).

ã Supported by EPSRC Grant No. GR/K79635 and the ERCIM fellowship programme.

448 J.-G. Smaus and others

In this paper we present methods for verifying programs with delay declarations.

We consider two aspects of verification: Programs should terminate, and there

should be no type or instantiation errors related to the use of built-ins.

Three distinctive features of this work make its contribution:

(a) it is assumed that predicates may run in more than one mode;

(b) we concentrate on block declarations, which are a particularly simple and

efficient delay construct; and

(c) the selection rule is taken into account.

We now motivate these features.

(a) Allowing predicates to run in more than one mode is one application of delay

declarations. Although other authors (Apt and Luitjes, 1995; Naish, 1992) have

not explicitly assumed multiple modes, they mainly give examples where delay

declarations are clearly used for that purpose. Whether allowing multiple modes

is a good approach or whether it is better to generate multiple versions of each

predicate (Somogyi et al., 1996) is an ongoing discussion (Hill, 1998). Our theory

allows for multiple modes, but of course this does not exclude other applications of

delay declarations.

(b) The block declarations declare that certain arguments of an atom must be non-

variable before that atom can be selected for resolution. Insufficiently instantiated

atoms are delayed. As demonstrated in SICStus (SIC, 1998), block declarations

can be efficiently implemented; the test whether arguments are non-variable has a

negligible impact on performance. Therefore, such constructs are the most frequently

used delay declarations. Note that most results in this paper also hold for other

delay declarations considered in the literature. This is discussed in Sec. 9.

(c) Termination may critically depend on the selection rule, that is the rule which

determines, for a derivation, the order in which atoms are selected. We assume that

derivations are left-based. These are derivations where (allowing for some exceptions

concerning the execution order of two literals woken up simultaneously) the leftmost

selectable atom is selected. This is intended to model derivations in the common

implementations of Prolog with block declarations. Other authors have avoided

the issue by abstracting from a particular selection rule (Apt and Luitjes, 1995;

Lüttringhaus-Kappel, 1993); considering left-based selection rules on a heuristic

basis (Naish, 1992); or making the very restrictive assumption of local selection

rules (Marchiori and Teusink, 1999).

The main contribution concerns termination. We have isolated some of the causes

of non-termination that are related to the use of delay declarations and identified

conditions for programs to avoid those causes. These conditions can easily be checked

at compile-time. The termination problem for a program with delay declarations is

then translated to the same problem for a corresponding program executed left-to-

right. It is assumed that, for the corresponding program, termination can be shown

using some existing technique (Apt, 1997; De Schreye and Decorte, 1994; Etalle et

al., 1999).

Verifying termination and error-freedom of logic programs 449

One previously studied cause of non-termination associated with delay declara-

tions is speculative output bindings (Naish, 1992). These are bindings made before it

is known that a solution exists. We present two complementing methods for dealing

with this problem and thus proving (or ensuring) termination. Which method must

be applied will depend on the program and on the mode being considered. The first

method exploits that a program does not use any speculative bindings, by ensuring

that no atom ever delays. The second method exploits that a program does not

make any speculative bindings.

However, these two methods are quite limited. As an alternative approach to

the termination problem, we identify certain predicates that may loop when called

with insufficient (that is, non-variable but still insufficiently instantiated) input. For

instance, with the predicate permute/2 where the second argument is input, the

query permute(A,[1|B]) has insufficient input and loops.1 However, the query

permute(A,[1,2]) has sufficient input and terminates. The idea for proving termi-

nation is that, for such predicates, calls with insufficient input must never arise. This

can be ensured by appropriate ordering of atoms in the clause bodies. This actually

works in several modes provided not too many predicates have this undesirable

property.

Our work on built-ins focuses on arithmetic built-ins. By exploiting the fact that for

numbers, being non-variable implies being ground, we show how both instantiation

and type errors can be prevented.

Finally, we consider two other issues related to delay declarations. First, we identify

conditions so that certain block declarations can be omitted without affecting the

runtime behaviour. Secondly, to verify programs with delay declarations, it is often

necessary to impose a restriction on the modes that forbids tests for identity between

the input arguments of an atom. We explain how this rather severe restriction is

related to the use of delay declarations and how it can be weakened.

This paper is organised as follows. The next section defines some essential concepts

and notations. Section 3 introduces four concepts of ‘modedness’ and ‘typedness’

that are needed later. Section 4, which is based on previously published work (Smaus

et al., 1999), presents the first approach to the termination problem. Section 5, which

is also based on previously published work (Smaus et al., 1998), presents the second

approach. Section 6 is about errors related to built-ins. Section 7 considers ways

of simplifying the block declarations. Section 8 investigates related work. Section 9

concludes with a summary and a look at ongoing and future work.

2 Essential concepts and notations

2.1 Standard notions

We base the notation on (Apt and Luitjes, 1995; Lloyd, 1987). For the examples

we use SICStus notation (SIC, 1998). A term u occurs directly in a vector of terms

t if u is one of the terms of t. (For example, a occurs directly in (a, b) but not in

1 The program for permute/2 is given in figure 5.

450 J.-G. Smaus and others

(f(a), b).) We also say that u fills a position in t. To refer to the predicate symbol of

an atom, we say that an atom p(. . .) is an atom using p. The set of variables in a

syntactic object o is denoted by vars(o). A syntactic object is linear if every variable

occurs in it at most once. Otherwise it is non-linear. A flat term is a variable or a

term f(x1, . . . , xn), where n > 0 and the xi are distinct variables. The domain of a

substitution σ is dom(σ) = {x | xσ 6= x}. The variables in the range of σ are denoted

as ran(σ) = {y | y ∈ vars(xσ), y 6= x}.
A query is a finite sequence of atoms. Atoms are denoted by a, b, h, queries by

B, F , H , Q, R. Sometimes we say ‘atom’ instead of ‘query consisting of an atom’.

A derivation step for a program P is a pair 〈Q, θ〉; 〈R, θσ〉, where Q = Q1, a, Q2 and

R = Q1, B, Q2 are queries; θ is a substitution; a an atom; h ← B a variant of a

clause in P , renamed apart from Qθ, and σ the most general unifier (MGU) of aθ

and h. We call aθ (or a)2 the selected atom and Rθσ the resolvent of Qθ and h← B.

A derivation ξ for a program P is a sequence 〈Q0, θ0〉; 〈Q1, θ1〉; . . . where each pair

〈Qi, θi〉; 〈Qi+1, θi+1〉 in ξ is a derivation step for P . Alternatively, we also say that ξ

is a derivation of P ∪ {Q0θ0}. We also denote ξ by Q0θ0;Q1θ1; A derivation is an

LD-derivation if the selected atom is always the leftmost atom in a query.

If F, a,H; (F, B,H)θ is a step in a derivation, then each atom in Bθ (or B)2

is a direct descendant of a, and bθ (or b)2 is a direct descendant of b for all b

in F,H . We say that b is a descendant of a, or a is an ancestor of b, if (b, a)

is in the reflexive, transitive closure of the relation is a direct descendant. The

descendants of a set of atoms are defined in the obvious way. Consider a derivation

Q0; . . . ;Qi; . . . ;Qj;Qj+1; We call Qj;Qj+1 an a-step if a is an atom in Qi (i 6 j)

and the selected atom in Qj;Qj+1 is a descendant of a.

2.2 Modes

For a predicate p/n, a mode is an atom p(m1, . . . , mn), where mi ∈ {I ,O} for i ∈
{1, . . . , n}. Positions with I are called input positions, and positions with O are called

output positions of p. A mode of a program is a set of modes, one mode for each

of its predicates. An atom written as p(s, t) means: s and t are the vectors of terms

filling the input and output positions of p, respectively.

An atom p(s, t) is input-linear if s is linear. A clause is input-linear if its head is

input-linear. A program is input-linear if all of its clauses are input-linear and it

contains no uses of =(I , I).3

We claim that the techniques we describe are suitable for programs that can run

in several modes. Throughout most of the presentation, this is not explicit, since we

always consider one mode at a time. Therefore, whenever we refer to the input and

output positions, this is always with respect to one particular mode. However, we

will see in several examples that one single program can be ‘mode correct’, in a well-

defined sense, with respect to several different modes. In particular, one single delay

declaration for a predicate can allow for this predicate to be used in different modes.

2 Whether or not the substitution has been applied is always clear from the context.
3 Conceptually, one can think of each program containing the fact clause X = X.

Verifying termination and error-freedom of logic programs 451

This is different from the assumption made by some authors (Apt and Etalle,

1993; Apt and Luitjes, 1995; Etalle et al., 1999; Naish, 1992) that if a predicate is to

be used in several modes, then multiple (renamed) versions of this predicate should

be introduced, which may differ concerning the delay declarations and the order of

atoms in clause bodies.

Note that our notion of modes could easily be generalised further by assigning a

mode to predicate occurrences rather than predicates (Smaus, 1999).

2.3 Types

A type is a set of terms closed under instantiation (Apt and Luitjes, 1995; Boye,

1996). The variable type is the type that contains variables and hence, as it is

closed under instantiation, all terms. Any other type is a non-variable type. A type

is a ground type if it contains only ground terms. A type is a constant type if it

is a ground type that contains only (possibly infinitely many) constants. In the

examples, we use the following types: any is the variable type, list the non-variable

type of (nil-terminated) lists, int the constant type of integers, il the ground type

of integer lists, num the constant type of numbers, nl the ground type of number

lists, and finally, tree is the non-variable type defined by the context-free grammar

{tree→ leaf; tree→ node(tree, any, tree)}.
We write t : T for ‘t is in type T ’. We use S, T to denote vectors of types,

and write |= s : S ⇒ t : T if for all substitutions σ, sσ : S implies tσ : T. It is

assumed that each argument position of each predicate p/n has a type associated

with it. These types are indicated by writing the atom p(T1, . . . , Tn) where T1, . . . , Tn

are types. The type of a program P is a set of such atoms, one for each predicate

defined in P . An atom is correctly typed in a position if the term filling this position

has the type that is associated with this position. A term t is type-consistent with

respect to T (Deransart and Ma luszyński, 1998) if there is a substitution θ such that

tθ : T . A term t occurring in an atom in some position is type-consistent if it is

type-consistent with respect to the type of that position.

2.4 block declarations

A block declaration (SIC, 1998) for a predicate p/n is a (possibly empty) set of

atoms each of which has the form p(b1, . . . , bn), where bi ∈ {?, -} for i ∈ {1, . . . , n}.
A program consists of a set of clauses and a set of block declarations, one for each

predicate defined by the clauses. If P is a program, an atom p(t1, . . . , tn) is blocked

in P if there is an atom p(b1, . . . , bn) in the block declaration for p such that for all

i ∈ {1, . . . , n} with bi = -, we have that ti is variable. An atom is selectable in P if it

is not blocked in P .

Example 2.1

Consider a program containing the block declaration

:- block append(-,?,-), append(?,-,-).

452 J.-G. Smaus and others

Then the atoms append(X, Y, Z), append([1|X], Y, Z), and append(X, [2|Y], Z) are all

blocked in P , whereas the atoms append([1|X], [2|Y], Z), append(X, Y, [1|Z]) and the

atom append(X, [2|Y], [1|Z]) are selectable in P . �

Note that equivalent delay constructs are provided in several logic programming

languages, although there may be differences in the syntax.

A delay-respecting derivation for a program P is a derivation where the selected

atom is always selectable in P . We say that it flounders if it ends with a non-empty

query where no atom is selectable.

2.5 Left-based derivations

We now formalise the sort of derivations that arise in practice using almost any

existing Prolog implementations. Some authors have considered a selection rule

stating that in each derivation step, the leftmost selectable atom is selected (Apt and

Luitjes, 1995; Boye, 1996; Naish, 1992). We are not aware of an existing language

that uses this selection rule, contradicting Boye’s claim (1996, page 123) that several

modern Prolog implementations and even Gödel (Hill and Lloyd, 1994) use this

selection rule. In fact, Prolog implementations do not usually guarantee the order in

which two simultaneously woken atoms are selected.

Definition 2.2

[left-based derivation] Consider a delay-respecting derivation Q0; . . . ;Qi; . . ., where

Qi = R1, R2, and R1 contains no selectable atom. Then every descendant of every

atom in R1 is waiting. A delay-respecting derivation Q0;Q1 . . . is left-based if for each

step Qi;Qi+1, the selected atom is either waiting in Qi, or it is the leftmost selectable

atom in Qi. �

Example 2.3
Consider the following program:

:- block a(-). :- block b(-)

a(1). b(X) :- b2(X).

c(1). b2(1). d.

The following is a left-based derivation. Waiting atoms are underlined.

a(X), b(X), c(X), d; a(1), b(1), d; a(1), b2(1), d; a(1), d; d; 2.

Note that b(1) and b2(1) are waiting and selectable, and therefore they can be

selected although there is the selectable atom a(1) to the left. �

We do not believe that it would be useful or practical to try to specify the

selection rule precisely, but from our research, it appears that derivations in most

Prolog implementations are left-based.

Note that the definition of left-based derivations for a program and query depends

both on the textual order of the atoms in the query and clauses and on the block

declarations. In order to maintain the textual order while considering different orders

Verifying termination and error-freedom of logic programs 453

of selection of atoms, it is often useful to associate, with a query, a permutation π

of the atoms.

Let π be a permutation on {1, . . . , n}. We assume that π(i) = i for i /∈ {1, . . . , n}. In

examples, π is written as 〈π(1), . . . , π(n)〉. We write π(o1, . . . , on) for the application

of π to the sequence o1, . . . , on, that is oπ−1(1), . . . , oπ−1(n).

3 Correctness conditions for verification

Apt and Luitjes (1995) consider three correctness conditions for programs: nicely

moded, well typed, and simply moded. Apt (1997) and Boye (1996) propose a general-

isation of these conditions that allows for permutations of the atoms in each query.

Such correctness conditions have been used for various verification purposes: occur-

check freedom, flounder freedom, freedom from errors related to built-ins (Apt and

Luitjes, 1995), freedom from failure (Bossi and Cocco, 1999), and termination (Etalle

et al., 1999). In this section we introduce four such correctness conditions and show

some important statements about them. The correctness conditions will then be used

throughout the paper.

The idea of these correctness conditions is that in a query, every piece of data

is produced (output) before it is consumed (input), and every piece of data is

produced only once. The definitions of these conditions have usually been aimed at

LD-derivations, which means that an output occurrence of a variable must always

be to the left of any input occurrence of that variable.

3.1 Permutation nicely moded programs

In a nicely moded query, a variable occurring in an input position does not occur

later in an output position, and each variable in an output position occurs only

once. We generalise this to permutation nicely moded. Note that the use of the letters

s and t is reversed for clause heads. We believe that this notation naturally reflects

the data flow within a clause. This will become apparent in Definition 3.5.

Definition 3.1

[Permutation nicely moded] Let Q = p1(s1, t1), . . . , pn(sn, tn) be a query and π a

permutation on {1, . . . , n}. Then Q is π-nicely moded if t1, . . . , tn is a linear vector of

terms and for all i ∈ {1, . . . , n}

vars(si) ∩
⋃

π(i)6π(j)6n

vars(tj) = ∅.

The query π(Q) is a nicely moded query corresponding to Q. The clause C =

p(t0, sn+1)← Q is π-nicely moded if Q is π-nicely moded and

vars(t0) ∩
n
⋃

j=1

vars(tj) = ∅.

The clause p(t0, sn+1)← π(Q) is a nicely moded clause corresponding to C .

A query (clause) is permutation nicely moded if it is π-nicely moded for some π.

454 J.-G. Smaus and others

:- block permute(-,-).

permute([],[]).

permute([U|X],Y) :-

permute(X,Z),

delete(U,Y,Z).

:- block delete(?,-,-).

delete(X,[X|Z],Z).

delete(X,[U|Y],[U|Z]) :-

delete(X,Y,Z).

M1 = {permute(I ,O), delete(I ,O , I)}
M2 = {permute(O , I), delete(O , I ,O)}

Fig. 1. The permute program.

A program P is permutation nicely moded if all of its clauses are. A nicely moded

program corresponding to P is a program obtained from P by replacing every clause

C in P with a nicely moded clause corresponding to C . �

In Lemma 3.3, on which many results of this paper depend, we require a program

not only to be permutation nicely moded, but also input-linear (see section 2.2).

Example 3.2

The program in figure 1 is nicely moded and input-linear in mode M1.4 In mode

M2 it is permutation nicely moded and input-linear. In particular, the second

clause for permute is 〈2, 1〉-nicely moded. In ‘test mode’, that is, {permute(I , I),

delete(I , I ,O)}, it is permutation nicely moded, but not input-linear, because the

first clause for delete is not input-linear. �

We show that there is a persistence property for permutation nicely-modedness

similar to that for nicely-modedness (Apt and Luitjes, 1995).

Lemma 3.3

Let Q = a1, . . . , an be a π-nicely moded query and C = h ← b1, . . . , bm be a ρ-

nicely moded, input-linear clause where vars(Q) ∩ vars(C) = ∅. Suppose for some

k ∈ {1, . . . , n}, h and ak are unifiable. Then the resolvent of Q and C with selected

atom ak is ̺-nicely moded, where the derived permutation ̺ on {1, . . . , n + m− 1} is

defined by ̺(i) =

π(i) if i < k, π(i) < π(k)

π(i) + m− 1 if i < k, π(i) > π(k)

π(k) + ρ(i− k + 1)− 1 if k 6 i < k + m

π(i− m + 1) if k + m 6 i < n + m, π(i− m + 1) < π(k)

π(i− m + 1) + m− 1 if k + m 6 i < n + m, π(i− m + 1) > π(k).

Proof

Let θ be the MGU of h and ak . By Def. 3.1, we have that aπ−1(1), . . . , aπ−1(n) and

4 For convenient reference, the modes are included in the figure. Also, the program contains block

declarations. We will refer to those later; they should be ignored for the moment.

Verifying termination and error-freedom of logic programs 455

a1 a2 a3 a4

a3 a4 a2 a1

PPPPPPPP

@
@@

�
�

�
�

�

�
�

�
�

�

b1 b2

b2 b1

a1 b1 b2 a3 a4

resolve
-

a3 a4 b2 b1 a1

XXXXXXXXXX

��������

��������

Fig. 2. The derived permutation ̺ for the resolvent.

h← bρ−1(1), . . . , bρ−1(m) are nicely moded and h is input-linear. Thus by Lemma 11 (Apt

and Luitjes, 1995)

(aπ−1(1), . . . , aπ−1(π(k)−1), bρ−1(1), . . . , bρ−1(m), aπ−1(π(k)+1), . . . , aπ−1(n)) θ

is nicely moded, and hence (a1, . . . , ak−1, b1, . . . , bm, ak+1, . . . , an) θ is ̺-nicely moded.

q

Figure 2 illustrates ̺ when Q = a1, a2, a3, a4 , π = 〈4, 3, 1, 2〉 , C = h ← b1, b2 ,

ρ = 〈2, 1〉 , and k = 2. Thus ̺ = 〈5, 4, 3, 1, 2〉. Observe that, at each step of a

derivation, the relative order of atoms given by the derived permutation is preserved.

By a straightforward induction on the length of a derivation, using the definition of

̺ for the base case, we obtain the following corollary.

Corollary 3.4

Let P be a permutation nicely moded, input-linear program, Q = a1, . . . , an be

a π-nicely moded query and i, j ∈ {1, . . . , n} such that π(i) < π(j). Let Q; . . . ;R

be a derivation for P and suppose R = b1, . . . , bm is ρ-nicely moded. If for some

k, l ∈ {1, . . . , m}, bk is a descendant of ai and bl is a descendant of aj , then ρ(k) < ρ(l).

Note that derivations of a permutation nicely moded query and a permutation

nicely moded, input-linear program are occur-check free. This is is a trivial conse-

quence of Theorem 13 (Apt and Luitjes, 1995). In section 7.3, we discuss ways in

which the condition of input-linearity in Lemma 3.3 can be weakened.

3.2 Permutation well typed programs

In a well typed query (Apt and Luitjes, 1995; Apt and Pellegrini, 1994; Bronsard et

al., 1992), the first atom is correctly typed in its input positions. Furthermore, given a

well typed query Q, a, Q′ and assuming LD-derivations, if Q is resolved away, then a

becomes correctly typed in its input positions. We generalise this to permutation well

typed (previously called properly typed (Apt, 1997)). As with the modes, we assume

that the type associated with each argument position is given. In the examples, the

types will be the natural ones that would be expected.

Definition 3.5

[Permutation well typed] Let Q = p1(s1, t1), . . . , pn(sn, tn) be a query, where pi(Si,Ti)

is the type of pi for each i ∈ {1, . . . , n}. Let π be a permutation on {1, . . . , n}. Then Q

456 J.-G. Smaus and others

is π-well typed if for all i ∈ {1, . . . , n} and L = 1

|=

∧

L6π(j)<π(i)

tj : Tj

⇒ si : Si. (1)

The clause p(t0, sn+1) ← Q, where p(T0, Sn+1) is the type of p, is π-well typed if (1)

holds for all i ∈ {1, . . . , n + 1} and L = 0.

A permutation well typed query (clause, program) and a well typed query (clause,

program) corresponding to a query (clause, program) are defined in analogy to

Definition 3.1. �

Example 3.6

Consider the program in figure 1 with type {permute(list, list), delete(any, list, list)}.
It is well typed for mode M1, and permutation well typed for mode M2, with the same

permutations as in Example 3.2. The same holds assuming type {permute(nl, nl),

delete(num, nl, nl)}. �

Permutation well-typedness is also a persistent condition. The proof is analogous

to Lemma 3.3, but using Lemma 23 instead of Lemma 11 (Apt and Luitjes, 1995).

Lemma 3.7

Let Q = a1, . . . , an be a π-well typed query and C = h← b1, . . . , bm be a ρ-well typed

clause where vars(Q) ∩ vars(C) = ∅. Suppose for some k ∈ {1, . . . , n}, h and ak are

unifiable. Then the resolvent of Q and C with selected atom ak is ̺-well typed, where

̺ is the derived permutation (see Lemma 3.3).

Generalising Theorem 26 (Apt and Luitjes, 1995), permutation well-typedness can

be used to show that derivations do not flounder (Smaus, 1999).

3.3 Permutation simply typed programs

We now define permutation simply-typedness. The name simply typed is a combination

of simply moded (Apt and Luitjes, 1995) and well typed. In a permutation simply

typed query, the output positions are filled with variables, and therefore they can

always be instantiated so that all atoms in the query are correctly typed.

Definition 3.8

[Permutation simply typed] Let Q = p1(s1, t1), . . . , pn(sn, tn) be a query and π a

permutation on {1, . . . , n}. Then Q is π-simply typed if it is π-nicely moded and

π-well typed, and t1, . . . , tn is a vector of variables.

The clause p(t0, sn+1) ← Q is π-simply typed if it is π-nicely moded and π-well

typed, t1, . . . , tn is a vector of variables and t0 is a vector of flat type-consistent terms

that has a variable in each position of variable type.

A permutation simply typed query (clause, program) and a simply typed query

(clause, program) corresponding to a query (clause, program) are defined in analogy

to Definition 3.1. �

Verifying termination and error-freedom of logic programs 457

:- block qsort(-,-).

qsort([],[]).

qsort([X|Xs],Ys) :-

append(As2,[X|Bs2],Ys),

part(Xs,X,As,Bs),

qsort(As,As2),

qsort(Bs,Bs2).

:- block append(-,?,-).

append([],Y,Y).

append([X|Xs],Ys,[X|Zs]) :-

append(Xs,Ys,Zs).

:- block part(?,-,?,?),

part(-,?,-,?),

part(-,?,?,-).

part([],_,[],[]).

part([X|Xs],C,[X|As],Bs):-

leq(X,C),

part(Xs,C,As,Bs).

part([X|Xs],C,As,[X|Bs]):-

grt(X,C),

part(Xs,C,As,Bs).

:- block leq(?,-), leq(-,?).

leq(A,B) :- A =< B.

:- block grt(?,-), grt(-,?).

grt(A,B) :- A > B.

M1 = {qsort(I ,O), append(I , I ,O), leq(I , I), grt(I , I), part(I , I ,O ,O)}
M2 = {qsort(O , I), append(O ,O , I), leq(I , I), grt(I , I), part(O , I , I , I)}

Fig. 3. The quicksort program.

Example 3.9

Figure 3 shows a version of the quicksort program. Assume the type {qsort(nl, nl),

append(nl, nl, nl), leq(num, num), grt(num, num), part(nl, num, nl, nl)}. The program

is permutation simply typed for mode M1. It is not permutation simply typed for

mode M2, due to the non-variable term [X|Bs2] in an output position. �

The persistence properties stated in Lemmas 3.3 and 3.7 are independent of the

selectability of an atom in a query. For permutation simply typed programs, this

persistence property only holds if the selected atom is sufficiently instantiated in its

input arguments. This motivates the following definition.

Definition 3.10

[Bound/free] Let P be a permutation well typed program. An input position of a

predicate p in P is bound if there is a clause head p(. . .) in P that has a non-variable

term in that position. An output position of a predicate p in P is bound if there is

an atom p(. . .) in a clause body in P that has a non-variable term in that position.

A position is free if it is not bound.

We denote the projection of a vector of arguments r onto its free positions as rf ,

and onto its bound positions as rb. �

Note that for a permutation simply typed program, there are no bound output

positions, and bound input positions must be of non-variable type.

Lemma 3.11

Let Q = p1(s1, t1), . . . , pn(sn, tn) be a π-simply typed query, and let C = pk(v0, um+1)←
q1(u1, v1), . . . , qm(um, vm) a ρ-simply typed, input-linear clause where vars(C) ∩

458 J.-G. Smaus and others

vars(Q) = ∅. Suppose that for some k ∈ {1, . . . , n}, sk is non-variable in all bound

input positions5 and θ is the MGU of pk(sk , tk) and pk(v0, um+1). Then

1. there exist substitutions θ1, θ2 such that θ = θ1θ2 and

(a) v0θ1 = sk and dom(θ1) ⊆ vars(v0),

(b) tkθ2 = um+1θ1 and dom(θ2) ⊆ vars(tk);

2. dom(θ) ⊆ vars(tk) ∪ vars(v0);

3. dom(θ) ∩ vars(t1, . . . , tk−1, v1, . . . , vm, tk+1, . . . , tn) = ∅;
4. the resolvent of Q and C with selected atom pk(sk , tk) is ̺-simply typed, where

̺ is the derived permutation (see Lemma 3.3). (For proof, see the Appendix.)

The following corollary of Lemma 3.11 (4) holds, since by Definition 3.5, the

leftmost atom in a simply typed query is non-variable in its input positions of

non-variable type.

Corollary 3.12

Every LD-resolvent of a simply typed query Q and a simply typed, input-linear

clause C , where vars(C) ∩ vars(Q) = ∅, is simply typed.6

Before studying permutation simply typed programs any further, we now introduce

a generalisation of this class.

3.4 Permutation robustly typed programs

The program in figure 3 is not permutation simply typed in mode M2, due to

the non-variable term [X|Bs2] in an output position. It has been acknowledged

previously that it is difficult to reason about queries where non-variable terms in

output positions are allowed, but on the other hand, there are natural programs

where this occurs (Apt and Etalle, 1993).

We define permutation robustly-typedness, which is a carefully crafted extension

of permutation simply-typedness, allowing for non-variable but flat terms in out-

put positions. It has been designed so that a persistence property analogous to

Lemmas 3.3, 3.7 and 3.11 holds.

Definition 3.13

[Permutation robustly typed] Assume a permutation well typed program P where the

bound positions are of non-variable type. Let Q = p1(s1, t1), . . . , pn(sn, tn) be a query

(using predicates from P) and π a permutation on {1, . . . , n}. Then Q is π-robustly

typed if it is π-nicely moded and π-well typed, tf1, . . . , t
f
n is a vector of variables, and

tb1 , . . . , t
b
n is a vector of flat type-consistent terms.

The clause p(t0, sn+1)← Q is π-robustly typed if it is π-nicely moded; π-well typed;

1. tf0, . . . , t
f
n is a vector of variables, and tb0 , . . . , t

b
n is a vector of flat type-consistent

terms; and

5 This is similar to the assumption ‘the delay declarations imply matching’ (Apt and Luitjes, 1995).
6 This even holds without requiring C to be input-linear (Smaus, 1999, Lemma 7.3), but here we do not

need the stronger result, and it is not a corollary of Lemma 3.11 (4).

Verifying termination and error-freedom of logic programs 459

:- block treeList(-,-).

treeList(leaf,[]).

treeList(node(L,Label,R),List) :-

append(LList,[Label|RList],List),

treeList(L,LList),

treeList(R,RList).

:- block append(-,?,-).

append([],Y,Y).

append([X|Xs],Ys,[X|Zs]) :-

append(Xs,Ys,Zs).

M1 = {treeList(I ,O), append(I , I ,O)}
M2 = {treeList(O , I), append(O ,O , I)}

Fig. 4. Converting trees to lists, or vice versa.

2. if a position in sb
n+1 of type τ is filled with a variable x, then x also fills a

position of type τ in tb0 , . . . , t
b
n .

A permutation robustly typed query (clause, program) and a robustly typed query

(clause, program) corresponding to a query (clause, program) are defined in analogy

to Definition 3.1. �

Note that any permutation simply typed program is permutation robustly typed,

where all output positions are free.

Example 3.14

Recall the program in figure 3. It is permutation robustly typed in mode M2, and

the second position of append is the only bound output position. Note in particular

that Condition 2 of Definition 3.13 is met for the recursive clause of append: the

variable Ys fills an output position of the head and also an output position of the

body. Moreover, the program is trivially permutation robustly typed in mode M1.

�

Example 3.15

The program in figure 4 converts binary trees into lists and vice versa. Assuming

type {treeList(tree, list), append(list, list, list)}, the program is permutation robustly

typed in mode M2, and the second position of append is the only bound output

position. It is also permutation robustly typed in mode M1, where all output positions

are free. �

The following lemma shows a persistence property of permutation robustly-

typedness, and shows, furthermore, that a derivation step cannot instantiate the

input arguments of the selected atom.

Lemma 3.16

Let Q = p1(s1, t1), . . . , pn(sn, tn) a π-robustly typed query and C = pk(v0, um+1) ←
q1(u1, v1), . . . , qm(um, vm) a ρ-robustly typed, input-linear clause where vars(Q) ∩
vars(C) = ∅. Suppose that for some k ∈ {1, . . . , n}, pk(sk , tk) is non-variable in

all bound input positions and θ is the MGU of pk(sk , tk) and pk(v0, um+1).

Then the resolvent of Q and C with selected atom pk(sk , tk) is ̺-robustly typed,

460 J.-G. Smaus and others

where ̺ is the derived permutation (see Lemma 3.3). Moreover, dom(θ)∩vars(sk) = ∅.
(For proof, see the Appendix.)

We now define programs where the block declarations fulfill a natural minimum

(1) and maximum (2) requirement. The minimum requirement states that selected

atoms must fulfill the assumption of Lemmas 3.11 and 3.16. The maximum require-

ment is needed in section 5.2. In other words, we define programs where the ‘static’

concept of modes and the ‘dynamic’ concept of block declarations correspond in

the natural way.

Definition 3.17

[Input selectability] Let P be a permutation robustly typed program. P has input

selectability if an atom using a predicate in P that has variables in all free output

positions is selectable in P

1. only if it is non-variable in all bound input positions; and

2. if it is non-variable in all input positions of non-variable type.

�

Note that the above definition is aimed at atoms in permutation robustly typed

queries, since these atoms have variables in all free output positions.

Example 3.18

Consider append(O ,O , I) where the second position is the only bound output

position, as used in the programs in figure 3 in mode M2 and figure 4 in mode M2.

The program for append has input selectability.

Now consider append(I , I ,O) where the output position is free, as used in the

programs in figure 3 in mode M1 and figure 4 in mode M1. The program for append

has input selectability. Note that the block declaration for append is the one that

is usually given (Hill and Lloyd, 1994; Lüttringhaus-Kappel, 1993; Marchiori and

Teusink, 1999). �

The following is a corollary of Lemma 3.16 needed to prove Lemma 5.4.

Corollary 3.19

Let P be a permutation robustly typed, input-linear program with input selectability,

Q = a1, . . . , an a π-robustly typed query and i, j ∈ {1, . . . , n} such that π(i) < π(j). Let

Q; . . . ; (b1, . . . , bm); (b1, . . . , bl−1, B, bl+1, . . . , bm)θ

be a delay-respecting derivation and k ∈ {1, . . . , m}, such that bk is a descendant of

ai and bl is a descendant of aj . Then dom(θ) ∩ vars(bk) = ∅.

Proof

Suppose that b1, . . . , bm is ρ-robustly typed. By Corollary 3.4, we have ρ(k) < ρ(l).

Suppose bl = pl(sl , tl).

Since θ is obtained by unifying bl with a head of a clause C , and vars(C) ∩
vars(b1, . . . , bm)=∅, it follows that dom(θ)∩vars(b1, . . . , bm) ⊆ vars(bl). By Lemma 3.16,

dom(θ) ∩ vars(sl) = ∅. Since b1, . . . , bm is ρ-nicely moded, vars(bk) ∩ vars(tl) = ∅ and

so dom(θ) ∩ vars(bk) = ∅. q

Verifying termination and error-freedom of logic programs 461

:- block permute(-,-).

permute([],[]).

permute([U|X],Y) :-

delete(U,Y,Z),

permute(X,Z).

:- block delete(?,-,-).

delete(X,[X|Z],Z).

delete(X,[U|Y],[U|Z]) :-

delete(X,Y,Z).

M1 = {permute(I ,O), delete(I ,O , I)}
M2 = {permute(O , I), delete(O , I ,O)}

Fig. 5. Putting recursive calls last in the permute program.

Intuitively, the corollary says that if π(i) < π(j), then no aj-step will ever instantiate

a descendent of ai.

We conclude this section with a statement about permutation simply typed pro-

grams, which we could not present earlier since it relies on the definition of input

selectability. It says that in a derivation for a permutation simply typed program

and query, it can be assumed without loss of generality that the output positions in

each query are filled with variables that occur in the initial query or in some clause

body used in the derivation.

Corollary 3.20

Let P be a permutation simply typed program with input selectability and Q0 be

a permutation simply typed query. Let θ0 = ∅ and ξ = 〈Q0, θ0〉; 〈Q1, θ1〉; . . . be a

delay-respecting derivation of P ∪ {Q0}. Then for all i > 0, if x is a variable in an

output position in Qi, then xθi = x.

Proof

The proof is by induction on the position i in the derivation. The base case i = 0

is trivial since θ0 = ∅. Now suppose the result holds for some i and Qi+1 exists. By

Lemma 3.11 (4), Qiθi is permutation simply typed. Thus the result follows for i + 1

by Lemma 3.11 (3). q

4 Termination and speculative bindings

Like most approaches to the termination problem (De Schreye and Decorte, 1994),

we are interested in ensuring that all derivations of a query are finite. Therefore the

clause order in a program is irrelevant. Furthermore, we do not prove termination

as such, but rather reduce the problem of proving termination for a program and

query with left-based derivations to that with LD-derivations.

In this section, we present two complementing methods of showing termination.

These are explained in the following example.

Example 4.1

Assuming left-based derivations, the program given in figure 1 loops for the query

permute(V,[1]) (hence, in mode M2) because delete produces a speculative output

binding (Naish, 1992): the third argument of delete is bound before it is known

462 J.-G. Smaus and others

:- block delete(?,-,-).

delete(X,[X|Z],Z).

delete(X,[U|[H|T]],[U|Z]) :- delete(X,[H|T],Z).

Fig. 6. Most specific version of delete(O , I ,O).

that this binding will never have to be undone. Termination in modes M1 and M2

can be ensured by swapping the atoms in the second clause, as shown in Fig. 5. This

technique has been described as putting recursive calls last (Naish, 1992). To explain

why the program terminates, we have to apply a different reasoning for the different

modes.

In mode M2, the atom that produces the speculative output occurs textually before

the atom that consumes it. This means that the consumer waits until the producer has

completed (undone the speculative binding). The program does not use speculative

bindings. In mode M1, the program does not make speculative bindings.

Note that termination for this example depends on left-based derivations, and

thus any method that abstracts from the selection rule must fail. �

The methods presented in this section can be used to prove that the programs in

figures 4–7 terminate, but they do not work for the programs in figures 3 and 8.

They formalise previous heuristics (Naish, 1985; Naish, 1992) and rely on conditions

that are easy to check.

4.1 Termination by not using speculative bindings

In LD-derivations, speculative bindings are never used (Naish, 1992). A left-based

derivation is an LD-derivation, provided the leftmost atom in each query is always

selectable. Hence by Lemma 3.7, we have the following proposition.

Proposition 4.2

Let Q be a well typed query and P a well typed program such that an atom is

selectable in P whenever its input positions of non-variable type are non-variable.

Then every left-based derivation of P ∪ {Q} is an LD-derivation.

We now give two examples of programs where by Proposition 4.2, we can use any

method for LD-derivations to show termination for any well typed query. Note that

the method of section 5 is not applicable for the program in Example 4.4 (because

it is is not permutation robustly typed).

Example 4.3

Consider the program in figure 5 with mode M2 and either of the types given in

Example 3.6. This program is well-typed. �

Example 4.4

Consider the version of delete(O , I ,O) given in figure 6. Assuming either of the

types given in Example 3.6, this program is well typed. �

Verifying termination and error-freedom of logic programs 463

Regarding this subsection, one may wonder: what is the point in considering

derivations for programs with block declarations where in effect we show that those

block declarations are redundant, that is, the program is executed left-to-right?

However, one has to bear in mind that a program might also be used in another

mode, and therefore, the block declarations may be necessary.

4.2 Termination by not making speculative bindings

Some programs and queries have the nice property that there cannot be any failing

derivations. Bossi and Cocco (1999) have identified a class of programs called

noFD having this property. Non-speculative programs are similar, but there are two

differences: the definition of noFD programs only allows for LD-derivations, but on

the other hand, the definition of non-speculative programs requires that the clause

heads are input-linear.

Definition 4.5

[non-speculative] A program P is non-speculative if it is permutation simply typed

and input-linear, and every simply typed atom using a predicate in P is unifiable

with some clause head in P . �

Example 4.6

Both versions of the permute program (figures 1 and 5), with either type given in

Example 3.6, are non-speculative in mode M1. Every simply typed atom is unifiable

with at least one clause head. Both versions are not non-speculative in mode M2,

because delete(A,[],B) is not unifiable with any clause head. �

Example 4.7

The program in figure 4 is non-speculative in mode M1. However, it is not non-

speculative in mode M2 because it is not permutation simply typed, due to the

non-variable term [Label|List] in an output position. �

A delay-respecting derivation for a non-speculative program P with input se-

lectability and a permutation simply typed query cannot fail.7 However it could still

be infinite. The following theorem says that this can only happen if the simply typed

program corresponding to P has an infinite LD-derivation for this query.

Theorem 4.8

Let P be a non-speculative program with input selectability and P ′ a simply typed

program corresponding to P . Let Q be a permutation simply typed query and Q′

a simply typed query corresponding to Q. If there is an infinite delay-respecting

derivation of P ∪ {Q}, then there is an infinite LD-derivation of P ′ ∪ {Q′}. (For

proof, see the Appendix.)

Theorem 4.8 says that for non-speculative programs, the atom order in clause

bodies is irrelevant for termination.

7 It can also not flounder (Smaus, 1999).

464 J.-G. Smaus and others

:- block is_list(-).

is_list([]).

is_list([X|Xs]):-

is_list(Ys),

equal_list(Xs,Ys).

:- block equal_list(-,?).

equal_list([],[]).

equal_list([X|Xs],[X|Ys]):-

equal_list(Xs,Ys).

Fig. 7. The is list program.

Note that any program that uses tests cannot be non-speculative. In figure 3,

assuming mode M1, the atoms leq(X,C) and grt(X,C) are tests. These tests are

exhaustive, i.e. at least one of them succeeds (Bossi and Cocco, 1999). This suggests

a generalisation of non-speculative programs (Pedreschi and Ruggieri, 1999) (see

section 8).

We now give an example of a program for which termination can be shown using

Theorem 4.8 but not using the method of section 5 (see also Example 5.11).

Example 4.9

Consider the program in figure 7, where the mode is {is list(I), equal list(I ,O)}
and the type is {is list(list), equal list(list, list)}. The program is permutation

simply typed (the second clause is 〈2, 1〉-simply typed) and non-speculative, and all

LD-derivations for the corresponding simply typed program terminate. Therefore all

delay-respecting derivations of a permutation simply typed query and this program

terminate. �

5 Termination and insufficient input

We now present an alternative method for showing termination that overcomes some

of the limitations of the methods presented in the previous section. In particular, the

methods can be used for the programs in figures 3 and 8 as well as figures 4 and 5.

In practice, we expect the method presented here to be more useful, although, as

figures 6 and 7 show, it does not subsume the method of the previous section.

As explained in Example 4.1, termination of permute(O , I) can be ensured by

applying the heuristic of putting recursive calls last (Naish, 1992). The following

example however shows that even this version of permute(O , I) can cause a loop

depending on how it is called within some other program.

Example 5.1

Figure 8 shows a program for the n-queens problem, which uses block declarations

to implement the test-and-generate paradigm. With the mode M1 and the type T , the

first clause is 〈1, 3, 2〉-nicely moded and 〈1, 3, 2〉-well typed. Moreover, all left-based

derivations for the query nqueens(4,Sol) terminate.

However, if in the first clause, the atom order is changed by moving

sequence(N,Seq) to the end, then nqueens(4,Sol) loops. This is because re-

solving sequence(4,Seq) with the second clause for sequence makes a binding

(which is not speculative) that triggers the call permute(Sol,[4|T]). This call re-

sults in a loop. Note that [4|T], although non-variable, is insufficiently instantiated

Verifying termination and error-freedom of logic programs 465

:- block nqueens(-,?).

nqueens(N,Sol) :-

sequence(N,Seq),

safe(Sol),

permute(Sol,Seq).

:- block sequence(-,?).

sequence(0,[]).

sequence(N,[N|Seq]):-

0 < N,

N1 is N-1,

sequence(N1,Seq).

:- block safe(-).

safe([]).

safe([N|Ns]) :-

safe_aux(Ns,1,N),

safe(Ns).

:- block safe_aux(-,?,?), safe_aux(?,-,?),

safe_aux(?,?,-).

safe_aux([],_,_).

safe_aux([M|Ms],Dist,N) :-

no_diag(N,M,Dist),

Dist2 is Dist+1,

safe_aux(Ms,Dist2,N).

:- block no_diag(-,?,?), no_diag(?,-,?).

no_diag(N,M,Dist) :-

Dist =\= N-M,

Dist =\= M-N.

:- block permute(-,-).

permute([],[]).

permute([U|X],Y) :-

delete(U,Y,Z),

permute(X,Z).

:- block delete(?,-,-).

delete(X,[X|Z],Z).

delete(X,[U|Y],[U|Z]) :-

delete(X,Y,Z).

M1 = {nqueens(I ,O), sequence(I ,O), safe(I), permute(O , I), <(I , I),
is(O , I), safe aux(I , I , I), no diag(I , I , I), =\=(I , I)}

M2 = {nqueens(O , I), sequence(O , I), permute(I ,O), is(O , I), . . .}
T = {nqueens(int, il), sequence(int, il), safe(il), permute(il, il),

<(int, int), is(int, int), safe aux(il, int, int), no diag(int, int, int),
=\=(int, int)}

Fig. 8. A program for n-queens.

for permute(Sol,[4|T]) to be correctly typed in its input position: permute is

called with insufficient input. �

To ensure termination, each atom that may loop when called with insufficient

input should be placed sufficiently late; all producers of input for that atom must

occur textually earlier. This assumes left-based derivations. Note that this explains

in particular why in the recursive clause for permute, the recursive call should be

placed last, and hence we are effectively refining the heuristic proposed by Naish

(1992). Note also that in nicely and well moded programs, all atoms are placed

sufficiently late in this sense.

In the next subsection, we identify the robust predicates, which are predicates for

which all delay-respecting derivations are finite. In section 5.2, we prove termination

for programs where the atoms using non-robust predicates are selected ‘sufficiently

late’.

466 J.-G. Smaus and others

5.1 Robust predicates

In this subsection, derivations are not required to be left-based. The statements

hold for arbitrary delay-respecting derivations, and thus the textual position of an

atom in a query is irrelevant. Therefore we can, for just this subsection, assume that

the programs and queries are robustly typed (rather than just permutation robustly

typed). This simplifies the notation. In section 5.2, we go back to allowing for

arbitrary permutations.

Definition 5.2

[robust] Let P be a robustly typed, input-linear program with input selectability. A

predicate p in P is robust if, for each robustly typed query p(s, t), any delay-respecting

derivation of P ∪ {p(s, t)} is finite. An atom is robust if its predicate is. �

By definition, a delay-respecting derivation for a query consisting of one robust atom

terminates. We will see shortly however that this extends to queries of arbitrary

length. To prove this, we first need the following simple lemma.

Lemma 5.3

Let Q = p1(s1, t1), . . . , pn(sn, tn) be a robustly typed query. Then there exists a substi-

tution σ such that dom(σ) = vars(t1, . . . , tn−1), and pn(sn, tn)σ is robustly typed.

Proof

Since Q is robustly typed and types are closed under instantiation, there exists a

substitution σ such that dom(σ) = vars(t1, . . . , tn−1), ran(σ) = ∅, and (t1, . . . , tn−1)σ is

correctly typed.

Since Q is nicely moded, dom(σ) ∩ vars(tn) = ∅. Since ran(σ) = ∅, it follows that

vars(snσ) ∩ vars(tnσ) = ∅ and hence pn(sn, tn)σ is nicely moded.

Since Q is well typed, it follows by Def. 3.5 that pn(sn, tn)σ is well typed.

Therefore, as Q is robustly typed and tnσ = tn, it follows that pn(sn, tn)σ is robustly

typed. q

The following lemma says that a robust atom cannot proceed indefinitely unless

it is repeatedly ‘fed’ by some other atom.

Lemma 5.4

Let P be a robustly typed, input-linear program with input selectability and F, b,H

a robustly typed query where b is a robust atom. A delay-respecting derivation of

P ∪ {F, b,H} can have infinitely many b-steps only if it has infinitely many a-steps,

for some a ∈ F . (For proof, see the Appendix.)

The following lemma is a consequence, and states that the robust atoms in a query

on their own cannot produce an infinite derivation.

Lemma 5.5

Let P be a robustly typed, input-linear program with input selectability and Q a

robustly typed query. A delay-respecting derivation of P ∪ {Q} can be infinite only

if there are infinitely many steps where a non-robust atom is resolved.

Verifying termination and error-freedom of logic programs 467

Proof

Let ξ be an infinite delay-respecting derivation of P ∪ {Q}. Assume, for the purpose

of deriving a contradiction, that ξ contains only finitely many steps where a non-

robust atom is resolved. Then there exists an infinite suffix ξ̃ of ξ containing no

steps where a non-robust atom is resolved. Consider the first query Q̃ of ξ̃. Then

there is at least one atom in Q̃ that has infinitely many descendants. Let ã be the

leftmost of these atoms. Then as ã is robust, we have a contradiction to Lemma 5.4.

q

Approaches to termination usually rely on measuring the size of the input in a

query. We agree with Etalle et al. (1999) that it is reasonable to make this dependency

explicit. This gives rise to the notion of moded level mapping, which is an instance

of level mapping introduced by Bezem (1993) and Cavedon (1989). Since we use

well typed programs instead of well moded ones (Etalle et al., 1999), we have to

generalise the concept further.

In the following definition, BInp
P denotes the set of atoms using predicates occurring

in P , that are correctly typed in their input positions.

Definition 5.6

[moded typed level mapping] Let P be a program. A function |.| : BInp
P → IN is a

moded typed level mapping if for each p(s, t) ∈ BInp
P

• for any u, we have |p(s, t)| = |p(s, u)|;

• for any substitution θ, |p(s, t)| = |p(sθ, t)|.

For a ∈ BInp
P , |a| is the level of a. �

Thus, the level of an atom in BInp
P only depends on the terms in the input positions.

Moreover, all instances of an atom in BInp
P have the same level. Here our concept

differs from moded level mappings. Also, our concept is defined for atoms in BInp
P

that are not necessarily ground, but this difference only concerns the presentation.

Since we only consider moded typed level mappings, we will simply call them level

mappings.

The following standard concept is widely used in the termination literature (Apt,

1997).

Definition 5.7

[Depends on] Let p, q be predicates in a program P . Then p refers to q if there is a

clause in P with p in its head and q in its body, and p depends on q (written p ⊒ q)

if (p, q) is in the reflexive, transitive closure of refers to. We write p = q if p ⊒ q and

q 6⊒ p, and p ≈ q if p ⊒ q and q ⊒ p.

Abusing notation, we shall also use the above symbols for atoms, where p(s, t) ⊒
q(u, v) stands for p ⊒ q, and likewise for = and ≈. Furthermore, we denote the

equivalence class of a predicate p with respect to ≈ as [p]≈. �

The following concept is used to show robustness.

468 J.-G. Smaus and others

Definition 5.8

[well-recurrent] Let P be a program and |.| a level mapping. A clause C = h ← B

is well-recurrent (with respect to |.|) if, for every a in B such that a ≈ h, and every

substitution θ such that aθ, hθ ∈ BInp
P , we have |hθ| > |aθ|.

A program (set of clauses) is well-recurrent with respect to |.| if each clause is

well-recurrent with respect to |.|. �

Well-recurrence resembles well-acceptability (Etalle et al., 1999) in that only for

atoms a ≈ h there has to be a decrease, and that it assumes moded level mappings.

It differs from well-acceptability, but also from delay-recurrence (Marchiori and

Teusink, 1999), in that it does not refer to a model of the program.

To show that a predicate p is robust, we assume that all predicates q with p = q

have already been shown to be robust.

Lemma 5.9

Let P be a robustly typed, input-linear program with input selectability and p a

predicate in P . Suppose all predicates q with p = q are robust, and all clauses

defining predicates q ∈ [p]≈ are well-recurrent with respect to some level mapping

|.|. Then p is robust. (For proof, see the Appendix.)

Example 5.10

We demonstrate for the program in figure 8, with mode M1 and type T , how

Lemma 5.9 is used.8 Given that the built-in =\= terminates, it follows that no diag

is robust. With the list length of the first argument of safe aux as level mapping,

the clauses defining safe aux are well-recurrent so that safe aux is robust. In a

similar way, we can show that safe is robust. �

Example 5.11

Consider again Example 4.9. We conjecture that is list is robust, but Lemma 5.9

cannot show this. While Example 4.9 is contrived, it suggests that the method of

section 4.2 might be useful whenever Lemma 5.9 fails to prove that a predicate

is robust. On the other hand, one could envisage to improve the method for

showing robustness, for example by exploiting information given by a model of the

program (Etalle et al., 1999). �

5.2 Well fed programs

As seen in Example 5.1, there are predicates for which requiring delay-respecting

derivations is not sufficient for termination. In general, the selection rule must be

taken into account. We assume left-based derivations. Consequently, we now give

up the assumption, made to simplify the notation, that the clauses and query are

robustly typed, rather than just permutation robustly typed. All statements from the

previous subsection generalise to permutation robustly typed in the obvious way.

A safe position in a query is a position that is ‘sufficiently late’.

8 We assume that the built-ins used here meet the conditions of Definition 3.17. We will see in section 7.1
why this is a safe assumption.

Verifying termination and error-freedom of logic programs 469

Definition 5.12

[Safe position] For a permutation π, i is a called safe position for π if for all j,

π(j) < π(i) implies j < i. �

Whenever we simply speak of an atom in a safe position, we mean that this atom

occurs in a π-robustly typed query Q in the ith position and i is a safe position for

π, where Q and π are clear from the context.

The next lemma says that in a left-based derivation, atoms whose ancestors are

all in safe positions can never be waiting (see Definition 2.2).

Lemma 5.13

Let P be a permutation robustly typed program with input selectability, Q0 a

permutation robustly typed query and ξ = Q0; . . . ;Qi . . . a left-based derivation of

P ∪{Q0}. Then no atom in Qi for which all ancestors are in safe positions is waiting.

Proof

Suppose Qi = a1, . . . , an is πi-robustly typed (note that πi exists by Lemma 3.16). Let

ak be an atom in Qi with all its ancestors in safe positions. By Def. 3.5, aπi−1(1) is

correctly typed in its input positions, and hence selectable. Moreover, since k is a

safe position, πi
−1(1) 6 k. It follows that if the proper ancestors of ak are not waiting,

then ak is not waiting.

The result follows by induction on i. When i = 0, ak has no proper ancestors

and hence, by the above paragraph, ak is not waiting. When i > 0, then all proper

ancestors of ak are in safe positions (by hypothesis) and hence, by the inductive

hypothesis, they are not waiting. Thus, by the above paragraph, ak is not waiting.

q

To show Theorem 5.18, we need the following corollary of Lemma 5.13.

Corollary 5.14

Make the same assumptions as in Lemma 5.13. If Qi = a1, . . . , an is πi-robustly

typed and the atom ak selected in Qi;Qi+1 has only ancestors in safe positions, then

πi(k) = 1 (and hence ak is correctly typed in its input positions).

A permutation robustly typed query is called well fed if each atom is robust or in a

safe position. Note that if a predicate p can be shown to be robust using Lemma 5.9,

then all predicates q with p = q are also robust. However, this is a property of the

method for showing robustness, not of robustness itself. To simplify the proof of

Theorem 5.18, we want to exclude the pathological situation that p is robust but

some predicate q with p = q is not.

Definition 5.15

[Well fed] A π-robustly typed query is well fed if for each of its atoms p(s, t), either

p(s, t) is in a safe position for π, or all predicates q with p ⊒ q are robust. A clause

is well fed if its body is. A program P is well fed if all of its clauses are well fed and

input-linear, and P has input selectability. �

The following proposition is a direct consequence of the definition of the derived

permutation (see Lemma 3.3).

470 J.-G. Smaus and others

Proposition 5.16

Let P and Q be a well fed program and query, and ξ a derivation of P ∪ {Q}. Then

each atom in each query in ξ is either robust, or all its ancestors are in safe positions.

Example 5.17

The program in figure 4 is well fed in both modes. The program in figure 8 is well

fed in mode M1. It is not well fed in mode M2, because it is not permutation nicely

moded in this mode: in the second clause for sequence, N1 occurs twice in an output

position. �

The following theorem reduces the problem of showing termination of left-based

derivations for a well fed program to showing termination of LD-derivations for a

corresponding robustly typed program.

Theorem 5.18

Let P and Q be a well fed program and query, and P ′ and Q′ a robustly typed

program and query corresponding to P and Q. If every LD-derivation of P ′ ∪ {Q′}
is finite, then every left-based derivation of P ∪ {Q} is finite. (Proof see Appendix)

Given that for the programs of figures 3, 5, 4 and 8, the corresponding robustly

typed programs terminate for robustly typed queries, it follows by the above theorem

that the original programs terminate for well fed queries.

For the program of figure 8, our method can only show termination for the mode

M1, but not for M2, although the program actually terminates for M2 (provided the

block declarations are modified to allow for M2).

6 Freedom from errors related to built-ins

One problem with built-ins is that their implementation may not be written in

Prolog. Thus, for the purposes of this paper, it is assumed that each built-in is

conceptually defined by possibly infinitely many (fact) clauses (Sterling and Shapiro,

1986). For example, there could be facts ‘0 is 0+0.’, ‘1 is 0+1.’, and so forth.

To prove that a program is free from errors related to built-ins, we require it to

be permutation simply typed. This applies also to the conceptual clauses for the

built-ins.

Some built-ins produce an error if certain arguments have a wrong type, and others

produce an error if certain arguments are insufficiently instantiated. For example,

X is foo results in a type error and X is V results in an instantiation error.

The approach described here aims at preventing instantiation and type errors for

built-ins, for example arithmetic built-ins, that require arguments to be ground. It

has been proposed (Apt and Luitjes, 1995) that these predicates be equipped with

delay declarations to ensure that they are only executed when the input is ground.

This has the advantage that one can reason about arbitrary arithmetic expressions,

say qsort([1+1,3-8],M). The disadvantage is that block declarations cannot be

used. In contrast, we assume that the type of arithmetic built-ins is the constant

type num, rather than arithmetic expressions. Then we show that block declarations

are sufficient. The following lemma is similar to and based on Lemma 27 (Apt and

Luitjes, 1995).

Verifying termination and error-freedom of logic programs 471

Lemma 6.1

Let Q = p1(s1, t1), . . . , pn(sn, tn) be a π-well typed query, where pi(Si,Ti) is the type of

pi for each i ∈ {1, . . . , n}. Suppose, for some k ∈ {1, . . . , n}, Sk is a vector of constant

types, sk is a vector of non-variable terms, and there is a substitution θ such that

tjθ : Tj for all j with π(j) < π(k). Then sk : Sk .

Proof

By Definition 3.5, skθ : Sk , and thus skθ is a vector of constants. Since sk is already

a vector of non-variable terms, it follows that sk is a vector of constants and thus

skθ = sk . Therefore sk : Sk . q

Note that if sk is of type Sk , then sk is ground. By Definition 3.8, for every

permutation simply typed query Q, there is a θ such that Qθ is correctly typed in

its output positions. Thus by Lemma 6.1, if the arithmetic built-ins have type num

in all input positions, then it is enough to have block declarations such that these

built-ins are only selected when the input positions are non-variable. This is stated

in the following theorem which is a consequence of Lemma 6.1.

Theorem 6.2

Let P be a permutation simply typed, input-linear program with input selectability

and Q be a permutation simply typed query. Let p be a predicate whose input

positions are all bound and of constant type. Then in any delay-respecting derivation

of P ∪ {Q}, an atom using p will be selected only when its input arguments are

correctly typed.

When we say that the input positions of a built-in are bound, we imply that the

conceptual clause heads have non-variable terms in those positions.

Example 6.3

For the program in figure 3 in mode M1, no delay-respecting derivation for a

permutation simply typed query and this program can result in an instantiation or

type error related to the arithmetic built-ins.

7 block declarations and equality tests

Runtime testing for instantiation has an overhead, and in the case of built-ins, can

only be realised by introducing an auxiliary predicate (see figure 3). Therefore, in the

following two subsections, we describe ways of simplifying the block declarations

of a program. An additional benefit is that in some cases, we can even ensure

that arguments are ground, rather than just non-variable. We will see in section 7.3

that this is useful in order to weaken the restriction that every clause head must

be input-linear. We have postponed these considerations so far in order to avoid

making the main arguments of this paper unnecessarily complicated.

7.1 Avoiding block declarations for permutation simply typed programs

In the program in figure 8, there are no block declarations and hence no auxiliary

predicates for <, is and =\=. This is justified because the input for those predicates

472 J.-G. Smaus and others

is always provided by the clause heads. For example, it is not necessary to have a

block declaration for < because when an atom using sequence is called, the first

argument of this atom is already ground. We show here how this intuition can be

formalised. In the following definition, we consider a set B containing the predicates

for which we want to omit the block declarations.

Definition 7.1

[B-ground] Let P be a permutation simply typed program and B a set of predicates

whose input positions are all of constant type.

A query is B-ground if it is permutation simply typed and each atom using a

predicate in B has ground terms in its input positions.

An argument position k of a predicate p in P is a B-position if there is a clause

p(t0, sn+1) ← p1(s1, t1), . . . , pn(sn, tn) in P such that for some i where pi ∈ B, some

variable in si also occurs in position k in p(t0, sn+1).

The program P is B-ground if every B-position of every predicate in P is an input

position of constant type, and an atom p(s, t), where p 6∈ B, is selectable only if it is

non-variable in the B-positions of p. �

Note that since a constant type is, in particular, a non-variable type, it is always

possible to find block declarations such that both the requirement on selectability

in the above definition and in Definition 3.17 (2) are fulfilled.

Example 7.2

The program in figure 8 is B-ground, where B = {<, is, =\=}. The first position

of sequence, the second position of safe aux, and all positions of no diag are

B-positions. �

The following theorem says that for B-ground programs, the input of all atoms

using predicates in B is always ground.

Theorem 7.3

Let P be a B-ground, input-linear program with input selectability, Q a B-ground

query, and ξ a delay-respecting derivation of P ∪ {Q}. Then each query in ξ is

B-ground.

Proof

The proof is by induction on the length of ξ. Let Q0 = Q and ξ = Q0;Q1; The

base case holds by the assumption that Q0 is B-ground.

Now consider some Qj where j > 0 and Qj+1 exists. By Lemma 3.11 (4), Qj

and Qj+1 are permutation simply typed and hence type-consistent in all argument

positions. The induction hypothesis is that Qj is B-ground.

Let p(u, v) be the selected atom, C = p(t0, sn+1) ← p1(s1, t1), . . . , pn(sn, tn) be the

clause and θ the MGU used in the step Qj;Qj+1. Consider an arbitrary i ∈ {1, . . . , n}
such that pi ∈ B.

If p 6∈ B, then by the condition on selectability in Def. 7.1, p(u, v) is non-variable in

the B-positions of p and hence, since the B-positions are of constant type, p(u, v) is

ground in the B-positions of p. If p ∈ B, then p(u, v) is ground in all input positions

Verifying termination and error-freedom of logic programs 473

by the induction hypothesis, and hence p(u, v) is a fortiori ground in all B-positions

of p.

Thus it follows that siθ is ground. Since the choice of i was arbitrary, and because

of the induction hypothesis, it follows that Qj+1 is B-ground. q

In Theorem 7.3, the assumption that the predicates in B have input selectability

is redundant. Atoms using predicates in B are only selected when their input is

ground, simply because their input is ground at all times during the execution.

Example 7.4

In the program in figure 8, there are no block declarations, and hence no auxiliaries,

for the occurrences of is, < and =\=, but there are block declarations on safe aux

and no diag that ensure the condition on selectability in Definition 7.1. �

7.2 Simplifying the block declarations using atoms in safe positions

By a simple observation, we can simplify the block declarations for predicates that

are only used in atoms occurring in safe positions. Consider a permutation robustly

typed program P with input selectability and a permutation robustly typed query

Q. Suppose we have a predicate p such that for all q with q ⊒ p, all atoms using q

in Q and clause bodies in P are in safe positions.

Then by Lemma 5.13, in any left-based derivation of P ∪ {Q}, an atom using p

is never waiting. Thus, the block declarations do not delay the selection of atoms

using p. Suppose we modify P by replacing the block declaration for p with the

empty block declaration. Then the modified program has the same set of left-based

derivations of Q as the original program. For example, the block declaration for

sequence in the program in figure 8 can be omitted.

7.3 Weakening input-linearity of clause heads

The requirement that clause heads are input-linear is needed to show the persistence

of permutation nicely-modedness (Lemma 3.3). This is analogous to the same state-

ment restricted to nicely-modedness (Apt and Luitjes, 1995, Lemma 11). However,

the clause head does not have to be input-linear when the statement is further

restricted to LD-resolvents (Apt and Pellegrini, 1994, Lemma 5.3). The following

example by Apt (personal communication) demonstrates this difference.

Example 7.5

Consider the program

q(A). r(1). eq(A,A).

where the mode is {q(I), r(O), eq(I , I)}. Note that eq/2 is equivalent to the built-in

=/2. This program is nicely moded but not input-linear. The query

q(X), r(Y), eq(X, Y)

is nicely moded. The query q(X), r(X) is a resolvent of the above query, and it is not

nicely moded. �

474 J.-G. Smaus and others

Requiring clause heads to be input-linear is undoubtedly a severe restriction. It

means that it is not possible to check two input arguments for equality. However, this

also indicates the reason why in the above example, resolving eq(X,Y) is harmful:

eq is meant to be a check, clearly indicated by its mode eq(I , I), but in the given

derivation step, it actually is not a check, since it binds variables.

It is easy to see that Lemma 3.3 still holds if Definition 3.1 is weakened by

allowing = to be used in mode =(I , I), provided atoms using = are only resolved

when both arguments are ground. Resolving the permutation nicely moded query

Q1, s=t, Q2 selecting s=t, where s and t are ground, will yield the resolvent Q1, Q2,

which is permutation nicely moded.

The mode =(I , I) can be realised with a delay declaration such that an atom s=t

is selected only when s and t are ground. In SICStus, this can be done using the

built-in when (SIC, 1998). However we do not follow this line because this paper

focuses on block declarations, and because it would commit a particular occurrence

of s=t to be a test in all modes in which the program is used.

Nevertheless, there are at least two situations when clause heads that are not input-

linear can be allowed. First, one can exploit the fact that atoms are in safe positions,

and secondly, that the arguments being checked for equality are of constant type.

In the first case, we assume left-based derivations. We could allow for clause heads

p(t, s) where a variable x occurs in several input positions, provided that

• all occurrences of x in t are in positions of ground type, and

• for each clause body and initial query for the program, each atom using a

predicate q with q ⊒ p is in a safe position.

By Corollary 5.14, it is then ensured that multiple occurrences of a variable in

the input of a clause head implement an equality check between input arguments.

Therefore, Lemmas 3.3, 3.11 and 3.16 hold assuming this weaker definition of

‘input-linear’.

Example 7.6

Consider the program in figure 1 in mode {permute(I , I), delete(I , I , I)}. This

program is not input-linear. Nevertheless, the program can be used in this mode

provided that all arguments are of ground type and calls to permute and delete

are always in safe positions. �

In the second case, it is sufficient to assume delay-respecting derivations. We can

use Theorem 6.2. This time, we have to allow for clause heads p(t, s) where a variable

x occurs in several input positions, provided that

• x only occurs directly and in positions of constant type in t, and

• an atom using p is selectable only if these positions are non-variable.

It is then ensured that when an atom p(u, v) is selected, u has constants in each

position where t has x.

Verifying termination and error-freedom of logic programs 475

:- block length(-,-).

length(L,N) :-

len_aux(L,0,N).

:- block less(?,-), less(-,?).

less(A,B) :-

A < B.

:- block len_aux(?,-,?),

len_aux(-,?,-).

len_aux([],N,N).

len_aux([_|Xs],M,N) :-

less(M,N),

M2 is M + 1,

len_aux(Xs,M2,N).

Fig. 9. The length program.

Example 7.7

Consider the program shown in figure 9. It can be used in mode {length(O , I),

len aux(O , I , I)} (it is simply typed) in spite of the fact that len aux([], N, N) is not

input-linear, using either of the two explanations above. The first explanation relies

on all atoms using predicates q ⊒ len aux being in safe positions. This is somewhat

unsatisfactory since imposing such a restriction impedes modularity. Therefore, the

second explanation is preferable. �

8 Related work

First of all, note that our work implicitly relies on previous work on termination

for LD-derivations (Apt, 1997; De Schreye and Decorte, 1994), since we reduce

the problem of termination of a program with block declarations to the classical

problem of termination for LD-derivations.

In using modes and types, we follow Apt and Luitjes (1995), and also adopt

their notation. They show occur-check freedom for nicely moded programs and

non-floundering for well typed programs. For arithmetic built-ins they require delay

declarations such that an atom is delayed until the arguments are ground. Such

declarations are usually implemented not as efficiently as block declarations. For

termination, they propose a method limited to deterministic programs.

Naish (1992) gives good intuitive explanations (without proof) why programs loop,

which directed our own search for further ideas and their formalisation. Predicates

are assumed to have a single mode. It is suggested that alternative modes should be

achieved by multiple versions of a predicate. This approach is quite common (Apt

and Etalle, 1993; Apt and Luitjes, 1995; Etalle et al., 1999) and is also taken in

Mercury (Somogyi et al., 1996), where these versions are generated by the compiler.

While it is possible to take that approach, this is clearly a loss of generality since

two different versions of a predicate is not the same thing as a single one which can

be used in several modes. Naish uses examples where, under the above assumption,

delay declarations are unnecessary. For permute, if we only consider the mode M2,

then the program in figure 5 does not loop simply because no atom is ever delayed,

and thus the program behaves as if there were no delay declarations. In this case,

the interpretation that one should ‘place recursive calls last’ is misleading. If we

only consider the mode M1, then the version of figure 5 is much less efficient than

476 J.-G. Smaus and others

figure 1. In short, his discussion on delay declarations lacks motivation when only

one mode is assumed.

Lüttringhaus-Kappel (1993) proposes a method for generating control automat-

ically, and has applied it successfully to many programs. However, rather than

pursuing a formalisation of some intuitive understanding of why programs loop,

and imposing appropriate restrictions on programs, he aims for a high degree of

generality. This has certain disadvantages.

The method only finds acceptable delay declarations, ensuring that the most

general selectable atoms have finite SLD-trees. What is required however are safe

delay declarations, ensuring that instances of most general selectable atoms have

finite SLD-trees. A safe program is a program for which every acceptable delay

declaration is safe. Lüttringhaus-Kappel states that all programs he has considered

are safe, but he gives no hint as to how this might be shown in general.

The delay declarations for some programs such as quicksort require an argument

to be a nil-terminated list before an atom can be selected. As Lüttringhaus-Kappel

points out, “in NU-Prolog [or SICStus] it is not possible to express such conditions”.

We have shown here that, with a knowledge of modes and types, block declarations

are sufficient.

Furthermore, the method assumes arbitrary delay-respecting derivations and hence

does not work for programs where termination depends on derivations being left-

based.

Marchiori and Teusink (1999) base termination on norms and the covering relation

between subqueries of a query. This is loosely related to well-typedness. However,

their results are not comparable to ours because they assume a local selection rule,

that is a rule that always selects an atom that was introduced in the most recent

step. No existing language using a local selection rule (other than the LD selection

rule) is mentioned, and we are not aware that there is one. The authors state that

programs that do not use speculative bindings deserve further investigation, and that

they expect any method for proving termination with full coroutining either to be

very complex, or very restrictive in its applications.

Martin and King (1997) ensure termination by imposing a depth bound on the

SLD tree. This is realised by a program transformation introducing additional

argument positions for each predicate, which are counters for the depth of the

computation. The difficulty is of course to find an appropriate depth bound that

does not compromise completeness. It is hard to compare their work to ours since

they transform the programs substantially to obtain programs for which it is easier to

reason about termination, whereas we show termination for much more ‘traditional’

programs.

Recently, Pedreschi and Ruggieri (1999) have shown that for programs that have

no failing derivations, termination is independent of the selection rule. They consider

guarded clauses, and the execution model is such that the evaluation of guards is

never considered as a failure. For example, even the quicksort program is non-

failing in this sense, since the tests leq(X,C) and grt(X,C) (see figure 3) would be

guards. In contrast to the method presented in section 4.2, they can show termination

for this program.

Verifying termination and error-freedom of logic programs 477

The verification methods used here can also be used to show that programs are free

from (full) unification, occur-check, and floundering. These relatively straightforward

generalisations of previous results (Apt and Etalle, 1993; Apt and Luitjes, 1995; Apt

and Pellegrini, 1994) are discussed in Smaus’ PhD thesis (1999).

9 Discussion and future work

We have presented verification methods for programs with block declarations. The

verified properties were termination and freedom from errors related to built-ins.

These methods refine and formalise previous work in this area (Apt and Etalle,

1993; Apt and Luitjes, 1995; Naish, 1992).

In the introduction, we have said that this work has three distinctive features: (a)

assuming multiple modes, (b) using block declarations, (c) formalising the ‘default

left-to-right’ selection rule. While the significance of (a) can be argued (see below), at

least features (b) and (c) mean that we are addressing existing programs and existing

language implementations. This is further strengthened by the fact that, using the

results of section 7, we can verify programs where only some of the predicates are

equipped with block declarations.

In the literature, we also find other types of delay declarations: In Gödel (Hill

and Lloyd, 1994), delay declarations can test for non-variableness of sub-arguments

up to a certain depth (e.g. DELAY P([x|xs]) UNTIL NONVAR(xs)) or for groundness of

arguments; also, in theory, one can consider delay declarations that test arguments

for being instantiated to a list or similar structure (Lüttringhaus-Kappel, 1993).

Most of our results require that an atom is selected only if certain arguments are at

least non-variable, and so they trivially also hold for those delay declarations. On

the other hand, the results in section 5.2 require that an atom is definitely selectable

whenever it is correctly typed in its input positions. We claim that this is a natural

requirement which should also be fulfilled by most programs using other kinds of

delay declarations, but to substantiate this claim, we would have to specify precisely

the delay declarations and the underlying modes and types.

For proving termination, we have presented two approaches. The first approach

(Smaus et al., 1999) consists of two complementing methods based on not using and

not making speculative bindings, respectively. For figures 4 and 5, it turns out that

in one mode, the first method applies, and in the other mode, the second method

applies. This approach is simple to understand and to apply. However it is rather

limited. Termination cannot be shown for the programs of figures 3 and 8.

In the second approach (Smaus et al., 1998), we required programs to be permu-

tation robustly typed, a condition that ensures that no call instantiates its own input.

In the next step, we identified when a predicate is robust, which means that every

delay-respecting derivation for a query using the predicate terminates. Robust atoms

can be placed in clause bodies arbitrarily. Non-robust atoms must be placed such

that their input is sufficiently instantiated when they are called.

Concerning built-ins, we have shown that even though some built-ins require

their input arguments to be ground, it is still sometimes sufficient to use block

declarations.

478 J.-G. Smaus and others

We have also considered how some of the block declarations can be omitted if it

can be guaranteed that the instantiation tests they implement are redundant. This

is useful because even for programs containing block declarations, it is rare that all

predicates have block declarations. In particular, it is awkward having to introduce

auxiliary predicates to implement delay declarations for built-ins.

It is an ongoing discussion whether it is reasonable to assume predicates that

work in several modes (Hill, 1998). We have argued that a formalism dealing with

delay declarations should at least allow for multiple modes. This does not exclude

in any way other applications of delay declarations, such as implementing the test-

and-generate paradigm (coroutining). As seen in the program of figure 8, our results

apply to such programs as well.

The main purpose of this work is software development, and it is envisaged

that an implementation should take the form of a program development tool. The

programmer would provide mode and type information for the predicates in the

program. The tool would then generate the block declarations and try to reorder

the atoms in clause bodies so that the mode and type requirements are met. Where

applicable, finding the free and bound positions, as well as the level mapping used

to prove robustness, should be done by the tool.

Acknowledgements

We are indebted to the anonymous referees whose comments helped improve this

paper. We also thank the referees of PLILP/ALP’98 and LOPSTR’98, as well as

Krzysztof Apt, Sandro Etalle, Lee Naish, Salvatore Ruggieri and Sofie Verbaeten

for useful discussions.

A Proofs

Lemma 3.11

Let Q = p1(s1, t1), . . . , pn(sn, tn) be a π-simply typed query and C = pk(v0, um+1) ←
q1(u1, v1), . . . , qm(um, vm) a ρ-simply typed, input-linear clause where vars(C) ∩
vars(Q) = ∅. Suppose that for some k ∈ {1, . . . , n}, sk is non-variable in all bound

input positions, and θ is the MGU of pk(sk , tk) and pk(v0, um+1). Then

1. there exist substitutions θ1, θ2 such that θ = θ1θ2 and

(a) v0θ1 = sk and dom(θ1) ⊆ vars(v0),

(b) tkθ2 = um+1θ1 and dom(θ2) ⊆ vars(tk),

2. dom(θ) ⊆ vars(tk) ∪ vars(v0),

3. dom(θ) ∩ vars(t1, . . . , tk−1, v1, . . . , vm, tk+1, . . . , tn) = ∅,
4. the resolvent of Q and C with selected atom pk(sk , tk) is ̺-simply typed, where

̺ is the derived permutation (see Lemma 3.3).

Proof

By assumption sk is non-variable in all bound positions, and v0 is a linear vector hav-

ing flat terms in all bound positions, and variables in all other positions. Thus there

is a substitution θ1 such that v0θ1 = sk and dom(θ1) ⊆ vars(v0), which shows (1a).

Verifying termination and error-freedom of logic programs 479

Since tk is a linear vector of variables, there is a substitution θ2 such that

dom(θ2) ⊆ vars(tk) and tkθ2 = um+1θ1, which shows (1b).

Since Q is π-nicely moded, vars(tk) ∩ vars(sk) = ∅, and therefore vars(tk) ∩
vars(v0θ1) = ∅. Thus it follows by (1b) that θ = θ1θ2 is a unifier of pk(sk , tk)

and pk(v0, um+1). (2) follows from (1a) and (1b), and (3) follows from (2) because of

linearity.

By Lemma 3.3 and 3.7, the resolvent is ̺-nicely moded and ̺-well typed. By (3),

the vector of the output arguments of the resolvent is a linear vector of variables,

and hence (4) follows. q

Lemma 3.16

Let Q = p1(s1, t1), . . . , pn(sn, tn) a π-robustly typed query and C = pk(v0, um+1) ←
q1(u1, v1), . . . , qm(um, vm) a ρ-robustly typed, input-linear clause where vars(Q) ∩
vars(C) = ∅. Suppose that for some k ∈ {1, . . . , n}, pk(sk , tk) is non-variable in

all bound input positions and θ is the MGU of pk(sk , tk) and pk(v0, um+1).

Then the resolvent of Q and C with selected atom pk(sk , tk) is ̺-robustly typed,

where ̺ is the derived permutation (see Lemma 3.3). Moreover dom(θ)∩vars(sk) = ∅.

Proof

We show how θ is computed, where we consider three stages. In the first, sk and v0

are unified. In the second, the output positions are unified where the bindings go

from C to Q. In the third, the output positions are unified where the bindings go

from Q to C . Figure A 1 illustrates which variables are bound in each stage. The

first three parts of the proof correspond to the three stages of the unification.

Part 1 (unifying sk and v0). By Definition 3.13, v0 is a vector of flat terms, where vf
0

is a vector of variables, and by assumption, v0 is linear. By assumption, sb
k is a vector

of non-variable terms and, since vars(C)∩ vars(Q) = ∅, vars(v0)∩ vars(sk) = ∅. Thus

there is a (minimal) substitution θ1 such that v0θ1 = sk . We show that the following

hold:

(1a) dom(θ1) ∩ vars(sk) = ∅.

(1b) dom(θ1) ∩ vars(v1, . . . , vm, t1, . . . , tn) = ∅.

(1c) Let x be a variable occurring directly in a position of type τ in ub
m+1θ1.

Then x /∈ vars(sk). Moreover, x can only occur in v1, . . . , vm, t1, . . . , tn in a

bound position of type τ, and the occurrence must be direct.

(1d) vars(um+1θ1) ∩ vars(tk) = ∅.

(1a) holds by the construction of θ1.

(1b) holds since by Definition 3.13 and since C is input-linear, v0, . . . , vm, t1, . . . , tn
is linear.

Let x be a variable occurring directly in a position of type τ in ub
m+1θ1. Let y

be the variable in the same position in ub
m+1. Suppose, for the purpose of deriving

a contradiction, that y ∈ vars(v0). Then by Definition 3.13, y occurs directly in

vb
0 , and since sb

k is a vector of non-variable terms, yθ1 is not a variable, which is

a contradiction. Therefore, y 6∈ vars(v0). Hence y 6∈ dom(θ1) and thus x = y and

x /∈ vars(sk). Furthermore, it follows by Definition 3.13 that x can only occur in

480 J.-G. Smaus and others

C : pk(v0, um+1) :- q1(u1, v1) · · · qm(um, vm)

Q : p1(s1, t1) . . . pk(sk , tk) . . . pn(sn, tn)
..R

Stage 1

...

�
Stage 2 (f+)

..�

Stage 3 (b-)

Fig. A 1. Data flow in the unification.

v1, . . . , vm, t1, . . . , tn in a bound position of type τ, and the occurrence must be direct.

Thus (1c) holds.

Since Q is permutation nicely moded, vars(sk) ∩ vars(tk) = ∅ and hence ran(θ1) ∩
vars(tk) = ∅. Thus (1d) holds.

Part 2 (unifying tk and um+1θ1 in each position where either the argument in tk
is a variable, or the arguments in tk and um+1θ1 are both non-variable). Note that

this includes all positions in tfk and uf
m+1θ1, but may also include positions in tbk

and ub
m+1θ1. Since, by (1b), tkθ1 = tk , Part 2 covers precisely the output positions

where the binding ‘goes from um+1θ1 to tkθ1’ (see figure A 1). We denote by tf+k the

projection of tk onto the positions where the argument in tk is a variable, or the

arguments in tk and um+1θ1 are both non-variable, and by tb−k the projection onto

the other positions, and likewise for um+1θ1.

By (1d), vars(uf+
m+1θ1)∩ vars(tf+k) = ∅. Thus there is a minimal substitution θ′ such

that tf+k θ′ = uf+
m+1θ1. Let θ2 = θ1θ

′. Then by (1b), tf+k θ2 = uf+
m+1θ2. We show the

following:

(2a) dom(θ2) ∩ vars(sk) = ∅.

(2b) dom(θ2) ∩ vars(v1, . . . , vm, t1, . . . , tk−1, t
b−
k , tk+1, . . . , tn) = ∅.

(2c) Let x be a variable occurring directly in a position of type τ in ub−
m+1θ2.

Then x /∈ vars(sk). Moreover, x can only occur in v1, . . . , vm, t1, . . . , tk−1, tb−k ,

tk+1, . . . , tn in a bound position of type τ, and the occurrence must be direct.

(2d) vars(um+1θ2) ∩ vars(tb−k) = ∅.

Since vars(sk) ∩ vars(tk) = ∅, dom(θ′) ∩ vars(sk) = ∅. This and (1a) imply (2a).

(2b) holds because (1b) holds and v1, . . . , vm, t1, . . . , tn is linear.

By (1d), dom(θ′) ∩ vars(ub−
m+1θ1) = ∅. This together with (1c) implies (2c). Further-

more, because of the linearity of tk , (2d) follows.

Part 3 (unifying tb−k and ub−
m+1θ2). By (1d), dom(θ′) ∩ vars(ub−

m+1θ1) = ∅, and thus

ub−
m+1θ2 = ub−

m+1θ1. Therefore, by the definition of the superscript b− in Part 2, ub−
m+1θ2

is a vector of variables. By (2d), vars(ub−
m+1θ2) ∩ vars(tb−k) = ∅, so that there is a

minimal substitution θ′′ such that ub−
m+1θ2θ

′′ = tb−k . Let θ3 = θ2θ
′′. Then, by (2b), we

have ub−
m+1θ3 = tb−k θ3. We show (3a) and (3b).

(3a) dom(θ3) ∩ vars(sk) = ∅.

(3b) (v1, . . . , vm, t1, . . . , tk−1, tk+1, . . . , tn)θ3 is linear and has flat type-consistent

terms in all bound positions and variables in all free positions.

Verifying termination and error-freedom of logic programs 481

By (2c), dom(θ′′) ∩ vars(sk) = ∅. This and (2a) imply (3a).

Suppose x is a variable in ub−
m+1θ2 occurring in a position i of type τ, and x

also occurs in v1, . . . , vm, t1, . . . , tk−1, tk+1, . . . , tn. By (2c), the latter occurrence of

x is in a bound position of type τ, and is the only occurrence of x in v1, . . . , vm,

t1, . . . , tk−1, tk+1, . . . , tn. Let I be the set of positions where x occurs in ub−
m+1θ2, and

let T be the set of terms occurring in tb−k in positions in I . Then T is a set of

variable-disjoint, flat terms. Therefore, their most general common instance xθ′′ is

a flat term and xθ′′ is type-consistent with respect to τ. Moreover, since (v1, . . . , vm,

t1, . . . , tk−1, tb−k , tk+1, . . . , tn) is linear, we have vars(xθ′′) ∩ vars(v1, . . . , vm, t1, . . . , tk−1,

tk+1, . . . , tn) = ∅ and therefore it follows that (v1, . . . , vm, t1, . . . , tk−1, tk+1, . . . , tn)θ
′′ is a

linear vector of type-consistent terms. This and (2b) imply (3b).

Part 4: Defining θ = θ3 it follows that pk(sk , tk)θ = pk(v0, um+1)θ. By (3b) and

Lemmas 3.3 and 3.7, the resolvent of Q and C is ̺-robustly typed. By (3a), we have

skθ = sk . q

Theorem 4.8

Let P be a non-speculative program with input selectability and P ′ a simply typed

program corresponding to P . Let Q be a permutation simply typed query and Q′

a simply typed query corresponding to Q. If there is an infinite delay-respecting

derivation of P ∪ {Q}, then there is an infinite LD-derivation of P ′ ∪ {Q′}.

Proof

For simplicity assume that Q and each clause body do not contain two identical

atoms. Let Q0 = Q, θ0 = ∅ and ξ = 〈Q0, θ0〉; 〈Q1, θ1〉; . . . be a delay-respecting

derivation of P ∪{Q}. The idea is to construct an LD-derivation ξ′ of P ′∪{Q′} such

that whenever ξ uses a clause C , then ξ′ uses the corresponding clause C ′ in P ′. It

will then turn out that if ξ′ is finite, ξ must also be finite.

We call an atom a resolved in ξ at i if a occurs in Qi but not in Qi+1. We call

a resolved in ξ if for some i, a is resolved in ξ at i. Let Q′0 = Q′ and θ′0 = ∅. We

construct an LD-derivation ξ′ = 〈Q′0, θ
′
0〉; 〈Q

′
1, θ
′
1〉; . . . of P ′ ∪ {Q′} showing that for

each i > 0 the following hold:

(1) If q(u, v) is an atom in Q′i that is not resolved in ξ, then vars(vθ′i)∩dom(θj) = ∅
for all j > 0.

(2) Let x be a variable such that, for some j > 0, xθj = f(. . .). Then xθ′i is either

a variable or xθ′i = f(. . .).

We first show these properties for i = 0. Let q(u, v) be an atom in Q′0 that is

not resolved in ξ. Since θ′0 = ∅, vθ′0 = v. Furthermore, by Corollary 3.12 and

Corollary 3.20 and since q(u, v) is not resolved in ξ, we have vθj = v for all j. Thus

(1) holds. (2) holds because θ′0 = ∅.
Now assume that for some i, 〈Q′i, θ

′
i〉 is defined, Q′i is not empty, and (1) and (2) hold.

Let p(s, t) be the leftmost atom of Q′i. We define a derivation step 〈Q′i, θ
′
i〉; 〈Q

′
i+1, θ

′
i+1〉

with p(s, t) as the selected atom, and show that (1) and (2) hold for 〈Q′i+1, θ
′
i+1〉.

Case 1: p(s, t) is resolved in ξ at l for some l. Consider the simply typed clause

C ′ = h← B′ corresponding to the uniquely renamed clause (using the same renaming)

used in ξ to resolve p(s, t). Since p(s, t) is resolved in ξ at l, p(s, t)θl is non-variable

482 J.-G. Smaus and others

in all bound input positions. Thus each bound input position of p(s, t) must be filled

by a non-variable term or a variable x such that xθl = f(. . .) for some f. Moreover,

p(s, t)θ′i must have non-variable terms in all bound input positions since Q′iθ
′
i is well

typed. Thus it follows by (2) that in each bound input position, p(s, t)θ′i has the same

top-level functor as p(s, t)θl , and since h has flat terms in the bound input positions,

there is an MGU φ′i of p(s, t)θ′i and h. We use C ′ for the step 〈Q′i, θ
′
i〉; 〈Q

′
i+1, θ

′
i+1〉.

We must show that (1) and (2) hold for i+ 1. Consider an atom q(u, v) in Q′i other

than p(s, t). By Lemma 3.11 (3), vars(vθ′i) ∩ dom(φ′i) = ∅. Thus for the atoms in Q′i+1

that occur already in Q′i, (1) is maintained. Now consider an atom q(u, v) in B′ that

is not resolved in ξ. By Corollary 3.20, vθ′i+1 = v. Since q(u, v) is not resolved in ξ,

for all j > l we have that q(u, v) occurs in Qj and thus by Corollary 3.20, vθj = v.

Thus (1) follows. (2) holds since it holds for i and p(s, t) is resolved using the same

clause head as in ξ.

Case 2: p(s, t) is not resolved in ξ. Since P ′ is non-speculative, there is a (uniquely

renamed) clause C ′ = h ← B′ in P ′ such that h and p(s, t)θ′i have an MGU φ′i. We

use C ′ for the step 〈Q′i, θ
′
i〉; 〈Q

′
i+1, θ

′
i+1〉.

We must show that (1) and (2) hold for i + 1. Consider an atom q(u, v) in Q′i
other than p(s, t). By Lemma 3.11 (3), vars(vθ′i) ∩ dom(φ′i) = ∅. Thus for the atoms

in Q′i+1 that occur already in Q′i, (1) is maintained. Now consider an atom q(u, v) in

B′. Clearly, q(u, v) is not resolved in ξ. Since vars(C ′) ∩ vars(Qjθj) = ∅ for all j and

since by Corollary 3.20, we have vθ′i+1 = v, (1) holds for i + 1.

By (1) for i, we have vars(tθ′i) ∩ dom(θj) = ∅ for all j. By Lemma 3.11 (2), we

have dom(φ′i) ⊆ vars(tθ′i) ∪ vars(C ′). Thus we have dom(φ′i) ∩ dom(θj) = ∅ for all j.

Moreover, (2) holds for i. Thus (2) holds for i + 1.

Since this construction can only terminate when the query is empty, either Q′n is

empty for some n, or ξ′ is infinite.

Thus we show that if ξ′ is finite, then every atom resolved in ξ is also resolved in

ξ′. So let ξ′ be finite of length n. Assume for the sake of deriving a contradiction

that j is the smallest number such that the atom a selected in 〈Qj , θj〉; 〈Qj+1, θj+1〉
is never selected in ξ′. Then j 6= 0 since Q0 and Q′0 are permutations of each other

and all atoms in Q′0 are eventually selected in ξ′. Thus there must be a k < j such

that a does not occur in Qk but does occur in Qk+1. Consider the atom b selected

in 〈Qk , θk〉; 〈Qk+1, θk+1〉. Then by the assumption that j was minimal, b must be the

selected atom in 〈Q′i, θ
′
i〉; 〈Q

′
i+1, θ

′
i+1〉 for some i 6 n. Hence a must occur in Q′i+1,

since the clause used to resolve b in ξ′ is a simply typed clause corresponding to

the clause used to resolve b in ξ. Thus a must occur in Q′n, contradicting that ξ′

terminates with the empty query.

Thus ξ can only be infinite if ξ′ is also infinite. q

Lemma 5.4

Let P be a robustly typed, input-linear program with input selectability and F, b,H

a robustly typed query where b is a robust atom. A delay-respecting derivation of

P ∪ {F, b,H} can have infinitely many b-steps only if it has infinitely many a-steps,

for some a ∈ F .

Verifying termination and error-freedom of logic programs 483

Proof

In this proof, by an F-step we mean an a-step, for some a ∈ F; likewise we define

an H-step. By Corollary 3.19, no H-step can instantiate any descendant of F or b.

Thus, the H-steps can be disregarded, and without loss of generality, we assume H

is empty. Suppose ξ is a delay-respecting derivation for P ∪ {F, b} containing only

finitely many F-steps.

All F-steps are contained in a finite prefix of ξ. Moreover, by Cor. 3.19, no

b-step can instantiate any descendant of F . Therefore, we can repeatedly apply

the Switching Lemma (Lloyd, 1987, Lemma 9.1) to this prefix of ξ to obtain a

delay-respecting derivation

ξ2 = 〈F,b, ∅〉; . . . ; 〈F ′,b, ρ〉; ξ′

such that 〈F,b, ∅〉; . . . ; 〈F ′,b, ρ〉 contains only F-steps and 〈F ′,b, ρ〉; ξ′ contains only

b-steps. Now construct the delay-respecting derivation

ξ3 = 〈b, ρ〉; ξ′3

by removing the prefix F ′ in each query in 〈F ′,b, ρ〉; ξ′.
By Lemma 3.16, (F ′, b)ρ is robustly typed. Thus by Lemma 5.3, there exists a

substitution σ such that bρσ is robustly typed, and dom(σ) = V , where V is the set

of variables occurring in the output arguments of F ′ρ.

By Corollary 3.19, no b-step in ξ2, and hence no derivation step in ξ3, can

instantiate a variable in V . Since dom(σ) = V , it thus follows that we can construct

a delay-respecting derivation

ξ4 = 〈b, ρσ〉; ξ′3σ

by applying σ to each query in ξ3.

Since bρσ is a robustly typed query and b is robust, ξ4 is finite. Therefore, ξ3, ξ2,

and finally ξ are finite. q

Lemma 5.9

Let P be a robustly typed, input-linear program with input selectability and p a

predicate in P . Suppose all predicates q with p = q are robust, and all clauses

defining predicates q ∈ [p]≈ are well-recurrent with respect to some level mapping

|.|. Then p is robust.

Proof

If a is an atom using a predicate in [p]≈ such that the set S = {|aθ| | aθ ∈ BInp
P }

is non-empty and bounded, we define ||a|| = sup(S). Thus, for each atom a and

substitution θ such that ||a|| and ||aθ|| are defined

||aθ|| 6 ||a|| (A 1)

To measure the size of a query, we use the multiset containing the level of each

atom whose predicate is in [p]≈. The multiset is formalised as a function Size, which

takes as arguments a query and a natural number:

Size(Q)(n) = #{q(u, v) | q(u, v) ∈ Q, q ≈ p and ||q(u, v)|| = n}.

Note that if a query contains several identical atoms, each occurrence must be

484 J.-G. Smaus and others

counted. We define Size(Q) < Size(R) if and only if there is l ∈ IN such that

Size(Q)(l) < Size(R)(l) and Size(Q)(l′) = Size(R)(l′) for all l′ > l. Intuitively, there

is a decrease when an atom in a query is replaced with a finite number of smaller

atoms. All descending chains with respect to < are finite (Dershowitz, 1987).

Let Q0 = p(s, t) be a robustly typed query. Then p(s, t) ∈ BInp
P and thus ||Q0|| is

defined. Let ξ = Q0;Q1; . . . be a delay-respecting derivation of P ∪ {Q0}.
Since all predicates q with p = q are robust, it follows by Lemma 5.5 that there

cannot be an infinite suffix of ξ without any steps where an atom q(u, v) such that

q ≈ p is resolved. We show that for all i > 0, if the selected atom in Qi;Qi+1 is

q(u, v) and q ≈ p, then Size(Qi+1) < Size(Qi), and otherwise Size(Qi+1) 6 Size(Qi).

This implies that ξ is finite, and as the choice of the initial query Q0 = p(s, t) was

arbitrary, p is robust.

By Lemma 3.16, each position in each atom in Qi+1 is filled with a type-consistent

term. (∗)
Consider i > 0 and let C = q(v0, um+1) ← q1(u1, v1), . . . , qm(um, vm) be the clause,

q(u, v) the selected atom and θ the MGU used in Qi;Qi+1.

If p = q, then p = qj for all j ∈ {1, . . . , m}, and hence by (A 1) and (∗) it follows

that Size(Qi+1) 6 Size(Qi). Intuitively, the set of atoms that are measured by Size

does not change in this step (although the level of each atom might decrease).

Now consider q ≈ p. Since C is well-recurrent and because of (∗), we have

||q(v0, um+1)θ|| > ||qj(uj , vj)θ|| for all j with qj ≈ p. This together with (A 1) implies

Size(Qi+1) < Size(Qi). Intuitively, one atom has been replaced by smaller atoms in

this step, but apart from that, the set of atoms that are measured by Size does not

change. q

Theorem 5.18

Let P and Q be a well fed program and query, and P ′ and Q′ a robustly typed

program and query corresponding to P and Q. If every LD-derivation of P ′ ∪ {Q′}
is finite, then every left-based derivation of P ∪ {Q} is finite.

Proof

Suppose there is an infinite left-based derivation ξ of P ∪ {Q}. Then letting Q0 = Q,

θ0 = ∅, we can write

ξ = 〈Q0, θ0〉; . . . ; 〈R1, σ1〉; 〈Q1, θ1〉; . . . ; 〈R2, σ2〉; 〈Q2, θ2〉 . . .

where R1, R2, . . . are the queries in ξ where a non-robust atom is selected. By

Lemma 5.5, there are infinitely many such queries. We derive a contradiction.

By Proposition 5.16, the non-robust atoms in each query in ξ have only ancestors

in safe positions. Thus by Cor. 5.14, for each i > 1, where Ri is ρi-robustly typed,

the ρi
−1(1)’th atom in Ri is selected in 〈Ri, σi〉; 〈Qi, θi〉.

Now consider an arbitrary query Q̃ in ξ and assume it is π̃-robustly typed. By

Corollary 3.4 and the previous paragraph it follows that there exists a query in ξ

that contains no descendants of the π̃−1(1)’th atom Q̃. Intuitively, for each query in

ξ, the atom that is ‘leftmost according to its permutation’ will eventually be resolved

completely.

By repeatedly applying the Switching Lemma to prefixes of ξ, we can construct

Verifying termination and error-freedom of logic programs 485

a derivation ζ of P ∪ {Q} such that in each query Q̃ in ζ that is π̃-robustly typed,

the π̃−1(1)’th atom is selected using the same clause (copy) used in ξ. Note that this

construction is possible by the previous paragraph. Also note that ζ is infinite.

Now consider the derivation ζ ′ obtained from ζ by replacing each π̃-robustly typed

query Q̃ with π̃(Q̃), i.e. the robustly typed query corresponding to Q̃. The derivation

ζ ′ is an LD-derivation of P ′ ∪ {Q′}, and it is infinite. This is a contradiction. q

References

Apt, K. R. (1997) From Logic Programming to Prolog. Prentice Hall.

Apt, K. R. and Etalle, S. (1993) On the unification free Prolog programs. In: A. Borzyszkowski
and S. Sokolowski (eds.), Proceedings of the Conference on Mathematical Foundations of

Computer Science: Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 1–19.

Apt, K. R. and Luitjes, I. (1995) Verification of logic programs with delay declarations. In:
V. S. Alagar and M. Nivat (eds.), Proceedings of AMAST’95: Lecture Notes in Computer

Science, Springer-Verlag, Berlin.

Apt, K. R. and Pellegrini, A. (1994) On the occur-check free Prolog programs. ACM Trans.

Programming Lang. and Syst. 16(3), 687–726.

Bezem, M. (1993) Strong termination of logic programs. J. Logic Programming, 15(1 & 2),
79–97.

Bossi, A. and Cocco, N. (1999) Successes in logic programs. In: P. Flener (ed.), Proceedings

of the 8th International Workshop on Logic Program Synthesis and Transformation: Lecture

Notes in Computer Science, Springer-Verlag, Berlin, pp. 219–239.

Boye, J. (1996) Directional Types in Logic Programming. PhD thesis, Linköpings Universitet.

Bronsard, F., Lakshman, T. K. and Reddy, U. S. (1992) A framework of directionality for
proving termination of logic programs. In: K. R. Apt (ed.), Proceedings of the 9th Joint

International Conference and Symposium on Logic Programming, MIT Press, pp. 321–335.

Cavedon, L. (1989) Continuity, consistency and completeness properties for logic programs.
In: G. Levi and M. Martelli (eds.), Proceedings of the 6th International Conference on Logic

Programming, MIT Press, pp. 571–584.

De Schreye, D. and Decorte, S. (1994) Termination of logic programs: The never-ending
story. J. Logic Programming, 19/20, 199–260.

Deransart, P. and Ma luszyński, J. (1998) Towards soft typing for CLP. In: F. Fages (ed.),
JICSLP’98 Post-Conference Workshop on Types for Constraint Logic Programming, École
Normale Supérieure. (Available at http://discipl.inria.fr/TCLP98/.)

Dershowitz, N. (1987) Termination of rewriting. J. Symbolic Computation, 3(1 & 2), 69–115.
(Corrigendum 4(3), 409–410.)

Etalle, S., Bossi, A. and Cocco, N. (1999) Termination of well-moded programs. J. Logic

Programming, 38(2), 243–257.

Hill, P. M. and Lloyd, J. W. (1994) The Gödel Programming Language. MIT Press.

Hill, P. M. (ed.) (1998) ALP Newsletter. http://www-lp.doc.ic.ac.uk/alp/. pp. 17, 18.

Lloyd, J. W. (1987) Foundations of Logic Programming. Springer-Verlag.

Lüttringhaus-Kappel, S. (1993) Control generation for logic programs. In: D. S. Warren
(ed.), Proceedings of the 10th International Conference on Logic Programming, MIT Press,
pp. 478–495.

Marchiori, E. and Teusink, F. (1999) Termination of logic programs with delay declarations.
J. of Logic Programming, 39(1–3), 95–124.

Martin, J. C. and King, A. M. (1997) Generating efficient, terminating logic programs. In:

486 J.-G. Smaus and others

M. Bidoit and M. Dauchet (eds.), Proceedings of TAPSOFT’97: Lecture Notes in Computer

Science, Springer-Verlag, Berlin, pp. 273–284.

Naish, L. (1985) Automatic control of logic programs. J. Logic Programming, 2(3), 167–183.

Naish, L. (1992) Coroutining and the construction of terminating logic programs. Technical

Report 92/5, University of Melbourne.

Pedreschi, D. and Ruggieri, S. (1999) On logic programs that do not fail. In: S. Etalle and
J.-G. Smaus (eds.), Proceedings of the Workshop on Verification, organised within ICLP’99:

Electronic Notes in Theoretical Computer Science 30, Elsevier.

SIC (1998) SICStus Prolog User’s Manual.
http://www.sics.se/sicstus/docs/3.7.1/html/sicstus toc.html.

Smaus, J.-G. (1999) Modes and Types in Logic Programming. PhD thesis, University of Kent
at Canterbury. (Available from www.cs.ukc.ac.uk/pubs/1999/986.)

Smaus, J.-G., Hill, P. M. and King, A. M. (1998) Termination of logic programs with block

declarations running in several modes. In: C. Palamidessi (ed.), Proceedings of the 10th

Symposium on Programming Language Implementations and Logic Programming: Lecture

Notes in Computer Science, Springer-Verlag, Berlin.

Smaus, J.-G., Hill, P. M. and King, A. M. (1999) Preventing instantiation errors and loops for
logic programs with multiple modes using block declarations. In: P. Flener (ed.), Proceedings

of the 8th International Workshop on Logic-based Program Synthesis and Transformation:

Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 289–307.

Somogyi, Z., Henderson, F. and Conway, T. (1996) The execution algorithm of Mercury,
an efficient purely declarative logic programming language. J. Logic Programming, 29(1–3),
17–64

Sterling, L. and Shapiro, E. (1986) The Art of Prolog. MIT Press.

