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Abstract: (1) Background: Vascular tissue seems to adapt towards stable homeostatic mechanical
conditions, however, failure of reaching homeostasis may result in pathologies. Current vascular
tissue adaptation models use many ad hoc assumptions, the implications of which are far from being
fully understood; (2) Methods: The present study investigates the plausibility of different growth
kinematics in modeling Abdominal Aortic Aneurysm (AAA) evolution in time. A structurally
motivated constitutive description for the vessel wall is coupled to multi-constituent tissue
growth descriptions; Constituent deposition preserved either the constituent’s density or its
volume, and Isotropic Volume Growth (IVG), in-Plane Volume Growth (PVG), in-Thickness Volume
Growth (TVG) and No Volume Growth (NVG) describe the kinematics of the growing vessel wall.
The sensitivity of key modeling parameters is explored, and predictions are assessed for their
plausibility; (3) Results: AAA development based on TVG and NVG kinematics provided not
only quantitatively, but also qualitatively different results compared to IVG and PVG kinematics.
Specifically, for IVG and PVG kinematics, increasing collagen mass production accelerated AAA
expansion which seems counterintuitive. In addition, TVG and NVG kinematics showed less
sensitivity to the initial constituent volume fractions, than predictions based on IVG and PVG;
(4) Conclusions: The choice of tissue growth kinematics is of crucial importance when modeling AAA
growth. Much more interdisciplinary experimental work is required to develop and validate vascular
tissue adaption models, before such models can be of any practical use.
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1. Introduction

Soft tissue adaption (also called soft tissue growth and remodeling) is inherent to many biological
processes and is driven by continuous turnover of the tissue’s cells and Extra Cellular Matrix (ECM)
constituents. These mechanisms allows organs to not only change their shape, the alteration of tissue
microstructure also enables changes to their (mechanical) properties. Most interestingly, external
mechanical stimuli influence cell function at the level of gene expression and thereby contribute to
the overall control of soft tissue adaptation. Soft biological tissues seem to adapt towards stable
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homeostatic mechanical conditions and failure of reaching homeostasis may result in pathologies.
For example, tumor growth, atherosclerosis, aneurysm disease, dilated cardiomyopathy and fibrosis
are examples of pathologies associated with maladaptive soft tissue adaption. Models capable of
predicting tissue adaption would not only be of considerable scientific interest, but would also have
a large number of practical applications. Consequently, the mechanics-related aspects of soft tissue
adaptation have attracted increasing research attention and comprehensive review articles are available
in the literature [1–7].

The biomechanical characteristics of the passive vascular wall are predominantly determined by
the ECM structural proteins collagen and elastin. Collagen provides the tissue with stiffness, strength
and toughness, and is continuously turned over with a typical half-life in the range of several weeks
to months. The maintenance of the collagen structure relies on a delicate (coupled) balance between
degradation, mainly through Matrix MetalloProteinases (MMPs), and synthesis by cells like Smooth
Muscle Cells (SMC), fibroblasts and myofibroblasts [8]. Such cells are anchored to collagen fibers
and respond to mechanical strain or stress by adjusting their expression and synthesis of collagen
molecules [9,10]. Mechanical stimulus not only promotes collagen synthesis [11], it also provides
protection from collagen degradation [12,13]. Elastin functions in partnership with collagen, and
endows vascular tissue with elasticity. Elastin synthesis normally ceases soon after puberty once the
body reaches maturity. While elastin is extremely insoluble and stable with half-life times in the order
of tens of years [14], it may be degraded by selective MMPs (collectively called elastase), a mechanism
important for many physiological processes like elastogenesis and repair [15].

Vascular tissue is at a state of continuous mass turnover, which causes growth and remodeling at
a local tissue level. Specifically, growth changes the tissue’s stress-free configuration, while remodeling
alters the tissue mechanical properties through modifying its internal structure. The Kinematics-based
Adaptation (KA) and the Constrained Mixture Model-based Adaptation (CMMA) are the two most
commonly used frameworks to model such phenomena.

Similar to elasto-plastic kinematics [16], KA hypothesizes that the adapting vascular tissue can
be described by multiplicative decomposition of the total deformation [17,18]. Here, the deformation
gradient Fg(τ) entirely specifies growth kinematics by introducing a stress-free intermediate
configuration, with respect to which the deformation gradient Fe(t) records all non-growth-related
deformations. The two distinct time scales, τ and t, are related to tissue growth (mass turnover) and
external mechanical loading, respectively. The tissue can be regarded as a single-phase continuum or
as a multi-phase mixture of tissue constituents. Pioneering models of the soft tissue growth related
the local stress or strain states to the volume change of the tissue [18,19], an approach that has been
frequently pursued in the literature [20,21].

While KA gives physically reasonable results, it fails to explicitly describe the continuous
production and degradation of vascular tissue constituents. In contrast, CMMA focuses on
stress-mediated mass production and removal, not kinematics. Each relevant tissue constituent
is considered to be in continuous turnover at a specific density rate, i.e., mass per current volume per
time. Such an approach a priori considers different constituents, like elastin and collagen, that turnover
at different rates in the vessel wall. To date, several versions and applications of this idea have been
reported in the literature [22–24]. CMMA has been linked with the theory of volumetric growth [18]
in order to cope with 3D problems [25], additionally to the microstructural description of collagen
fiber orientation [26]. Most interestingly, the recently developed homogenized CMMA [27] used
KA kinematics concept and reported very similar predictions than the original CMMA. This key
observation indicates that the simpler KA is indeed able to capture the overall consequences of the
continuous production and degradation of tissue constituents.

In order to close a 3D adaption model, both theories KA and CMMA require to specify how tissue
volume change is turned into growth deformation, i.e., how a scalar quantity maps into a second-order
tensor. Due to lack of experimental information, this step requires making assumptions about the
underlying growth kinematics. Most commonly, isotropic volumetric growth is assumed [3,28–30],
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probably because of its simplicity and rather straightforward implementation. However, unrealistic
model predictions have been reported when assuming isotropic volume growth [29].

Blood vessels are hollow organs and most collagen fibers in the vessel wall are distributed
tangentially around the lumen [31–35]. Consequently, newly synthesized collagen is clearly not
isotropically added to the vessel wall, which in turn motivates anisotropic growth kinematics to
describe the adapting vessel wall. Anisotropic growth kinematics are uniquely determined by
eigenvalues and eigenvectors of the growth-related deformation, and the literature reports different
such particularizations. Approaches propose transverse isotropic [36,37], general orthotropic [38] and
principal stress-driven [20] growth kinematics. Most importantly, the predictions of a recent arterial
remodeling study [39] reported high sensitivity with respect to the selected growth kinematics.

In conclusion, the scarcity of relevant experiment data restrains from a sound understanding of
vascular tissue adaption. While experimental studies remain technically challenging, biomechanical
modeling may help testing different mechanics-dominated hypotheses of vascular tissue adaption.
The present work used biomechanics simulation to explore the influence of different growth
kinematics on the outcome of Abdominal Aortic Aneurysm (AAA) growth predictions. AAA is
a cardiovascular pathology characterized by the localized enlargement of the aorta at its infrarenal
segment. Significant enlargement may lead to subsequent rupture, which can have major consequences
for the patient, causing death or severe disability. AAA growth is not homogenous [40,41] and depends
on many factors [42–44], such that predicting AAA development in individual patients could usefully
complement clinical decision making. In addition, a reliable AAA growth model may help to explore
the interaction of tissue growth mechanisms towards designing therapeutic drugs that could stabilize
AAA growth. For the present study we further developed a previously proposed constitutive model
for volumetric growth [30,45], enabling anisotropic growth kinematics and systematically explored
AAA growth predictions with respect to prescribed growth kinematics as well as some baseline vessel
wall properties.

2. Methods

The artery is modeled as a cylindrical structure formed by medial and adventitial layers.
The media is composed by elastin, ground matrix and two helically arranged families of collagen fibers.
The adventitia is composed by ground matrix and another two helically arranged families of collagen
fibers. The ground matrix collectively represents the mechanical properties of passive SMC, and all
ECM constituents other than elastin and collagen. The time is separated into a short time scale t of
seconds, and a long time scale, τ of weeks, related to the cardiac cycle time and the time needed for
vascular tissue adaption, respectively. At the time scale t the tissue is considered quasi-incompressible.

2.1. Mixture Theory

Vascular tissue is modeled as a constrained mixture at affine deformation. Consequently, all tissue
constituents (ground matrix, elastin and collagen) are simultaneously present at a material point and
follow the deformation of the continuum. In addition, the sum of changes in individual constituent’s
mass and volume sum up to the total change of tissue mass and volume.

Due to the lack of experimental evidence, the kinematics by which tissue constituents are added
and removed from arterial tissue are unclear. In the present study, two extremal cases are investigated,
Constant Constituent Density (CCD) and Constant Constituent Volume (CCV) [30], respectively.
CCD adds/removes constituent’s mass without changing its density, whereas CCV adds/removes
constituent’s mass without changing its volume, see Figure 1a,b.
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Figure 1. Illustration of different scenarios for adding mass to individual constituents and a mixture
of two constituents. (a) Constituent 1, constant density (CCD): adding the mass dm1 of the volume
dV1 to the initial mass m1(0) of the volume V1(0) results in increased mass m1 + dm1 and volume
V1 + dV1. However, the density $1(τ) = $1(0) remains constant; (b) Constituent 2, constant volume
(CCV): adding the mass dm2 of the density $2(τ) = $2(0) to the initial mass m2(0) of density $2(0)
results in increased mass m2 + dm2 but unchanged volume V2(τ) = V2(0). Hence, the density $2(τ) =

$2(0) + d$2 increases; (c) Mixture of Constituent 1 (following CCD) and Constituent 2 (following CCV):
The tissue of mass m and volume V is composed of Constituent 1 (m1, V1) and Constituent 2 (m2, V2).
The mass increments dm1, dm2 of volumes dV1, dV2 are added to each constituent. This results in
increased masses of both constituents, increased volume of Constituent 1 and unchanged volume of
Constituent 2. Over all the mass m + dm and the volume V + dV of the mixture have been changed.

2.1.1. Deposition at Constant Constituent Density (CCD)

Figure 1a illustrates CCD-based deposition of constituent mass. At time τ = 0, Constituent 1
(collagen for example) has mass m1(0), volume V1(0) and density $1(0). Subsequently, at time τ,
a mass dm1 of volume dV1 and density $1(0) is added. As a result, the mass and the volume at the
current time τ increase to m1(τ) = m1(0) + dm1 and V1(τ) = V1(0) + dV1, respectively. In contrast,
the density remains constant at $1(0) = $1(τ). CCD-based deposition defines the normalized changes
of volume v̂1 = V1(τ)/V1(0), mass m̂1 = m1(τ)/m1(0) and density $̂1 = $1(τ)/$1(0) ≡ 1.

2.1.2. Deposition at Constant Constituent Volume (CCV)

Figure 1b illustrates CCV-based deposition of constituent mass. Constituent 2 (elastin for example)
with mass m2(0), volume V2(0) and density $2(0) accommodates the additional mass dm2 of the
same density $2(0). As a result, the mass increases to m2(τ) = m2(0) + dm2 while the volume
V2(τ) = V2(0) remains constant. This leads to increased constituent density $2(τ) = $2(0) + d$2.
Hence for CCV-based deposition, the normalized changes of mass and density are m̂2 = m2(τ)/m2(0)
and $̂2 = $2(τ)/$2(0), respectively. Given that the volume remains constant, the normalised volume
v̂2 = V2(τ)/V2(0) ≡ 1,

2.1.3. Mixed Deposition

Different constituents may be differently integrated in the vascular wall. For example, collagen
may follow CCD-based deposition, and elastin may follow CCV-based deposition. This is illustrated
in Figure 1c. Here, two constituents ζ = 1, 2 are considered, with Constituent 1 being CCD-based
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and Constituent 2 being CCV-based deposited. At time τ = 0, the tissue has mass m(0), volume V(0)
and density ρ(0). It is composed of two constituents, each of which has mass mζ(0), volume Vζ(0)
and initial volume fractions φζ(0) = Vζ(0)/V(0). In addition to the constituent densities $ζ(0), partial
densities ρζ(0) = mζ(0)/V(0) are defined with respect to the tissue’s volume V(0). Then, the mass
dmζ with the volume dVζ and the density $ζ(0) is added to each constituent. At time τ, the mass,
volume, and density of the individual constituents are changed as described above, while the change
of partial densities of constituents is ρ̂ζ(τ) = ρζ(τ)/ρζ(0).

The tissue’s volume change is now computed using the volume changes of constituents and their
initial volume fractions, v̂(τ) = ∑N

ζ=1 v̂ζ(τ)φζ(0). Taking into account that v̂(τ) ≡ m̂ζ(τ) holds for a
constituent following CCD, while v̂(τ) ≡ 1 holds for a constituent following CCV, the normalized
change of volume of a multi-constituent tissue is given as

v̂(τ) =
N

∑
ζ=1

v̂ζ(τ)φζ(0) = ∑
ζ∈CCD

m̂ζ(τ)φζ(0) + ∑
ζ∈CCV

φζ(0). (1)

Such defined normalized tissue volume change v̂ specifies the growth kinematics according to
Section 2.2. Likewise, the normalized mass changes m̂ζ and the partial density changes ρ̂ζ of individual
constituents ζ are used to connect tissue adaptation to its elastic response.

2.2. Kinematics

Adaptation-related and elastic deformations of the artery are associated with different time scales
denoted τ and t, respectively. As shown in Figure 2, the two time scales can be separated by the
multiplicative decomposition of the deformation gradient F(τ, t) = Fe (t) Fg (τ), where the volumetric
growth tensor Fg (τ) accommodates the change of volume (det Fg = det F = v̂(τ)), while the elastic
deformation gradient Fe (t) is restricted to nearly incompressible elastic deformation, i.e., det Fe → 1.

Fg(τ) Fe(t)

F(τ, t)

Ω0

a01

a02

Φ

Ωg

a01

a02

Φ

Ωτ

ā1

ā2

ϕ

Figure 2. Kinematics of growth. Deformation gradient F(τ, t) maps reference configuration Ω0 to
the current configuration Ωτ . The growth tensor Fg(τ) (with det Fg = det F = v̂) connects reference
configuration Ω0 to the intermediate stress-free configuration Ωg, which accounts for the volume
change at the long time-scale τ. Then, the elastic deformation tensor Fe(t) connects Ωg to the current
configuration Ωτ . That is, the total deformation gradient F(τ) is split into volumetric growth part Fg

and elastic part Fe.

The tissue volume change v̂(τ) is given by the sum of the volume changes of all tissue constituents
according to Equation (1). Due to limited experimental data regarding the kinematics of vascular tissue
adaption, idealized growth kinematics are introduced in Section 2.2.3.
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2.2.1. Quasi-Incompressible Elastic Response

The elastic deformation gradient Fe (t) is further split into volumetric and isochoric parts, Fe (t) =
(Je)1/3F with Je = detFe and detF = 1. According to the volumetric-isochoric split, the elastic right
and left Cauchy-Green strains are Ce = FeTFe = (Je)2/3C and be = FeFeT = (Je)2/3b, with the three

strain invariants Ī1 = trC = trb, Ī2 = trC−1
= trb

−1
and Ī3 = det C ≡ 1. In order to achieve an

incompressible elastic deformation, the bulk modulus of the vessel wall tissue becomes a penalty
parameter, such that Je → 1.

2.2.2. Collagen Structure and Reference Configuration

As illustrated in Figure 2, collagen is assumed to be arranged into two fiber families of referential
directions a0i, i = 1, 2. For brevity, the index i is neglected in the following. The referential collagen
structure is represented by a structural tensor A0 = a0 ⊗ a0 with the symbol ⊗ denoting the dyadic
vector product. This allows for the introduction of an additional isochoric invariant Ī4 = C : A0 = λ̄2

0,
where λ̄0 yields the isochoric tissue stretch along the reference direction a0. Finally, with the isochoric
spatial fiber direction a = Fa0, the spatial collagen structure is represented by the spatial structural
tensor A = a⊗ a = Fa0 ⊗ Fa0 = C : (a0 ⊗ a0) = C : A0.

The natural reference configurations of collagen fibers and the surrounding tissue may be different,
and this mismatch is represented by an isochoric recruitment stretch variable λ̄r > 0 [46]. This variable
determines the tissue stretch in the direction ā, at which the collagen fiber starts to bear load, i.e., starts
to store elastic energy. In addition, collagen fibers are thought to have neither compressive nor bending
stiffness, such that with λ̄2

c = Ī4c and Ī4r = λ̄2
r , the square of collagen fiber stretch

Ī4c = max
[

Ī4

Ī4r
, 1
]

(2)

is sufficient to represent the fibers’s strain state. Recruitment stretch λ̄r adaption in response to
alterations of strain variables is detailed in Section 2.3.2.

2.2.3. Growth Tensor description

With the two collagen fiber families spanning the tangential plane (see Figure 2) with the unit
normal n = a01 × a02, the general form of transversely anisotropic growth yields

Fg = αI + βn⊗ n (3)

where I denotes the second order identity tensor. The parameters α and β control growth kinematics
and are constrained by the normalized volume change (v̂) such that det Fg = v̂ holds.

The case of Isotropic Volume Growth (IVG) is obtained through α = v̂1/3, β = 0 and thus

Fg = v̂1/3I (4)

yields IVG-growth deformation. Alternatively, setting α = v̂1/2 and β = 1 − v̂1/2 we have the
case of in-Plane Volume Growth (PVG), where new volume is deposited only within the tangential
plane. Hence

Fg = v̂1/2I + (1− v̂1/2)n⊗ n , (5)

gives PVG-growth deformation.
Lastly, specifying α = 1, β = v̂− 1 gives the special case of in-Thickness Volume Growth (TVG),

where new volume is deposited perpendicular to the tangential plane and thus

Fg = I + (v̂− 1)n⊗ n. (6)

describes TVG-growth deformation.
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2.2.4. Implication of Growth Kinematics on the Equi-Biaxial Tissue Properties

In order to explore how different growth kinematics may influence the elastic properties of the
vessel wall, we consider a vessel wall patch of referential dimensions L× L× H subject to equi-biaxial
deformation. For this example, the total deformation reads F = diag [λ, λ, λ3], and Fe = F (Fg)−1

defines the elastic deformation of the vessel wall patch. Using the growth kinematics detailed in
Section 2.2.3, i.e., Equations (4)–(6), the elastic deformations yield

Fe = v̂−1/3diag [λ, λ, λ3] , Fe = diag
[
v̂−1/2λ, v̂−1/2λ, λ3

]
, Fe = diag

[
λ, λ, v̂−1λ3

]
, (7)

for IVG, PVG and TVG kinematics, respectively.
In addition to the kinematics, the tissue’s constitution needs to be specified. Here, for simplicity,

the vessel wall is considered to be a neo-Hookean material. Consequently, the Cauchy stress reads

σ = −phI + ρ̂µCe, (8)

with µ being the tissue’s referential stiffness, and ph denoting the hydrostatic pressure to enforce
incompressibility. Due to mechanical equilibrium, the force F0 acting on the tissue patch determines
the Cauchy σ = F0/(λLλ3H)(I − e3 ⊗ e3), where e3 denotes the out-of-plane direction. Finally,
Equation (8) can be given for different growth models, and the equibiaxial stretch λ can be derived from

P = ρ̂v̂1/3µ(λ− v̂2λ−5) , P = ρ̂µ(λ− v̂3λ−5) , P = ρ̂v̂µ(λ− λ−5) = m̂µ(λ− λ−5) , (9)

for IVG, PVG and TVG kinematics, respectively. Here, P = F0/LH denotes the first Piola-Kirchhoff
stress in the wall, and it is worth noting that for TVG, the product of the normalized changes of the
density ρ̂ and the volume v̂ yield the normalized mass change m̂ = ρ̂v̂.

Figure 3 illustrates the implication of the different cases for growth kinematics on the mechanical
properties of the vessel patch under equi-biaxial extension. PVG affects the edge length of the patch
in stress-free configuration, which in turn affects mostly the material response at biaxial stretches
smaller than λ = 2. At large stretches λ, the material response is not influenced by the volume change,
see Figure 3b. Conversely, TVG does not affect the edge length of the patch, and only the slope of the
curves in Figure 3c is affected by the volume change. Finally, IVG exhibits mixed behavior, modifying
both, the stress-free edge length of the patch as well as the slope of the curves for large λ, see Figure 3a.
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(c) TVG

0 1 2 3
Biaxial stretch λ

0

0.5

1

1.5

2

2.5

3

N
o
n
-d
im

e
n
s
io
n
a
li
z
e
d
s
t
r
e
s
s
P
/
µ v̂ = 0.5

v̂ = 1.0
v̂ = 1.5

Figure 3. Effect of Isotropic Volume Growth (IVG), in-Plane Volume Growth (PVG), and in-Thickness
Volume Growth (TVG) kinematics on the stress-stretch properties of the neo-Hookean material under
equi-biaxial extension. First Piola-Kirchoff Stress (P) versus stretch (λ) is depicted for constant v̂ = 1.0
(solid curves), decreasing v̂ = 0.5 (dashed curves), and increasing v̂ = 1.5 (dash-dotted curves)
tissue volumes.

2.3. Constitutive Modeling of Vascular Tissue

2.3.1. Elastic Properties

Vascular tissue is modeled as a quasi-incompressible material and an additive split of the
strain-energy function

Ψ = U(Je(t)) + Ψ( Ī1, Ī4ci), (10)

into its volumetric and isochoric parts is followed. Here, U(Je(t)) = µκ [Je(t)− 1]2 /2 is a
penalty energy that enforces quasi-incompressibility, where the artificial bulk modulus µκ serves
as penalty parameter.

The isochoric strain energy Ψ is modeled as the sum of the strain energies of the individual
constituents, i.e.,

Ψ = ρ̂eΨe ( Ī1) + ρ̂gΨg ( Ī1) + ∑
i=1,2

ρ̂ciΨci ( Ī4ci) (11)

where Ψe, Ψg and Ψci denote the strain energies of elastin, ground matrix and the i−th family of
collagen fibers, and ρ̂e, ρ̂g and ρ̂ci are the corresponding normalized partial densities. These normalized
densities are specified by the growth of the individual vessel wall constituents according to Section 2.1.
Due to negligible amount of elastin in the adventitia, we set ρ̂e = 0 in this vessel layer.

The neo-Hookean strain energy

Ψζ =
µζ

2
( Ī1 − 3) , ζ = e, g (12)

is used to capture the isotropic responses of elastin and ground substance, where µe and µg denote
their referential stiffnesses, respectively.

Following [46], the elastic response of the i−the family of collagen fibers is modeled by an
exponential strain energy [47] relative to the configuration the fibres are recruited to load bearing

Ψci =
k1

2k2

{
exp

[
k2 ( Ī4ci − 1)2

]
− 1
}

, i = 1, 2, (13)

where I4c denotes the square of the collagen fibre stretch (see Equation (2)) and k1, k2 are the
material parameters.
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The second Piola-Kirchhoff tensor Se = 2∂Ψ/∂Ce is defined at the intermediate configuration Ωg,
and reads with the use of the strain energy Equation (11) and the chain rule,

Se = Je ph(C
e)−1 + 2(Je)−2/3

{[
ρ̂eΨe,1 + ρ̂gΨg,1

]
Dev (I) + ∑

i=1,2
ρ̂ciΨci,4Dev (A0,i)

}
, (14)

where Dev (•) = (•)− (1/3) [(•) : Ce] (Ce)−1 is the material deviatoric operator, and ph = ∂U/∂Je =

µκ (Je − 1). Equation (14) introduced the stress factors

Ψζ,1 =
∂Ψζ

∂ Ī1
=

µζ

2
, ζ = e, g ; Ψci,4 =

∂Ψci
∂ Ī4i

= k1 Ī−1
4ri ( Ī4ci − 1) exp

[
k2 ( Ī4ci − 1)2

]
, (15)

defined through the partial derivatives of Equations (12) and (13), respectively.
Finally, the Cauchy stress of the vessel wall is defined by a push-forward operation of the second

Piola-Kirchhoff tensor (14), i.e., σ = (Je)−1FeSeFeT. Thus,

σ = phI + 2(Je)−1

{[
ρ̂eΨe,1 + ρ̂gΨg,1

]
dev

(
b̄
)
+ ∑

i=1,2
ρ̂ciΨci,4dev

(
Ai
)}

, (16)

where dev (•) = (•)− (1/3) [(•) : I] I denotes the spatial deviator operator.

2.3.2. Collagen Turnover Modeling

The collagen fabric of arterial walls is continuously remodeled through cell-based synthesis and
MMP-based degradation [8], at a half-life time of approximately two months. In order to maintain
the structural integrity of the vessel wall, newly formed collagen fibers are deposited (or integrated)
at a certain attachment stretch λ̄a, a quantity also denoted as deposition stretch or pre-stretch [46].
The stretch difference between collagen that is already in the vessel wall λ̄c and collagen that is
deposited λ̄a, is thought to be sensed by cells and stimulates collagen turnover. Specifically, the state
of collagen is thought to develop in response to the stretch-based stimulus

ξ =
Ī4c − Ī4a

Ī4a − 1
(17)

with Ī4a = λ̄2
a and Ī4c = λ̄2

c . At homeostasis, collagen is deposited at the same stretch as collagen that
is already in the vessel wall, i.e., Ī4c − Ī4a = 0, and the stimulus tends to zero ξ → 0.

The stretch-based stimulus ξ determines the development of collagen’s recruitment stretch λ̄r as
well as its normalized mass m̂c. Specifically, these state variables change with respect to the remodeling
time scale τ, and follow the rate equations

∂λ̄r

∂τ
= αξ ;

∂m̂c

∂τ
= βm̂cξ , (18)

were, α and β are rate constants related to changes of collagen recruitment stretch and mass, respectively.
The material parameters k1, k2 of collagen, as well as the collagen fiber orientation a0 are kept constant
over time.

2.3.3. Elastin Degradation

Aneurysm development is associated with up to 90% loss of elastin [48], the exact cause of which
is not fully understood. While the initial elastin degradation might be caused by non-physiological
hemodynamic conditions like low levels of Wall Shear Stress (WSS), or any type of vessel wall injury,
degradation may be accelerated by the existence of Intra-Luminal Thrombus (ILT). The ILT is a blood
clot that forms inside most AAAs [49]. The different causes and mechanisms of elastin degradation
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are likely coupled. For simplicity, such coupling effects are neglected, and the isolated effect of
growth kinematics on AAA expansion is investigated in this work. To this end, elastin degradation is
prescribed by a simple exponential decay function m̂e = m̂e(X, τ), see Section 2.4.

2.4. Axisymmetric Aorta Model

A cylindrical infrarenal aorta segment of length L is used to predict AAA onset and progression.
Axisymmetry as well as distal-proximal symmetry are assumed, and one-eighth of the infrarenal
aorta segment was modeled. The segment is composed of medial and adventitial layers, and the
finite element mesh consists of 1920 elements: 30 elements in axial direction, 8 in circumferential
direction, and 4 through the thickness of each vessel wall layer. The simulation workflow is divided
into two phases.

In the first phase, the infrarenal aorta is exposed to a fixed axial pre-stretch λz and inflated at an
internal pressure pi. Then collagen turns over at fixed mass until homeostatic conditions are reached,
i.e., the recruitment stretch develops according to Equation (18)1 until λc is spatially uniform and equal
to the attachment stretch λa.

In the second phase, boundary and loading conditions remain unchanged, remodeling time is set
to τ = 0, and the aneurysm starts to develop. To this end, elastin mass is prescribed by

m̂e(z, τ) = 1−
(

1− cτ/T
min

)
exp

[
−m1 (2z/L− 1)2

]
, (19)

where z is the axial Lagrangian coordinate. Specifically, elastin degradation is prescribed such that
the amount cmin of elastin remains left after the time τ = T in the center of the vessel, i.e., at z = L/2.
In addition, the elastin degradation profile is controlled by the parameter m1, and such defined profile
has been previously used [46].

In response to altered elastin mass, collagen adapts following Equations (18), and Equation (1)
defines the corresponding normalized volume changes. Finally, displacement and strain are computed
by solving the quasi-static Cauchy equation of motion divσ = 0 with div(•) denoting the divergence
operator. Then, the time is incremented τ ⇐ τ + ∆τ and the procedure repeated.

2.5. Parameter Study

The parameter study investigates the sensitivity of model predictions with respect to key model
parameters. Predictions are compared to baseline results that are obtained with model parameters
listed in Table 1. These parameters have either been used previously in the literature, and/or they were
set to plausible values. In addition to the growth kinematics described in Section 2.2.3, i.e., IVG, PVG,
and TVG, an isochoric case, denoted as No Volume Growth (NVG), was used to fully explore AAA
growth results. For NVG, elastin and collagen depositions followed CCV mixture model, introduced
in Section 2.1. For the other growth kinematics, elastin or collagen followed the study-dependent
mixture models detailed below.

Table 1. Reference set of parameters to model Abdominal Aortic Aneurysm (AAA) expansion.

Reference Geometry and Loading Value

Inner radius Ri 8.4 (mm)
Artery length L 147.4 (mm)
Media-intima thickness HM 1.18 (mm)
Adventitia thickness HA 0.59 (mm)
Inner pressure pi 16 (kPa)
Axial pre-stretch λz 1.2
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Table 1. Cont.

Material Model Media Adventitia

Elastin shear modulus µe 133.81 (kPa) 0 (kPa)
Elastin initial volume fraction φe 0.12 0
Ground matrix shear modulus µg 33.45 (kPa) 33.45 (kPa)

Ground matrix initial volume fraction φg 0.73 0.86
Collagen parameter kc1 3.52 (kPa) 3.52 (kPa)
Collagen parameter kc2 40 40

Collagen family initial volume fraction φi
c 0.075 0.075

Fictitious bulk modulus κ 100 (MPa) 100 (MPa)

Aneurysm growth Equation Value

Collagen remodeling rate α Equation (18)1 0.6 (year−1)
Collagen net growth rate β Equation (18)2 1.0 (year−1)

Collagen attachment stretch λa Equation (17) 1.093
Initial value collagen recruitment stretch λrec Equation (18)1 1.13

Target amount of elastin cmin Equation (19) 0.6
Degradation time T Equation (19) 10 (years)
Shape parameter m1 Equation (19) 20

2.5.1. Study 1: Influence of Collagen Net Growth

Collagen and elastin deposition followed CCD and CCV mixture model, respectively.
Model sensitivity to the collagen net growth parameter β = {0.75, 1.00, 1.25} (year−1) is tested and
compared to baseline prediction.

2.5.2. Study 2: Influence of Initial Volume Fractions

For the different growth kinematics, the influence of the initial volume fractions of elastin and
collagen is investigated. The deposition of questioned constituent (elastin or collagen) followed
CCD mixture model, while others followed CCV. Specifically, model sensitivity to the initial volume
fractions of elastin of φe = {0.12, 0.18} and collagen of φc = {0.075, 0.15} is tested and compared to
baseline prediction.

3. Results

Figure 4 illustrates the predicted AAA shapes, starting with normal aorta at homeostasis (a).
At this configuration, the maximum inner diameter is di = d0 = 23 (mm) and the wall thickness
h0 = 0.98 (mm). The maximum inner diameter di is measured between points A′ and A shown in
Figure 4. Along with the collagen adaptation, the aneurysm diameter and the sac length increased
simultaneously over time, see Figure 4b–d. The longitudinal aneurysm growth compressed the
non-aneurysmal aorta segment, which finally folded and buckled, see Figure 4d. The simulation was
terminated as soon as the finite elements in the folded region became highly distorted.

3.1. Study 1: Influence of Collagen Net Growth

Figure 5 shows the influence of the collagen net growth parameter β on AAA development.
The diagrams present quantities at the most expanded location, i.e., at the point A denoted in Figure 4.
Figure 5a illustrates the normalized maximum diameter d̂i(τ) = di(τ)/d0, and Figure 5b shows
the absolute growth rate, i.e., how much the maximum diameter changes per year. It is noted that
both parameters are used for clinical decision making, i.e., indication whether AAA repair should
be performed in an individual patient. Elective AAA repair is typically indicated if the maximum
diameter is larger than 55.0 (mm) [50], or if it grows faster than 10.0 (mm/year) [51]. These thresholds
are denoted by dotted lines in Figure 5a,b.
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d0 = 23mm max(di) = 2d0 max(di) = 3d0 max(di) = 4d0

(a) (b) (c) (d)

A′ A A′ A AA′ AA′

Figure 4. Predicted shapes during Abdominal Aortic Aneurysm (AAA) expansion. (a) Normal aorta at
homeostasis with inner diameter d0 = 23.0 (mm); Configurations (b–d) show AAAs at maximum inner
diameters of 2d0, 3d0, and 4d0, respectively.

Predictions following NVG and TVG kinematics show practically the same results.
AAA expansion slows down and the aneurysm reaches the same diameter later in time for increasing
collagen production, i.e., for increased β parameters. However, IVG and PVG kinematics showed the
opposite (and counterintuitive) behavior: AAA expansion accelerated for increasing β parameters.

After five to seven years of growth, predictions based on IVG and PVG kinematics reached AAA
repair indications. For TVG and NVG kinematics, only the case β = 0.75 (year−1) reach AAA repair
indication after about 9.5 years.

Figure 5c shows the evolution of the collagen stretch λc over time and at the site of the maximum
diameter. For NVG and TVG kinematics, the results were very similar, both quantitatively and
qualitatively. An increased β led to less stretched collagen in the wall. In contrast, PVG kinematics
showed the counterintuitive result: an increased β caused higher stretched collagen in the vessel wall.

The collagen mass change m̂c (see Figure 5d) and the local tissue volume change v̂ (see Figure 5e)
were consistently higher for increasing values of β, independently from the prescribed growth
kinematics. Similar trends are observed in Figure 5f, showing the evolution of the total vessel volume
change relative to the volume of the aorta at homeostasis. Despite rather high local volume growth
values (up to 300%), the total vessel volume changed only up to 40%.

Figure 6 shows the effect of the different growth models at twofold diameter expansion, observed
at the site of the largest diameter. The results have been derived with the collagen net growth
parameter of β = 1.25 (year−1). Figure 6a shows the transmural variation of the collagen stretch λc.
The stretch values are slightly elevated towards the lumen, and show highest gradients for TVG and
NVG kinematics. Collagen stretch is highest for PVG, slightly lower for IVG, and lowest for TVG
and NVG.

Figure 6b presents the transmural variation of the normalized tissue volume change v̂. Here,
an inverted response is observed when compared to the collagen stretch plots. The largest volume
change was observed for TVG kinematics, and prescribing PVG resulted in the lowest volume change.
In addition, volume change exhibited steeper transmural gradients than the transmural variations of
collagen stretch, compare Figure 6a,b.

Finally, Figure 6c presents the transmural changes of the Cauchy hoop stress, and Figure 6d,
the variation of vessel wall thickness along the vessel length. Stress and wall thickness are
inversely correlated, and highest and lowest stress values are observed for NVG and TVG
kinematics, respectively.
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Figure 5. Effect of collagen net growth (parameter β) on the predicted Abdominal Aortic Aneurysm
(AAA) expansion over time τ. Isotropic Volume Growth (IVG), in-Plane Volume Growth (PVG),
in-Thickness Volume Growth (TVG) and No Volume Growth (NVG) describe growth kinematics.
(a) AAA expansion d̂i = di/d0; (b) AAA growth per year; (c) collagen stretch λc; (d) collagen mass
change m̂c; and (e) local tissue volume change v̂ at the site of the maximum diameter di; (f) Total tissue
volume change over time. Clinically used AAA repair indication of 55.0 (mm) and 10.0 (mm/year) is
shown by the dotted line in (a) and (b), respectively.
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Figure 6. Predicted Abdominal Aortic Aneurysm (AAA) properties at twofold expansion, di/d0 = 2.
Collagen growth is specified by β = 1.25 (year−1), and Isotropic Volume Growth (IVG), in-Plane
Volume Growth (PVG), in-Thickness Volume Growth (TVG) and No Volume Growth (NVG) describe
growth kinematics. Transmural plots are shown for (a) collagen stretch λc; (b) local tissue volume
change v̂; (c) Cauchy hoop stress σϕϕ; (d) Vessel wall thickness, normalized to the thickness h0 of aorta
at homeostasis, along AAA length.

3.2. Study 2: Influence of Initial Volume Fractions

Figure 7a shows the effect of the different elastin growth (degradation) kinematics upon AAA
development in time (solid curves, φe = 0.12). Elastin degradation following TVG kinematics resulted
in the fastest AAA expansion, closely followed by NVG kinematics. IVG and PVG kinematics predicted
slightly slower aneurysm expansion over time. Similar effects were observed in the tissue patch model
shown in Figure 3.

The dashed curves in Figure 7a illustrate AAA expansion at the increased initial elastin volume
fraction of φe = 0.18. For PVG, IVG and NVG kinematics, an increased φe resulted in slower
AAA expansion, with the most pronounced effect seen for PVG. Interestingly, for TVG kinematics,
an increased φe had no apparent effect on AAA expansion.

Figure 7b shows AAA expansion for initial collagen volume fractions of φi
c = {0.075, 0.15}

prescribed in the medial vessel layer. For IVG and PVG kinematics, an increased φc led to faster
aneurysm growth, while TVG and NVG kinematics showed the opposite. Similar qualitative effects,
with significantly lower magnitudes, were observed when changing the initial collagen volume fraction
in the adventitia.
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Figure 7. Effect of the initial volume fraction of elastin (a) and collagen (b) on the evolution of
Abdominal Aortic Aneurysm (AAA) diameter d̂i = (di)/d0 over time τ. Isotropic Volume Growth
(IVG), in-Plane Volume Growth (IVP), in-Thickness Volume Growth (TVG) and No Volume Growth
(NVG) describe growth kinematics. (a) AAA expansion with initial elastin volume fractions of φe = 0.12
(solid curves) and φe = 0.18 (solid curves with circles); (b) AAA expansion with initial collagen volume
fractions of φi

c = 0.075 (solid curves) and φi
c = 0.15 (solid curves with circles) prescribed in the media.

4. Discussion

The literature reports numerous biomechanical frameworks to model vascular tissue adaptation,
each of which uses ad hoc assumptions, and much more development is needed before such models
can be of any practical use. Relevant experiment data is scarce, such that parameter studies, like the
present one, can provide valuable information to guide model development, but may also help to
design experiments to explore the response of vascular tissue to mechanical loads.

By prescribing different types of anisotropic volume growth kinematics, we highlighted their
severe influence on predicting AAA evolution. Previous membrane implementations of isochoric
growth (NVG kinematics) yielded the expected result, i.e., that an increased collagen net production
decreased AAA growth, see for example [52]. For TVG kinematics, i.e., where new volume is deposited
perpendicular to the tangential plane, our study showed very similar results. Conversely, IVG
kinematics (isotropic tissue deposition) and PVG kinematics (tissue deposited in the tangential plane)
predicted faster aneurysm expansion at increased collagen net production, a finding that is neither
intuitive nor plausible. Therefore, IVG and PVG kinematics should be used with caution when
modeling aneurysm growth.

Due to its definition, wall stress is largely influenced by AAA wall thickness. Vessel wall thickness
correlates with vessel diameter, which itself depends on factors like age, sex and body size [53].
In addition, the outer border of the adventitia is blurry, and vessel wall thickness measurements
are highly influenced by the measurement methods [54]. Most commonly infrarenal aorta wall
thickness is reported from in-vivo measurements. A wall thickness of 1.9 (mm) [55] has been reported,
which matches data for 70+ subjects [56], i.e., the age group of AAA patients. Assuming 15%
circumferential in-vivo deformation, gives a wall thickness of roughly 2.2 (mm) of the stress-free
infrarenal aorta wall. In contrast, data from in total 15 in vitro biomechanical studies of AAA wall
samples, yielded a median wall thickness of 1.6 (mm), see Table 2 in [57]. These data suggests that
aneurysm disease reduces aortic wall thickness on average by 36%. However, AAA wall thickness
shows huge inter-patient and intra-patient variabilities, and no statistically significant difference
between small and large AAAs was found [58].

At twofold AAA expansion, and with the collagen net growth of β = 1.25 (year−1), the present
study predicted AAA wall thicknesses of 0.28 (mm) and 0.54 (mm) for NVG and TVG kinematics,
respectively. Compared to the homeostatic wall thickness of 0.98 (mm) of the normal aorta, this yields
a AAA-related wall thickness reductions of 71% and 45%. Hence, even prescribing the extremal case of
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TVG kinematics, overestimated AAA-related wall-thinning. This discrepancy might be explained by
the strict mixture rule of CCD that was applied to collagen. However, the well organized and tightly
packed organization of collagen in the normal aorta, might be lost with the course of aneurysm disease.
Consequently, collagen might no longer be deposited according to the CCD mixture rules, which in
turn requires a thicker wall to host the same amount of collagen. Alternatively, notice that in the
simulations, the collagen stretch is above the initial collagen attachment stretch levels (see Figure 5c).
If the collagen stretches were lower (for given aneurysm size) then to maintain mechanical equilibrium
for decreased collagen stress (given decreased collagen fibre stretch), increases in collagen mass would
be required, which again results in an increased wall thickness.

Accurate experimental measurement of individual constituents’ volume fractions is difficult,
especially with non-invasive methods. Therefore, it is important to explore the sensitivity of AAA
growth models with respect to the initial volume fractions of such individual constituents. Interestingly,
NVG and TVG kinematics show very low sensitivity to initial volume fractions of elastin and collagen,
such that population-based inputs may be used. In contrast, predictions based on IVG and PVG
kinematics are highly sensitive to the initial volume fractions of elastin and collagen.

Once introducing a rupture criterion for the wall, i.e., specifying at which conditions (stress,
strain, growth rate, etc.) the aorta wall would rupture, the method applied in this study could in
principle be used to predict aneurysm rupture. While the literature reports static strength of the
AAA wall, it remains unclear how such strength is influenced by non-physiological collagen turnover,
i.e., conditions prior rupture. Consequently, a rupture criterion for the AAA wall would be incomplete
in the present context. In addition, technical challenges, such as handling structural instabilities and
contact with surrounding organs, would further complicate predicting AAA rupture.

This work used many modeling assumptions, which might be debated. First of all, we used a
stretch-based mechanical stimulus with respect to which collagen turnover responds. However, it is
still unclear which mechanics-related parameter stimulates collagen turnover, and one could have
used a stress-related stimulus instead. The implications of this assumption should be further explored.

Collagen orientations in the normal aorta [31–34], as well as in the aneurysmatic aorta [35] are
dispersed, and the approximation by two families of collagen fibers is rather conceptual. In addition,
also the undulation of collagen fibers is dispersed, and collagen fibers gradually engage when loading
the vascular wall. Collagen undulation dispersion was not considered in the present work, and the
use of a single (deterministic) recruitment stretch aimed at capture salient features of collagen fiber
engagement in the vessel wall. More refined models are available [59,60]; their application in the
present context might be further explored.

Finally, the presented model does consider neither active stress from SMC, nor the presence of
an ILT. While SMC influence the onset and early development of AAAs, the ILT likely effect its later
development. Despite challenging, both effects might be considered in a revised AAA growth model.

5. Conclusions

This work demonstrated that the choice of tissue growth kinematics is of crucial importance when
modeling AAA growth. Specifically, prescribing IVG or PVG kinematics led to highly non-plausible
predictions, and models should no longer used such assumptions. Despite TVG kinematics predicted
the most reasonable result in this study, it still overestimated wall thinning through aneurysmal
progression. However, limited experimental data prevents from a sound validation of modeling
assumptions, and much more interdisciplinary experimental work is required before AAA expansion
models can be of any practical (clinical) use.
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