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Biophotonics

Photosynthetic organisms rely on a series of self-assembled nanostructures with 
tuned electronic energy levels in order to transport energy from where it is collected 
by photon absorption, to reaction centers where the energy is used to drive chemical 
reactions. In the photosynthetic bacteria Chlorobaculum tepidum, a member of the 
green sulfur bacteria family, light is absorbed by large antenna complexes called 
chlorosomes to create an exciton. The exciton is transferred to a protein baseplate 
attached to the chlorosome, before migrating through the Fenna–Matthews–Olson 
complex to the reaction center. Here, it is shown that by placing living Chlorobaculum 
tepidum bacteria within a photonic microcavity, the strong exciton–photon coupling 
regime between a confined cavity mode and exciton states of the chlorosome can be 
accessed, whereby a coherent exchange of energy between the bacteria and cavity mode 
results in the formation of polariton states. The polaritons have energy distinct from 
that of the exciton which can be tuned by modifying the energy of the optical modes 
of the microcavity. It is believed that this is the first demonstration of the modification 
of energy levels within living biological systems using a photonic structure.
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Almost all biological organisms interact with light in one form 

of another. The most obvious manifestation of this is vision, 

whereby light is absorbed by pigments within the retina and 

then transducted into an electrical stimulus.[1] It is arguable 

however that the most important interaction process that 

occurs in nature is that of photosynthesis.[2] This process is 

used by both plants and bacteria and ultimately provides the 

energy to directly or indirectly support most life on Earth. 

Many biological organisms also use light to communicate. This 

interaction can occur via a number of mechanisms, including 

the direct emission of light (bioluminescence[3]), the incoherent 

scattering of light by dyes and pigments,[4] and through the use 

of photonic structures to control the reflection and scattering 

of light to create iridescent structures.[5] This process is used 

by certain species of birds,[6] beetles,[7,8] and plants,[9] where 

self-organized micro- and nanostructured layers are used to 

generate constructive and destructive interference effects.[10]

Instead of simply exploring the optical properties of 

natural systems, it is interesting to consider whether we can 

use “top-down” photonic engineering to perturb or modify the 

function of a biological system. This can both be used to better 

understand the intricate mechanisms designed by nature to 

control its interaction with light or perhaps emulate the struc-

tures found in nature to create new types of synthetic paints or 

pigments.[11] We note that there are numerous accounts of the 

use of photonic crystals for the sensing of biomolecules.[12,13] 

Recent work has also involved living cells tagged with fluo-

rescent polymer beads that undergo lasing, allowing refractive 

index changes within the cell to be followed,[14] and inserting 

a photonic nanobeam probe into living cells to probe their 

optical properties.[15] Other researchers have modified living 

cells to express a fluorescent protein, and have placed such 

cells within an optical cavity to generate lasing.[16] Despite 

such progress, optical engineering has so far had a relatively 

minor effect on the electronic energy levels within such 

organisms. In this Communication, we use optical engineering 

to modify the energy landscape within living green sulfur bac-

teria (GSB). To do this, we place the bacteria into an optical 

cavity and utilize optical strong coupling to modify the energy 

level of the chlorophyll aggregates within the bacteria that 

are used by the bacteria to harvest light for photosynthesis. 

This approach opens an opportunity to deeply understand 

the interplay of the electronic states within a photosynthetic 

organism with its biological function. Looking further ahead, 

we expect that our approach will allow the electronic states 

within photosynthetic bacteria to be optically hybridized with 

other optoelectronic materials and will permit us to design 

bacterial systems that can absorb or emit light by coupling to 

entirely synthetic external “antennas.” This exciting possibility 

could result in new methods that allow for noninvasive con-

trol of photosynthetic processes in vivo.

To modify the electronic energy levels of the light 

harvesting apparatus of living bacteria, we have placed the 

bacteria within a microcavity that operates in the so-called 

“strong-coupling regime.” The strong-coupling regime can 

be accessed when a material having a dipole-allowed transi-

tion is placed into a photonic structure that supports a quan-

tized optical mode. If the optical transition of the material is 

resonant with the energy of the photonic mode, energy can be 

reversibly exchanged between the cavity mode and the exciton 

states, with new eigenstates formed that are a coherent super-

position of photonic and excitonic transitions. Such states are 

called cavity polaritons and are quasiparticles that are delocal-

ized throughout the resonator due to their photonic compo-

nent, while retaining an interaction cross section inherited from 

the exciton.[17] The mixed light–matter properties of polaritons 

have led to striking displays of phenomena such as polariton 

superfluids,[18] inversionless lasing,[19] and nonequilibrium 

Bose–Einstein condensates,[20] the latter two being observed 

up to room temperature.[21–23] Strong exciton–photon coupling 

in optical microcavities was first observed almost 25 years ago 

by Weisbuch et al.,[24] when a series of semiconductor quantum 

wells were embedded between two high-quality planar die-

lectric mirrors. Since then, a variety of materials have been 

shown to be able to strongly couple to photonic modes such 

as bulk semiconductors,[25] organic molecules,[26,27] polymers,[28] 

2D transition metal dichalcogenides,[29,30] and proteins.[31,32] 

Recent work has used an array of plasmonic nanostructures 

to modify the excitonic energy of a photosynthetic com-

plex.[33] We have previously fabricated strong-coupled micro-

cavity structures containing an isolated chlorosome assembly 

derived from green sulfur bacteria.[34] In such previous work 

however, the molecular assemblies that were strongly coupled 

were isolated from their parent organisms. We believe the work 

presented here makes a significant advance on such previous 

studies as we strongly couple to aggregate states within func-

tioning bacteria. We believe this is the first observation of the 

use of photonic engineering to directly modify the electronic 

energy states within a living organism.

Figure 1a shows a transmission electron microscopy 

(TEM) image of Chlorobaculum tepidum (Cba. tepidum). 

The bacteria were either grown following the proce-

dure given in ref. [36] or purchased as an active culture 

(Leibniz-Institut DSMZ) and were stored in anaerobic con-

ditions prior to use. Each bacterial cell contains 200–250 

light harvesting chlorosomes, which are large ovoid struc-

tures (100–200 nm long, ≈50 nm wide) consisting of tubular 

or planar aggregates of bacteriochlorophyll c (BChl c) 

mole cules.[37,38] The absorption spectrum of Cba. tepidum in 

aqueous solution (40 mg biomass mL−1) is shown in Figure 1b 

(green line). The strong absorption peak at 750 nm is due to 

aggregates of BChl c in the chlorosomes. The weak absorp-

tion shoulder at 676 nm is assigned to BChl c monomer and/

or chlorophyll a that can be found in the reaction center 

(while the principle exciton energy of the reaction center 

is at 840 nm). The shoulder at 810 nm is due to the Fenna–

Matthews–Olson (FMO) complex, while the absorption band 

in the 400–500 nm region is from the Soret band of BChl c 

and carotenoid molecules within the chlorosomes. In order 

to verify the bacteria are alive in the strong coupling regime, 

we use the cell viability stain trypan blue (TB, 0.4% in water) 

which was added to the bacteria solution at a volume ratio 

of 1:1 and mixed before being injected into the cavity region. 

The dye is able to permeate the cell membrane of dead cells 

and binds to intracellular proteins. Live cells with intact 

membranes are unstained by the dye.[39] The absorption spec-

trum of TB is shown in Figure 1b (blue line), and displays a 

strong absorption peak at 587 nm, with a shoulder at 630 nm. 

www.advancedsciencenews.com
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Figure 1c shows an optical microscope image of the Cba. 

tepidum solution stained with TB. Both dead and alive bac-

teria are visible, circled blue and green, respectively.

The microcavity was formed from two 15 nm thick semi-

transparent aluminum planar mirrors (80% reflectivity at 

750 nm) thermally deposited on silica substrates. One of the 

substrates has a raised “plinth” of dimensions 100 µm × 100 µm 

onto which the mirror is grown. A 10 nm layer of poly(methyl 

methacrylate) (PMMA) is spin-cast onto each mirror. The two 

mirrors are mounted face-to-face to form the cavity within a 

custom-built white-light transmission microscope that allows 

angular alignment of the mirrors. A piezoelectric actuator 

allowed nanometric control over the cavity length. The cavity 

was imaged onto the entrance slit of an imaging CCD spec-

trometer. The area to be spectrally imaged was defined by the 

image position on the spectrometer slit and the row of pixels 

on the CCD, the former defining the horizontal coordinate 

and the latter the vertical coordinate.

The cavity mirrors were first aligned to be parallel by 

observing the interference fringes in transmission as the 

cavity length was reduced, and adjusting the angle of one of 

the mirrors until only one fringe is visible across the plinth. 

The cavity length was scanned by applying a linear voltage 

ramp to a piezoelectric actuator attached to one of the cavity 

mirrors, and the cavity transmission was spectrally imaged as 

a function of time.

The transmission spectra from a region of the cavity 

measuring 5.5 µm × 1.2 µm as the cavity length is scanned 

from 450 to 725 nm is shown in Figure 2a. The observed trans-

mission peak corresponds to the q = 2 cavity mode, where q is 

the mode index (see the Experimental Section). As the cavity 

mode energy is scanned through the exciton energy (solid 

white line), two peaks are observed that anticross about 

that energy. These peaks are the upper and lower polariton 

branches (UPB and LPB, red circles) that reside at higher 

and lower energy than the exciton respectively, and the mag-

nitude of the energy splitting where the uncoupled cavity 

mode and exciton would be degenerate is the Rabi splitting 

energy—a measure of the coupling strength of the system. 

While a strongly coupled system may be described using a 

fully quantum or semiquantum formalism,[40] here the large 

number of exciton states within the cavity allow us to use 

a classically coupled oscillator model[41] to fit the polariton 

state energies.
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Figure 1. a) TEM image of Chlorobaculum tepidum (Cba. Tepidum). Scale bar is 1 µm. Note that the size and shape of the bacteria is dependent 

upon the light conditions during growth.[35] b) Normalized extinction spectra of 0.4% trypan blue (TB) aqueous solution (blue line) and Cba. tepidum 

in water (green line). c) Optical microscope image of Cba. tepidum in a TB viability stain showing bacteria with compromised cell membranes 

(stained blue, circled blue) and intact cell membranes (unstained, appear green, circled green). The scale bar is 10 µm. d) Schematic of microcavity 

consisting of a bacterial solution suspended between two semitransparent metallic mirrors, one of which is on a raised plinth.
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The energy of the lower and upper polariton branches is 

given by a coupled oscillator model.[42] This is fitted to the 

observed polariton branch energies with the Rabi splitting 

energy ℏΩ and intracavity refractive index n as fitting param-

eters (see the Experimental Section). In the case of coupling 

with the q = 2 cavity mode, we find a splitting of 103 meV. 

The criteria for strong coupling[43] is that ℏΩ > (γx/2) + (γc/2) 

where γx and γc are the full-width at half-maximum linewidths 

of the uncoupled exciton and photon, respectively. The chlo-

rosome exciton linewidth is 130 meV, and the q = 2 cavity 

mode linewidth away from the strong coupling region is 

70 meV, therefore the strong coupling criteria is satisfied for 

coupling to the q = 2 mode.

Figure 2b shows a series of vertically offset transmission 

spectra for decreasing cavity length (bottom to top). The two 

polariton branches and their anticrossing about the exciton 

energy (gray dashed line) are clearly visible. We note that the 

cavity could not be closed beyond ≈450 nm, likely due to the 

size of the bacteria within the cavity.

Figure 2c,d shows the microcavity transmission as the q = 3 

cavity mode is scanned through the exciton energy. While an 

anticrossing is again visible, the mode splitting is reduced 

to 78 meV. This is because of a reduction in the interaction 

potential due to the weaker EM field within the cavity. For the 

q = 4 mode (Figure 2e,f), the splitting energy is reduced again 

to 50 meV, and the anticrossing is not clearly resolvable.

The magnitude of the Rabi splitting allows us to put 

bounds on the number of pigment molecules, and hence the 

number of bacteria involved in the coupling. We find that 

the number of excitons simultaneously coupled to the q = 2 

cavity mode is ≈95 million if all chlorosomes are oriented in 

the plane of the cavity, and ≈220 million if all dipoles are ran-

domly oriented in the cavity (see the Experimental Section). 

Assuming 200 000 BChl molecules per chlorosome, the split-

ting corresponds to the coupling of excitons from between 

470 and 1100 chlorosomes, approximately the number that is 

in 2–6 bacteria.

In order to ascertain whether the bacteria are alive during 

strong coupling, we have performed microextinction spectros-

copy on the bacteria involved in the coupling. A real-space 

CCD image of the cavity is shown in Figure 3a. The cavity was 

opened to ≈100 µm to allow a continuum of photonic states, 

and the normalized extinction spectrum of the region marked 

1 in Figure 3a is shown in Figure 3b (green line). This is the 

region from which the transmission spectra in Figure 2 were 

recorded. We see that there is a strong absorption peak at 

750 nm due to the chlorosome absorption, but no sign of TB 

absorption in the 500–650 nm range, indicating that the cells 

had not been stained and remained viable. For comparison, the 

microextinction spectrum of an area containing compromised 

bacteria is also shown (blue line) where TB absorption is the 

dominant feature. While the cavity acts to restrict the inten-

sity of light reaching the bacteria, they are known to survive in 

extremely low light environments and display a low mortality 

rate even in the presence of no light,[44] making long-term 

experiments based on bacterial growth rates feasible. Indeed, 

the bacteria under investigation remained unstained for the 

duration of the experiment, totaling several hours.

www.advancedsciencenews.com
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Figure 2. a) Transmission of the cavity at the point labeled 1 in Figure 3 as function of wavelength and cavity length while scanning the q = 2 cavity 

mode through the chlorosome exciton energy, showing the anticrossing of the polariton branches about the chlorosome exciton. White horizontal 

line shows the chlorosome exciton energy and black squares show the unperturbed cavity mode energy. Red circles are the fitted polariton 

branch energies. b) Individual transmission spectra, vertically offset, for given cavity lengths around exciton–photon resonance clearly showing 

the splitting of the cavity mode at exciton–photon resonance. Gray dashed line shows the chlorosome exciton energy. Cavity modes for c,d) q = 3 

and e,f) q = 4, respectively.
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We have previously suggested that the polariton branches 

may provide an alternative pathway for excitons to migrate 

through the photosynthetic system, bypassing various 

states.[35] The baseplate exciton wavelength is at 790 nm, 

while the FMO and reaction center are positioned at 810 and 

840 nm, respectively. In the current experiment, the polariton 

branch energy can be widely tuned via 

the cavity length, and can be brought into 

energetic resonance with each of these 

structures as shown in Figure 4. For cou-

pling to the q = 2 cavity mode, the LPB 

is resonant with the baseplate at a cavity 

length of 560 nm, the FMO complex at 

580 nm, and the reaction center at 605 nm. 

The LPB may therefore potentially act 

as a relaxation pathway for excitons 

from the chlorosome into lower energy 

states, including directly into the reac-

tion center, with the final state selectable 

via the cavity length. The relaxation times 

associated with exciton transfer through 

the light harvesting system range from 

≈1 to 200 ps,[37,45,46] whereas polaritons 

in J-aggregate-based microcavity struc-

tures have been shown to relax to lower 

lying exciton states on sub-picosecond 

timescales.[47] This rapid polariton relaxa-

tion may make such a transfer process 

favorable in comparison to the conven-

tional exciton transfer processes. Indeed, 

by selectively bypassing subunits of the 

photosystem, it may be possible to com-

pare the relative efficiencies of each exciton transfer step, 

perhaps even increasing the efficiency of the photosystem as 

a whole which could be elucidated directly through observing 

bacterial growth rates.

Furthermore, there exists the opportunity to create 

hybrid-polariton systems in which the optical mode that 

www.advancedsciencenews.com
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Figure 4. (Left) Energy levels of the components involved in exciton transport in GSB. (Right) Polariton dispersion of bacteria coupled to the q = 2 

cavity mode, showing possible relaxation pathways that could be accessed by changing the microcavity length.

Figure 3. a) Real-space optical image of the microcavity. White dashed lines mark the extent 

of the plinth in the vertical direction. White solid vertical line represents the position of the 

spectrometer slit when performing spectral imaging. White solid horizontal line represents 

the position of the CCD track used for the spectra showing strong coupling shown in Figure 2. 

The intersection of the solid lines (marked 1) is the position of the bacteria that are shown 

to undergo strong coupling to the cavity. The bacteria appear as pale spots on the image, 

however, they are not clearly individually resolvable as they are smaller than the resolution 

of the microscope. b) Normalized absorption spectrum taken at position 1 when the cavity 

was opened to allow a continuum of photonic states (green line), and normalized absorption 

spectrum of stained bacteria (blue line). In both cases, the absorption spectra were taken 

from a spectral image, with the reference taken from the same image but a separate track 

where no bacteria are present.
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is coupled to the chlorosome assembly is also coupled to a 

second semiconductor material placed within the optical 

cavity. This approach has previously been used to hybridize a 

range of different semiconductor systems, including different 

species of molecular dyes,[48] molecular dyes with semicon-

ductor quantum wells,[49,50] and recently molecular dyes with 

2D transition metal dichalcogenides (TMDs).[51] By placing 

GSB in a cavity with a second material that is able to couple 

to the cavity mode, polariton states may be formed that are 

simultaneously composed of the chlorosome exciton, the 

exciton of the second system, and the cavity photon. This 

mixing of exciton states (optical hybridization) in the strong 

coupling regime has been shown to facilitate rapid energy 

transfer between Frenkel-exciton states by virtue of the 

intermediate hybrid polariton.[52,53] Here, it will be in prin-

ciple possible to select a second excitonic material having an 

optical transition that is either lower or higher in energy than 

that of the chlorosome exciton. This opens an opportunity to 

either extract or inject energy into the bacteria through con-

trol of relative energy levels. The ability to control photosyn-

thesis using such techniques will be of fundamental interest 

and may allow us to design photosynthetic systems having 

increased light harvesting efficiency.

In conclusion, we have introduced living photosynthetic 

bacteria into a photonic microcavity and shown that the 

system can enter the strong coupling regime, thus creating 

polariton states within a living organism. This is a demon-

stration of the noninvasive modification of the innate energy 

levels within a living system through use of a photonic struc-

ture. Such bio-optical engineering could also be used to 

explore the extent to which photosynthesis can be enhanced 

in living bacteria by modification of its ability to harvest light. 

It will also be interesting to explore the extent to which such 

photonic coupling can be used to modify the function or even 

direct the growth or survival of an organism whose electronic 

states are delocalized and shared with its neighbors.

Experimental Section

Calculation of the Cavity Length and Polariton Branch Fitting: 

In order to calculate the cavity length for each spectrum presented 

in Figure 2, an area of the spectral image is selected where no 

strong coupling is observed (i.e., there is no bacteria or too few in 

a given area to couple). The cavity length L was set such that sev-

eral Fabry–Perot modes are observed in transmission. The mode 

index q of each of the modes was calculated from the wavelengths 

of adjacent modes λq and λq − 1 using Equation (1):

q
q

q q
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λ λ
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Once the mode index of a transmission peak is known, the 

cavity length can be calculated via Equation (2):
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where n is the intracavity refractive index, which we approximate 

to be that of water, 1.33.

The energy of the lower and upper polariton branches is given 

by a coupled oscillator model (Equation (3)):[42]
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where Ec(L) is the uncoupled cavity mode energy (which is found 

from Equation (2)), Ex is the exciton energy, Ep(L) is the polariton 

energy, and αc(L) and αx(L) are photon and exciton mixing coef-

ficients, respectively. The polariton branch energies are then given 

by Equation (4):
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This is fitted to the observed polariton branch energies with 

ℏΩ and n as a fitting parameters. We note that refractive index of 

the bacteria varies slightly from that of the background index of 

water,[54] and from the fitting we find that n = 1.38, n = 1.36, and 

n = 1.35 for the q = 2, q = 3, and q = 4 cavity modes, respectively, 

commensurate with a larger fraction of the cavity length being 

occupied by bacteria for smaller cavity lengths leading to a slightly 

higher value for n. The eigenvalues (mixing coefficients) αc(L) and 

αx(L) are given by Equation (5):
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Calculation of the Number of Coupled Dipoles: The Rabi split-

ting energy ℏΩ increases as the square root of the number of 

dipoles coupled to the field N, with the magnitude of the splitting 

given by Equation (6):[55]

EE N
c

n V
2 . ˆ

eff
2

0

1
2

 
ε

µµ π
λ( )Ω =







 

(6)

where µ is the coupled dipole moment, V is the cavity mode 

volume, and EÊ  is a unit vector parallel to the polarization of the 

cavity electric field. The dipole moment of BChl c is 5.48 D,[56] and 

the cavity mode volume[57] of the q = 2 mode is calculated to be 

≈
n

15
3

λ



 . Hence, the number of coupled dipoles can be directly 

inferred from the Rabi splitting energy if assumptions are made 

about the relative orientation of the dipoles to the cavity field.
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