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Abstract: We observe polariton condensation in the yellow part of the visible spectrum from a 

planar organic semiconductor microcavity containing the molecular dye BODIPY-Br. We provide 

experimental fingerprint of polariton condensation under non-resonant optical excitation, including 

the non-linear dependence of the emission intensity and wavelength blueshift with increasing 

excitation density, single excitation pulse dispersion imaging and real space interferometry. The 

latter two allow us to visualise the collapse of the energy distribution and the long-range coherence 

of the polariton condensate. 
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Bose-Einstein condensation (BEC) is an exotic state of matter, wherein particles coalesce to a 

macroscopically occupied coherent state. BECs have been observed for a broad range of systems 

such as 4He,[1] alkali-metal atoms,[2] magnons,[3] and polaritons.[4] Beyond the beauty of the 

underlying physics describing the fundamental properties and dynamics of BECs,[5] there is a range 

of applications that utilise the coherence of their massive wavefunctions, especially in the rapidly 

developing field of quantum technologies.[6] Unlike other BECs, polariton condensates (hosted in 

semiconductor slabs embedded in optical cavities) can optically be pumped, and more importantly 

are interrogated through photoluminescence. Indeed, due to finite cavity lifetimes, polaritons decay 

in the form of photons that carry all information of the corresponding polariton state (energy, 

momentum, spin and phase). By appropriate choice of the crystalline semiconductor host, polariton 

condensates can form even at room temperature.[7,8] Circumventing the challenges of epitaxial 

growth, polariton condensates were also realised in soft-matter organic microcavities.[9,10] The room 

temperature operation and ease with which organic polariton condensates can be “written” and 

“read” is attractive for imprinting polariton lattices, a promising platform for quantum 

simulators.[11]  

 

A number of very different molecular systems have been used to date as the semiconductor host in 

optical cavities to demonstrate polariton condensation, varying from crystalline anthracene to 

oligofluorenes, conjugated polymers and fluorescent proteins.[12,9,10,13] Although the chemical 

structure and morphology of these molecular hosts are very dissimilar, all three have relatively 

narrow absorption spectra and small Stokes shift with respect to their optical oscillator strengths. 

These features are necessary for strong coupling, but not sufficient for polariton condensation. For 

example, J-aggregates have very similar spectroscopic characteristics with the above molecular 

systems allowing for strong coupling, however, in J-aggregates polariton condensates remains 

elusive even under resonant excitation schemes.[14] A characteristic of the molecular systems that 

have exhibited polariton condensation is their relatively high quantum yield (QY), >10%, even with 
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increasing excitation densities. It is plausible that a key ingredient for polariton condensation in 

molecular systems is the balance between radiative and non-radiative decay paths, since the latter 

will limit the number of excitons available to form polaritons. Undoubtedly, there is still a plethora 

of molecular systems that satisfy the above conditions and other considerations should be taken into 

account to address limitation beyond the formation of a polariton condensate. For any application 

that utilises the macroscopic wavefunction of organic polariton condensates to become viable, 

control over the disorder and its adverse effects on spatial coherence and homogeneity of the 

polariton energy landscape need to be addressed.  Here, we demonstrate evidence of polariton 

condensation in a different class of organic semiconductors, that of a molecular dye diluted in a 

matrix polymer, resulting in extended polariton condensates. 

 

The material investigated is a bromine-substituted boron-dipyrromethene (BODIPY-Br) that 

combines relatively high photoluminescence quantum yield, between 10% and 50% (dependent on 

sample preparation conditons), with fluorescence emission around 550 nm.[15] To incorporate 

BODIPY-Br into a microcavity, it is necessary to disperse it into a transparent polymeric matrix at 

relatively low concentration to limit unwanted molecular aggregation and luminescence quenching 

phenomena.[16–18] This approach to creation of a medium is different from previous studies in which 

a pure film of organic chromophores was used.[9,12] 

 

Figure 1(a) shows the chemical structure of the molecular dye BODIPY-Br, together with its 

absorption and fluorescence when dispersed into a transparent polystyrene matrix at a concentration 

of 10% by mass. It can be seen that the absorption maximum of BODIPY-Br peaks at 530 nm, 

whilst its fluorescence maximum is red-shifted to 550 nm. We have previously explored the 

photophysics of microcavities containing BODIPY-Br, and have concluded that weakly-coupled 

excimer-like states, together with emission from the (0,1) vibrational transition that are both located 
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around 593 nm are responsible for optically pumping polariton states along the lower polariton 

branch.[15] 

 

To explore the non-linear emission properties of BODIPY-Br, we used a stripe-pumping geometry 

to generate amplified spontaneous emission from a non-cavity control film. Here a 186 nm thick 

non-cavity film of BODIPY-Br in polystyrene (10% by mass) was spin-cast onto a quartz substrate 

and then pumped using 100 fs laser pulses at a repetition rate of 1kHz at 500 nm along a 20 mm 

long stripe. Figure 1(b) shows emission from the film at various pump fluences. Here, it can be seen 

that at threshold of 104.1 µJ/cm2, there is a strong increase in emission at around 589 nm with the 

emergence of a peak having a linewidth of around ~8 nm (28 meV). This wavelength 

approximately coincides with the (0,1) vibrational transition, suggestive of a 4-level lasing system. 

This measurement usefully indicates that BODIPY-Br can support optical amplification, which is 

indicative of low optical losses under high excitation density, rendering it a promising candidate for 

realising polariton condensation.  

 

We fabricate BODIPY-Br into a microcavity by spin-casting a 186 nm thin film onto a distributed 

Bragg reflector (DBR) consisting of 10 pairs of SiO2 / Nb2O5. We deposit a second 8-pair SiO2 / 

Nb2O5 DBR onto the BODIPY-Br film using ion assisted electron beam and reactive sublimation, 

as shown in the schematic of the cavity structure in Figure 2(a). The measured Q-factor of the 

resulting cavity is ~440 corresponding to a cavity lifetime of 133 fs. Figure 2(b) shows white light 

reflectivity spectra as a function of the off-axis viewing angle, where the measurements are made 

through the 8-pair DBR. It can be seen that two optical modes are clearly visible undergoing anti-

crossing around a wavelength of 530 nm; a wavelength that we associate with the (0,0) monomer 

absorption transition of the BODIPY-Br. Figure 2(c) shows the energy of the upper and lower 

polariton branches determined from the reflectivity measurements. The data are fitted to a standard 

two-level oscillator model from which we obtain a Rabi-splitting energy of 91 meV. The energy of 
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the exciton energy of the fit (2.33 eV) closely coincides with the peak absorption energy of the 

BODIPY-Br (0,0) electronic transition (2.34 eV). We overlay the dispersion plot with an intensity 

map of the photoluminescence emitted by the cavity under non-resonant pumping. Here, we excite 

our sample using a bandpass filter centred at 450 nm with 10 nm bandwidth to spectrally filter a 6 

ps pulsed super-continuum laser operating at 40 MHz. The excitation density for these 

measurements is 1.2 µJ/cm2. It can be seen that the cavity emission is most intense around the 

bottom of the lower polariton branch (corresponding to k// = 0), and reduces in intensity towards the 

energy of the uncoupled exciton. We have previously shown that the distribution of emission along 

the lower polariton branch (LPB) is primarily determined by the distribution of weakly-coupled 

states within the exciton reservoir.[15] Figure 2(d) shows the free space yellow emission from our 

cavity under non-resonant pumping. 

 

We investigate the non-linear photoluminescence dynamics using 2 ps optical pulses at 400 nm. 

The sample is held in a vacuum chamber at 10-6 mbar at room temperature. The full width at half 

maximum of the pump beam on the sample is ~8 µm. Photoluminescence is collected using a lens 

with 0.42 numerical aperture that allows for dispersion and real space imaging using an electron 

multiplication charge coupled device (CCD) camera at the exit slit of a 55 cm spectrophotometer 

and a grating of 1200 grooves/millimetre. We have synchronised the timing of the optical detection 

system with the train of excitation pulses down to a single pulse excitation/image acquisition. Using 

the setup described above we can perform single pulse excitation dispersion imaging. Also with the 

use of a stabilised Michelson interferometer, we can record interferograms that allow us to measure 

the extent of the coherence of the emissive states under single pulse excitation.  

 

Figures 3(a) - (c) show dispersion images recorded below, near and twice above threshold. Figure 

3(a) shows the linear dispersion time averaged over 1500 excitation pulses. With increasing pump 

intensity, at a threshold excitation density we observe the collapse of the emission to the bottom of 
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the polariton dispersion, centred on k// = 0, as shown in the dispersion image of Fig. 3(b) that is time 

averaged over 2 excitation pulses. Figure 3(c) shows the dispersion image at approximately twice 

above threshold, integrated over 4 excitation pulses, where the emission appears blueshifted with 

respect to the linear regime. In Figure 3(d), we plot the photoluminescence spectra extracted at k// = 

0 from dispersion images recorded for different pump intensities and normalised to the number of 

excitation pulses used per recording. Evidently, as the pump intensity increases the spectrum gets 

narrower and blueshifts with respect to the spectrum at the lowest excitation density (black curve in 

Fig. 3(d)). In Figure 3(e), we plot the integrated intensity of the above spectra and the 

corresponding linewidth measured at FWHM as a function of the upper bound of the threshold 

excitation density (527.3 µJ/cm2). We observe a threshold-like behaviour at 527.3 µJ/cm2 

accompanied by a reduction in linewidth from 2.8 to 0.5 nm. Figure 3(f) shows a continuous blue-

shift of the photoluminescence spectrum by up to 5 meV, occurring at twice the threshold density of 

that observed by Plumhof et al.[10] who studied a cavity containing a conjugated polymer. In areas 

on the sample where we do not observe polariton condensation, there is no visible blue-shift of the 

dispersion. For the detuning used here, we calculate the exciton content, |XLP|2, to be 0.103 at k// = 0 

of the lower polariton branch. We note here that by ramping the excitation density twice above 

threshold and back to the linear regime the optical properties of the sample remain virtually 

unchanged, including the shape of the photoluminescence spectrum. The observed non-linearity on 

the excitation density associated with the continuous blue-shift of the photoluminescence spectrum 

provide strong evidence of polariton condensation.  

 

Figure 4(a) shows the interferogram of a polariton condensate at threshold excitation density for a 

single excitation pulse utilising a stabilised Michelson interferometer equipped with a retro-reflector 

to generate optical interference between the emitted light by the cavity and its inverted image. This 

technique has been utilised to realise experimentally the long range phase coherence of the 

condensate in many previous organic condensate studies.[19–22] The interference fringes across the 
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image are plotted in Fig. 4(b) and are fitted with a convoluted Gaussian (red curve). The visibility 

contrast of 86% indicates a high degree of spatial coherence across the condensate that extends 

beyond the excitation spot. From the standard deviation of the Gaussian fit we calculate a coherence 

length of 28 µm from 𝜆! = 2 2𝜋𝜎, suggesting a homogeneous polariton energy landscape of the 

same order.  

 

In conclusion, we report on a yellow polariton condensate in a dye filled microcavity. We obtain 

strong evidence of non-linear photoluminescence with increasing excitation density, associated with 

a six-fold linewidth narrowing and a continuous blue-shift attributed to polariton interactions with 

other polaritons and the exciton reservoir. The wavelength of the polariton condensate is blue-

shifted with respect to the wavelength, where amplified spontaneous emission occurs in BODIPY-

Br (565 and 589 nm respectively) indicating that the non-linearity does not necessarily coincide 

with the point of maximum gain of the molecular dye. Furthermore, single shot interferometry 

reveals substantial long range coherence across the condensate and uniformity of the polariton 

energy landscape. The latter is important for expanding this work to lattices of polariton 

condensates and their applications in polariton simulators. It is conceivable that there is a large 

number of different molecular dyes that could be dispersed into a polymer matrix and embedded in 

a cavity that would allow for polariton condensation to be realised at wavelengths spanning the 

entire visible and near infrared. This wavelength selectivity could become of interest in the 

development of future optoelectronic devices, including hybrid organic-inorganic polariton laser 

diodes. 

 

We thank EPSRC for the funding this research through the Programme Grant EP/M025330/1 

“Hybrid Polaritonics” and for funding PhD scholarships for T.C., K.G. and R.T.G. through 

institutional DTP allocations. K.G. fabricated the sample and characterised the linear dynamics of 
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Experimental methods 

 

Sample preparation 

 

A polymer matrix solution was prepared using polystyrene (PS) having an average molecular 

weight (Mw) of ~192,000 in toluene at a concentration of 35mg/ml. The PS/toluene solution was 

heated up to a temperature of 70ºC and stirred for 30 minutes. BODIPY-Br was then added to the 

solution at a concentration of 10% by mass. Non-cavity films for absorption, photoluminescence 

and ASE measurements were spin-cast onto quartz-coated glass substrates.  

 

For the microcavity fabrication a bottom 10-pair distributed Bragg reflector (DBR) of SiO2/Nb2O5 

was deposited onto quartz-coated glass substrates using ion assisted electron beam (Nb2O5) and 

thermal evaporation (SiO2). The 186nm thick BODIPY-Br active layer was then spin-coated on top 

of the bottom mirror. A second 8-pair DBR was deposited on top of the organic with the ion gun 

kept turned-off during the first few layers to avoid any damage on the organic material. 

 

Spectroscopy 

 

The absorption and PL measurements of the BODIPY-Br non-cavity films were performed using a 

Fluoromax 4 fluorometer (Horiba) that utilizes a Xe lamp. The angular white light reflectivity 

measurement was performed using a fibre-coupled Halogen-Deuterium white light source. A 

motorized arm was used to allow for the different illumination angles between the sample and the 

white light source. The reflected light was collected and coupled into an optical fibre mounted on a 

second motorized arm and then sent into a Andor Shamrock CCD spectrometer. 
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Angular PL measurement were performed using the same motorized goniometer setup described 

earlier. A fibre-coupled Fianium supercontinuum laser with 6ps pulses and 40MHz repetition rates 

was used to non-resonantly excite the sample at 450nm using a bandpass filter. The sample was 

excited at a fixed angle of 45o following a slight downwards tilt to the optical axis to avoid 

collection of the reflected excitation beam. An optical fibre on a motorized arm was used to collect 

a range of different angles with a resolution of 1o. The excitation density of the laser was kept 

relatively low (1.2 µJ/cm2). 

 

The ASE measurements were carried out using optical parametric amplifier (Coherent OPerA 

SOLO) pumped by high energy Ti:sapphire regenerative amplifier system (Coherent Libra-HE)  

providing up to 200 uJ per pulse at  500 nm, with 100 fs pulse duration and 1 kHz repetition rate. 

Line distributed beam was produced by Thorlabs ED1-L4100 line pattern diffuser and focused on 

the sample using 25.4 mm lens providing 0.173 × 20 mm vertically polarized beam on the sample. 

Stimulated emission of BODIPY-Br thin film was detected from the edge of the film, in the 

direction of the strip and perpendicular to the propagation direction of the incident pump beam 

using Ocean Optics QE PRO spectrometer (0.7 nm spectral resolution). All measurements were 

performed at room temperature in air. 

 

For the condensation study, the microcavity was excited non-resonantly at a wavelength of 400 nm 

using pulses at a 50 kHz repetition rate and a pulse width < 2ps from a regenerative amplifier (Rega 

9000 pumped with a Verdi V10, Coherent) seeded by a mode-locked picosecond Ti:Sapphire 

oscillator (Mira 900, coherent, pumped by the Millennia Xs, Spectra Physics) which was frequency-

doubled through an optical parametric amplifier (OPA, Coherent). To prevent photooxidation of the 

sample, two optical choppers in a master-slave configuration with a modulation frequency of 28 Hz 

were used in conjunction with an optical shutter. This limited sample excitation to between 1 and 5 
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pulses over a 30 ms exposure time. The sample was mounted in a vacuum chamber held under a 

dynamic vacuum of 10-6 mbar to further reduce photooxidation. 

 

Photoluminescence was collected in transmission using an apochromatic Mitutoyo 50x microscope 

objective with a numerical aperture NA = 0.42 and focused into a 550 mm spectrometer (Horiba 

Triax 550) coupled to an electron multiplying charged-coupled device (CCD) with a 500 nm long-

pass filter blocking the residual light from the excitation beam. The PL was spectrally and in-plane 

wavevector resolved using a 1200 grooves/mm grating and a slit width of 100 µm at the entrance of 

the spectrometer. The spatial coherence measurements were obtained by splitting the PL with a 

non-polarizing beam splitter in a Michelson interferometer configuration with the mirror on one 

arm replaced by a retroreflector. The PL was then coupled into the spectrometer with the grating at 

zero order to spatially resolve the PL on the EMCCD.  
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Figure 1 (a) The normalised absorption (black) and fluorescence spectrum (red) of BODIPY-Br 

dispersed in a transparent polystyrene matrix. The chemical structure is shown in the insert. (b) 

Amplified spontaneous emission from  a 186nm thick film of the BODIPY-Br dispersed in a 

polystyrene matrix and deposited on a quartz substrate. A threshold is observed at a pump fluence 

of 104 µJ/cm2 with a peak forming at 589nm (dashed-dotted line). The dotted line indicates the 

polariton emission from the microcavity, whilst the large dashed line indicates the fluorscence 

emission peak shown in (a). 
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Figure 2 (a) Schematic of the dye filled microcavity. (b) Reflectivity spectra taken first at an angle 

of 15˚ (light orange) and at every successive 3˚ up to 51˚ (light blue). The lower polariton branch is 

observed clearly in the smaller angles (orange to pink), whilst the anti-crossing can be observed 

from 42˚ (dark purple) with the upper polariton branch becoming visible from that point onwards. 

The dashed lines indicate the upper polariton branch, exciton and lower polariton branch from left 

to right. (c) Polariton dispersion in the linear regime. The dispersion of the upper polariton (UPB) 

and lower polariton (LPB) branches are fitted using a standard two level oscillator model (red 
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lines).  The peaks from the reflectivity spectra in (b) are plotted as purple triangles showing a good 

fit to the polariton branches. (d) An image of the microcavity held in a vacuum chamber showing 

the yellow emission of the polariton condensate.	  	  
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Figure 3 (a)-(c) Normalised dispersions taken below threshold, near threshold and above threshold. 

The white dashed line indicates the linear regime. (d) Photoluminescence spectra extracted at k// = 0 

from dispersion images recorded for different pump intensities and normalised to the number of 

excitation pulses used per recording. (e) Integrated intensity of the spectra and the corresponding 

linewidth measured at full width at half maximum (FWHM) as a function of threshold excitation 

density. (f) Energy shift of the photoluminescence spectrum as a function of threshold excitation 

density. 
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Figure 4 (a) Interferogram of a polariton condensate at threshold excitation density for a single 

excitation pulse. (b) Intensity profile (black line) taken along the white dashed line of (a) and the 

corresponding Gaussian fit to the data (red curve). 
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