
This is a repository copy of An improved robot for bridge inspection.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/120382/

Version: Accepted Version

Proceedings Paper:
Peel, H, Luo, S, Cohn, A orcid.org/0000-0002-7652-8907 et al. (1 more author) (2017) An
improved robot for bridge inspection. In: Proceedings of the 34th ISARC. 34th International
Symposium in Automation and Robotics in Construction, 28 Jun - 01 Jul 2017, Taipei,
Taiwan. IAARC , pp. 663-670.

https://doi.org/10.22260/ISARC2017/0092

© This is an author produced version of a paper published in Proceedings of the 34th
ISARC.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

An Improved Robot for Bridge Inspection

H.Peel 1a, S.Luo a, A. G. Cohn b and R. Fuentes 2a

a School of Civil Engineering, University of Leeds, United Kingdom
b School of Computing, University of Leeds, United Kingdom

E-mail: H.Peel@leeds.ac.uk, R.Fuentes@leeds.ac.uk [Board of Directors]

Abstract – This paper presents a significant

improvement from the previous submission by the

same authors at ISARC 2016. The robot is now

equipped with low-cost cameras and a 2D laser

scanner, which is used to monitor and survey a

bridge bearing. The robot is capable of localising by

combining data from a pre-surveyed 3D model of the

space with real-time data collection in-situ.

Autonomous navigation is also performed using the

2D laser scanner in a mapped environment.

The Robot Operating System (ROS) framework is

used to integrate data collection and communication

for navigation.

Keywords – Bridge inspection, monitoring, SfM,

SLAM, ROS.

1 - Introduction

Continuing on from work by the same authors [1],

more off-the-shelf and low-cost solutions are considered

for autonomously navigating a bridge abutment, with

the aim of performing a visual inspection on a bridge

bearing.

Visual inspection is an important part of inspecting a

bridge bearing. In fact, regular inspection is defined in

the European and British standard for inspection and

maintenance of structural bearings as: “close visual
inspection without measurements, spaced at equal

reasonably frequent, intervals” [2].
Most of the main problems affecting bearings are

reflected in changes to geometry, including: translation,

rotation or deformation [3], [4]. Current methods to

measure changes in the bearing geometry include [3]:

metric tapes, gap gauges, air bubble levels, quadrant

rulers, compasses and verniers, levelling and

topographic surveys or direct visual observations.

However, regular inspection of bridge bearings often

does not occur as frequently as required, in some cases

due to difficult access or dangerous conditions. Bridge

bearings are critical for the performance in the bridge

and inadequate inspection may lead to much greater

problems later on in the bridges life.

One solution to increase frequency of inspection is

to automate the inspection process. However, the wide

range of bridge design and function means that there is

not a one size fits all robot for bridge inspection, with

technologies being developed for drones [5], underwater

vehicles [6] and climbing robots for steel structure

bridges [7]. Our contribution is a low cost solution to

autonomously performing visual inspection, with

technology that can be obtained and implemented in

bridge bearing inspection in the near future. In this

paper we focus on the implementation of autonomous

navigation for autonomous inspection.

Another motive for using robots for inspection is to

increase the repeatability of inspections. Previously, we

implemented the 3D reconstruction method Structure

from Motion (SfM) to enhance the information about a

bridge in a format that can be compared directly over

time. Now we look at other ways of using this

information. Specifically we use a method for

Simultaneous Localisation and Mapping (SLAM) in the

bridge abutment, where SLAM images can also be used

for SfM and visa-versa.

We also consider a second SLAM approach called

Hector SLAM that uses LIDAR only and we implement

autonomous navigation using a known map and

consider some of the challenges of operating in an

inspection environment.

2 - Structure-from-Motion (SfM)

Structure-from-Motion (SfM) was used in this work

and in previous work [1] as a method for adding value

to visual inspection. SfM uses multiple 2D image views

to find the 3D geometry (i.e., the structure) of a scene or

an object by taking images from different viewpoints

(i.e., the camera has motion). The 3D reconstruction

software Zephyr Aerial, produced by the company

3Dflow [8], was used for Structure-from-Motion and

Multiview stereo calculations and reconstructions in this

work. Since SfM is not the primary focus of the work,

for a detailed overview of the methods behind SfM and

MVS refer to [9] and [10].

mailto:Author1@aa.bb.edu
mailto:Auhor2@cc.dd.edu

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

3 – Simultaneous Localisation and Mapping

(SLAM)

Simultaneous Localisation and Mapping (SLAM) is

the process of using sensor readings (e.g., LIDAR,

camera and RGB-D sensors) to create a map of the

environment whilst at the same time finding the location

of the sensor in relation to the map that is being created.

There are many implementations of SLAM including

filter based methods (such as Extended Kalman filter

SLAM [11]), particle based methods (such as Monte-

Carlo Localisation [12]) and graph-based methods (such

as GraphSLAM [13]).

In this paper, two options for SLAM are considered:

ORB-SLAM [14] and Hector SLAM [15]. Both of these

methods are performed online - i.e., the computation is

done at the same time as the sensor data is being

collected. However, due to the computational

requirements of these methods, the SLAM calculations

were not done on the Raspberry Pi. Instead, The Robot

Operating System (ROS) was used to pass camera and

laser scan messages respectively to a laptop, where the

results are computed.

3.1 ORB-SLAM

ORB-SLAM is a form of Visual SLAM with both

monocular and stereo implementations [14]. Features

are extracted from images using Oriented Fast and

Rotated Brief (ORB) descriptors, chosen for fast

extraction and matching overhead compared to other

image features, to allow real-time computation without

a GPU [14]. The same features are used for tracking,

local mapping and localisation for efficiency and

reliability [14].

Map points contain information about its 3D

position relative to the world coordinate, the direction

the point was viewed from, a representative ORB

descriptor and the maximum and minimum distances at

which the point can be observed.

Before ORB SLAM begins to create a map, a

process of initialisation must first occur, with the goal of

computing the relative poses between two frames to

triangulate an initial set of map points. Only when it is

certain that the two views provided will avoid a

corrupted map can initialisation be completed, since

ambiguity causes all the points to be plotted on a plane

[14].

The software implementation of ORB-SLAM used

in this work is ORB-SLAM2 [16], which also has a

ROS node. ORB-SLAM was chosen as a candidate for

localisation because it has been shown to work in urban

implementations [14], and has also been implemented

using the Raspberry Pi camera in an indoor office

environment [17]. Hence, only the low cost camera was

required and for localisation and visual inspection.

3.2 Hector SLAM

Hector SLAM was developed for autonomous

navigation for urban search and rescue robots [15].

Hector SLAM does not require wheel odometry and

relies only on fast LIDAR scan matching [18].

hector_slam [19] is a ROS metapackage that

provides packages such as hector_mapping, the ROS

node used for SLAM, hector_geotiff which can be used

to save the robot trajectory, map and objects of interest

in geotiff format. Hector SLAM is designed to be used

in 3D, e.g., for robots travelling over rough terrain or

aerial vehicles [15], where robots are required to move

with up to 6 degrees of freedom. The SLAM system,

hector_mapping, is 2D and 3D navigation is achieved

by fusing information from an inertial measurement unit.

The 2D and 3D solutions are updated separately, but

remain coupled in time. Other sensors can also be

integrated to decrease uncertainty caused by sensor drift

[15], although none are implemented in this paper.

The 2D map is created on an occupancy grid, with

interpolation to allow sub-grid accuracy. This approach

utilises the high scan rates of modern LIDAR sensors,

and provides a more accurate alternative to traditional

odometry [18]. Scan alignment is performed based on

optimising the alignment of the laser beam endpoints
using Gauss-Newton optimisation approach to find the

best alignment of the current laser scan data with the

existing map through a rigid transform for some cost

function [18].

4 - Adaptive Monte-Carlo Localisation

Adaptive Monte-Carlo Localisation (AMCL) is a

particle filter method for localisation. Particle filters

represent the knowledge a robot has about its position in

a given map using a set of particles. Initially, this set of

particles is spread over the known map. Measurement

and motion models are applied to all of the particles to

update the position of each particle. Weightings are then

applied to the set of particles depending on the

likelihood that a sensor reading at a given location

matches the position of a particular particle.

The efficiency of particle filter methods rely on the

number of particles being used. The KLD Monte- Carlo

algorithm is derived from Kullback-Leibler divergence

that adaptively updates the number of particles over

time [12], allowing a high number of particles in the

initial stages of localisation and a much lower number

of particles for tracking when the robot location is

known. A detailed description of the AMCL algorithm

is available in [12].

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

5- Platform Description and Integration

5.1 - Platform

The robotic platform, also used in [1] is a

DiddyBorg robot [20], a commercially available

platform that is built around the Raspberry Pi single

board computer, the on-board computer in this work.

The DiddyBorg is a six wheeled platform with each

wheel powered by a 5V motor. Two expansion boards,

produced by the same company, the PicoBorg reverse

and the BattBorg, are connected to a Raspberry Pi 2B,

which interface with the motors and power the

Raspberry Pi using a battery pack, respectively. Some of

the motivating factors behind using this platform were

its cost, its size and off-the-shelf integration with

existing technologies.

In previous work [1], the Raspberry Pi was running

Raspbian Jessie, a commonly used operating system for

the Raspberry Pi. In this paper, the operating system

was changed to Ubuntu MATE 16.04, using the

following installation instructions for the Raspberry Pi

models 2B or 3 [21]. The main motive for changing

operating systems was to be able to access software,

such as the Robot Operating System (ROS), more

readily, with Ubuntu Mate 16.04 being recommended as

the faster and easier way to use ROS on Raspberry Pi.

ROS Kinetic was used in this work.

Figure 1: A photo of the DiddyBorg robotic platform

with the locations of the RPLIDAR and Raspberry Pi

camera sensors used in this work.

5.2 - The Robot Operating System (ROS)

ROS is an open source meta operating system for

robots [22], with a large on-line, open-source

community. Software is available as packages or stacks

that can be easily distributed and shared and developed

in multiple languages to allow code reuse in robotics

research and development [23]. The software is usually

created as independent programs called nodes [24].

Nodes communicate by connecting to a master service

and by sending messages that are organised into named

topics. Nodes can send information by publishing

messages on a topic and other nodes can listen for and

subscribe to messages coming from topics. There are

defined message types that can be used for specific

purposes such as lasers scan messages, camera

messages and geometry messages for navigation.

5.2.1 - Motion command node

Scripts to allow navigation of the DiddyBorg mobile

platform are based on the original scripts written by the

manufacturers [25]. These scripts include python library

to interface the motors with the Raspberry Pi through

the Picoborg reverse board and the I2C connections on

the Raspberry Pi. Using this library to interface with the

motors, a ROS node was written that subscribes to a

motion command topic in the form of a geometry

message with type Twist(), commonly used for velocity

messages [26]. These messages are converted into the

correct format as used in the aforementioned Python

library and the relevant velocity commands are then sent

to the Picoborg expansion board. The motor control

node is agnostic to the source of the message; hence,

this node can be used both for tele-operating the

platform and for motion commands for autonomous

motion. An example of this process for tele-operating

the robot and collecting image data is given in Figure 2.

Figure 2: An example of the relationships of

different nodes. The route the velocity

commands and image data takes between the

robot and the relevant node is also shown.

5.2.1 - User interface

In previous work, Node.js was used to create a user

interface by incorporating libraries for the Picoborg

reverse and the Raspberry Pi camera. This user-interface

has now been developed to incorporate Roslibjs [27].

Roslibjs is part of the Robot Web Tools effort and is a

JavaScript library for interacting with ROS from a web

browser. Roslibjs allows the functionality of ROS such

as publishing and subscribing to messages, service calls

and other core ROS functionality. This user interface

allows the teleoperation of the robot from a web-

browser and can be accessed from a mobile phone.

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

6- Other Hardware and Sensors

6.1.1 Raspberry Pi camera module

Raspberry Pi camera module version 1 was used for

photographic data collection. This camera is capable of

producing 5MP pictures and 1080p HD video at 30fps.

The camera module is not automatically compatible

with a Raspberry Pi 2B running Ubuntu Mate, hence

some adjustments and drivers were required, as

described in [28]. A ROS package, raspicam_node has

also been developed for the Raspberry Pi camera by

[28].

6.1.2 - Camera calibration

Camera calibration is required for ORB-SLAM. The

same calibration parameters were used as an input to

SfM. However, the software is capable of finding the

calibration parameters automatically and these

parameters were adjusted by the SfM software. The

monocular calibration script from ROS [29] was used to

calibrate the Raspberry Pi camera. An 8x6 chessboard

was placed on a planar surface and the camera was

moved to obtain different viewpoints. The calibration

software indicates when sufficient samples have been

collected to perform a calibration. However, further

samples were taken until the software indicated that the

samples taken were above a ‘good’ threshold for
translation in x, y and skew (indicated in a traffic light

system from red to green). This number of samples

translates to around 120 readings, which is comparable

to [17].

6.1.3 - RPLIDAR

Previous work [1] considered the requirements of

autonomous navigation of robots in inspection

environments. Camera data was used for SfM

reconstructions, which were then processed to create a

2D map, with the goal of localising in the map using

ultrasound sensors.

In this work, mapping and localisation in an

inspection environment was also considered, but this

time a 2D LiDAR, the RPLIDAR version A1, was used.

The RPLIDAR is a low-cost (£300) 2D LIDAR solution

developed by RoboPeak. The sensor has a range of 6m

in 360° with readings being taken at 5.5Hz. The sensor

was easily incorporated into the current setup, with

mounting possible directly onto the top of the

DiddyBorg platform. The sensor power supply is 5V,

with a USB connector which can be powered directly

from the Raspberry Pi. Drivers and ROS packages are

readily available on the Raspberry Pi and can be

installed from [30].

7 - Site Description

The site considered in this paper is the Millennium

Bridge, a cable suspension footbridge in Leeds, UK.

The bridge, which opened in 1993, crosses the River

Aire spanning approximately 57m to connect The Calls

to Brewery Place. The bearings on the north side of the

river were used as the site for data collection.

The North side bearings are situated in the top

abutment, and its dimensions are approximately

2.8x1.2m. There is a trough that runs alongside one side

of the site, and there are various pipes and electrical

cables running along the length of the enclosure. The

top bearings are seated on the bridge by means of a

machined steel plate bolted to the bearing.

8 - Survey and Data Collection

Data collection was performed by tele-operating the

robot in the bearing enclosure using the user interface

described in section 5.2.2. A router was used to allow

networking between the DiddyBorg platform and a

laptop.

Next, data collection was performed. At this stage,

data from the raspicam_node and the rplidar node were

recorded into rosbags to allow post-processing of the

data. Rosbag is a command-line ROS tool for storing

serialised ROS messages in a file as messages are

received from specified ROS topics. This tool allows

the data to be replayed through the ROS topics at a later

date. LiDAR data was collected on two separate

instances. One set of data was used to create a map, and

the other was used as test data for the localisation

algorithm, see section 9.3.

The camera resolution was set at 320x200 pixels to

allow real-time processing of the camera data. This

resuolution is a similar to the one used in [17]. Camera

data was sent in jpeg compressed form by the raspicam

node, received and uncompressed using ROS

image_transport tools on the laptop and then processed

by the ORB-SLAM2 node, as depicted in Figure 2.

As discussed in section 3.1, before mapping can

begin, initialisation of ORB-SLAM must occur. Once

initialisation occurred, the DiddyBorg platform was

navigated around the bearing enclosure to build up a

map of the environment. Three repetitions of ORB-

SLAM were completed. In contrast to previous work [1],

separate data was not collected for the SfM calculations,

but the data collected for ORB-SLAM was also used for

this purpose.

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

 9 - Results and Discussion

The effectiveness of the SLAM methods ORB-SLAM

and Hector SLAM is now considered. A qualitative

comparison between the methods is given in Table 1.

9.1 - ORB-SLAM

As described in [31], changes in lighting conditions

causes tracking failure between frames for multiple

feature descriptors. This phenomenon also affected the

localisation and mapping of ORB-SLAM, as expected.

Since data collection was performed in the late

afternoon, by the third repetition the sun had set below

the level of the bridge, see Figure 3. As a result, there

was a greater contrast between lighting conditions in

successive frames and tracking was lost for a large

period of time, see Figure 3.

Figure 3: Two frames from ORB-SLAM that results in

the map shown in Figure 4. ORB features are marked as

green squares in the left hand image. In the right hand

image no features appear since tracking has been lost

due to a sudden change in lighting conditions.

Figure 4: The map produced by ORB-SLAM. The key

frame locations can be seen by the blue rectangles, the

current keyframe as a green rectangle and the

progression of the robot also in green. The red map

points show the local visible map.

In general, initialisation was obtained quickly, with

sufficient features provided by objects in the

environment (e.g., railings and litter). Throughout the

mapping, adequate features were present, with texture

being provided by dirt and cracks on planar surfaces.

Figure 3 shows a comparison of the ORB-SLAM results

when initialisation is successful and ORB frames are

being tracked and some frames later when tracking has

been lost due to abrupt change in brightness.

Tracking was also lost due to abrupt and fast

motions, as anticipated. When the tracking was lost, the

robot has to return to a previous key frame and

localisation is performed globally, this was performed

successfully in most cases. As a result of loss of

tracking the whole area mapped with the same detail,

this is likely to affect localisation with new data.

It is also possible to save and reload a map using

additional functionality developed by [32]. The

localisation mode in ORB-SLAM can then be used with

a loaded map and new data for localisation. In future

work, the expansion of this tool for autonomous

navigation will be considered, where one obstacle to

over-come is to provide scale to the map.

9.1.1 - SfM Results

The data collected and used for ORB-SLAM in

Figure 4 was also sufficient the SfM reconstruction to

be successful. Approximately 230 images were

collected in total and used for the SfM reconstruction.

SfM was not as affected by the variations in brightness

and was able to use more of the dataset, whereas ORB-

SLAM cannot use the frames where tracking was lost.

Although the front wall of the abutment in Figure 5 was

one of the least detailed areas of the SfM reconstruction,

it was much more detailed than the corresponding

region in Figure 4. Similarly, it can be seen that there

are more areas in Figure 5 where photos were used

compared to Figure 4, both indicated by blue triangles.

Figure 5: The SfM reconstruction completed using

Zephyr Aerial SfM software. The same dataset used for

ORB-SLAM was used for the reconstruction. The

camera positions can also be seen as blue triangles.

9.2 - Hector SLAM

The environments shown in Figure 5 and Figure 8

show some inconsistencies. In Figure 5 the curved wall

at the front of the enclosure can be clearly seen, there is

no sign of this wall in Figure 8 . The reason for this

discrepancy was the height of the RPLIDAR with

regards to the wall – when mounted on the DiddyBorg

platform the RPLIDAR was higher than the wall, and

hence the wall not detected by the sensor.

The map created by Hector SLAM in Figure 8

shows lines that go off the map. These lines are sensor

readings recorded by the LIDAR at maximum sensor

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

range. The bridge in question crosses the River Aire and

these maximum readings are caused by reflections off

the water.

In addition, Figure 8 shows errors in the SLAM

results that occurred when the robot mounted an

electrical cable that was present in the bearing enclosure.

This cable caused the base, and hence the RPLIDAR, to

tilt into a different plane. As discussed in section 3.2,

Hector SLAM can be used in situations where the plane

of the LIDAR changes, allowing 3D navigation. To

achieve this an IMU is required and integrating this

sensor information to track the transformation of the

base to a stabilised base [18]. This consideration will be

included in future work to give a more robust SLAM

system.

 To compare the results from ORB-SLAM and

hector_slam the trajectory outputted by both methods

was recorded simultaneously and plotted in

Figure 6. The results show overall the trajectories are

very similar in shape. However, the trajectory for ORB-

SLAM is less accurate and has greater variation than

Hector SLAM and gaps appear when the trajectory

crosses itself.

Figure 6: A comparison between the trajectories of the

robot using Hector SLAM (left) and ORB-SLAM
(right). Note the figures are not plotted together since

the ORB-SLAM results require scaling.

10 – Results:Hector SLAM for Autonomous

navigation using AMCL.

It is possible to perform autonomous navigation

using the hector_navigation stack [33], also developed

for urban search and rescue environments by the same

authors of Hector SLAM. The hector_navigation stack

contains packages such as the hector_exploration_node,

which accesses the hector_exploration_planner, a

planning library that allows the robot to explore

unknown areas of the map. However, the resulting map

cannot be saved and used again with the

hector_navigation stack.

For inspection applications it is useful to have a

known map to highlight targets for inspection or areas

of interest, in advance. For this reason, Adaptive Monte

Carlo Localisation (AMCL) was used for localisation in

a known map; the map was created using hector_slam.

As in section 8.2, the hector_slam package was used to

provide odometry from the 2D LiDAR data. This

process was visualised using rviz and displayed in

Figure 9a-c. The implementation used in this work is

based on [34].

Initially, the front wall of the enclosure was not

registered in the map, but in reality these areas past the

front wall are not accessible. For caution, since no

method has been implemented here to prevent

navigation to areas beyond the front wall, the navigation

system was not tested in the abutment enclosure.

However, LIDAR data collected from the bridge is used

as the input and the same commands for a particular

navigation goal were successfully received.

Figure 7: Shows the result of hector_slam with the robot

position and path marked by in the figure. Localisation

and mapping errors occur in this example because the

RPLIDAR is tilted out of its original plan without any

update e.g., using data from an IMU.

Figure 8: The SLAM result for one set of LIDAR data

using Hector SLAM. The robot position, trajectory and

map boundaries are shown. Maximum sensor values are

also returned in some instances – shown by lines that go

outside the map.

Conversely, one of the disadvantages of using pre-

existing maps is if the environment changes, the map

may no longer be representative. In Figure 9c) the front

wall of the abutment was picked up momentarily by the

LIDAR. As a result, localisation was temporarily lost,

since the wall is not a known landmark and some

particles are placed outside of the map.

One disadvantage of AMCL is that a start position is

required to be set for the localisation process to begin.

Since the geometry of the bridge is well known in this

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

case, an initial position can be set fairly accurately. This

can also be set automatically. Figure 9 shows the scatter

of particles before the initial position and again once the

particles have converged to a location.

Figure 9: a, b and c top to bottom.

a) Initially, particles are spread across the whole map.

b) After a few time steps particles converge.

c) Change in map – front of the enclosure detected by

2D LiDAR, position estimation of robot was lost.

Table 1: A qualitive comparison between ORB-SLAM

and Hector SLAM with AMCL.

ORB-SLAM

(localization only)

Hector SLAM

Plus AMCL

Cost Lowest Highest

Accuracy Lowest Highest

Automatic

scale

No Yes

3D map Yes No

Use data

elsewhere

Yes: use directly

for SfM.

Require camera

for visual

inspection.

Environment

variation/

 Real world

robustness

Affected by

lighting.

Harder to relocalise

Lost if scan

doesn’t match
environment,

but relocalises

well.

Autonomous

Navigation

Need some method

for scaling first.

Easily

implemented.

Future work Sensor Fusion:

odometry for

scaling

Sensor fusion:

IMU for 3D

navigation

Table 1 compares some qualitative differences

between using Hector and AMCL and ORB-SLAM for

localisation. Note, that since no method for navigation is

implemented for ORB-SLAM in this paper, localisation

only is considered. Overall, the low cost and re-use of

data are key advantages of ORB-SLAM, but Hector

SLAM with AMCL is more accurate, and autonomous

navigation could be implemented by outputting the

position in the map and the required target to the ROS

navigation stack. Both methods require future work to

improve their robustness in inspection environments,

but the results so far are promising.

11- Future Work and Considerations

To increase the robustness of the SLAM and

autonomous navigation approaches used here, sensor

fusion will be implemented, primarily with an inertial

measurement unit for the hector_slam approaches and

odometry for ORB-SLAM to incorporate scale into the

map. Future work will look at extending the ORB-

SLAM localisation method considered here for

navigation.

12 - Conclusions

In this work, an improved robot for inspection of

bridge bearings with off-the-shelf low-cost camera and

LIDAR technology was presented. Building upon

previous work, existing methods for Simultaneous

Localisation and Mapping (SLAM) (i.e., ORB-SLAM

and Hector SLAM) were applied to a real bridge. Visual

inspection was carried out and qualitatively compared

the differences in the methods. Using Hector SLAM, we

then explored methods for autonomous navigation, with

a known map.

Acknowledgements
This work was supported by the Engineering and

Physical Sciences Research Council (ESPRC), UK.

References

[1] H. Peel, G. Morgan, C. Peel, A. Cohn, and R.

Fuentes, “Inspection robot with low cost
perception sensing,” in ISARC 2016 - 33rd

International Symposium on Automation and

Robotics in Construction, 2016.

[2] H. Eggert and W. Kauscke, “Structural Bearings,”
vol. 3, no. November, p. 405, 2002.

[3] L. M. R. Freire, J. De Brito, and J. R. Correia,

“Management system for road bridge structural
bearings,” Structure and Infrastructure Engineering,
vol. 10, no. 8. Taylor & Francis, pp. 1068–1086,

2014.

[4] [4] L. Freire, J. de Brito, and J. Correia,

34th International Symposium on Automation and Robotics in Construction (ISARC 2017)

“Inspection Survey of Support Bearings in Road
Bridges,” J. Perform. Constr. Facil., vol. 29, no. 4,
p. 4014098, 2015.

[5] [5] J. Chen, W. Junjie, C. Gang, W. Dong, and X.

Shen, “Design and Development of a Multi-rotor

Unmanned Aerial Vehicle System for Bridge

Inspection,” in International Conference on
Intelligent Robotics and Applications (ICIRA

2016), 2016, pp. 498–510.

[6] [6] R. R. Murphy et al., “Robot-assisted bridge

inspection,” J. Intell. Robot. Syst. Theory Appl.,
vol. 64, no. 1, pp. 77–95, 2011.

[7] [7] N. H. Pham and H. M. La, “Design and
implementation of an Autonomous Robot for Steel

Bridge Inspection,” Int. J. Adv. Robot. Syst., vol.
10, no. January, pp. 556–562, 2016.

[8] 3DFLOW, “3DF Zephyr Aerial.” 3DF, Verona,
2016.

[9] R. Toldo, R. Gherardi, M. Farenzena, and A.

Fusiello, “Hierarchical structure-and-motion

recovery from uncalibrated images,” Comput. Vis.
Image Underst., vol. 140, pp. 127–143, 2015.

[10] R. Toldo, F. Fantini, L. Giona, S. Fantona, and A.

Fusiello, “Accurate Multiview Stereo
Reconstruction with Fast Visibility Integration and

Tight Disparity Bounding,” ISPRS-International

Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,

vol. 1, no. 1, pp. 243–249, 2013.

[11] D. Thrun, Sebastian; Burgard, Wolfram; Fox,

“EKF Localization,” in Probabalistic Robotics,
Cambridge, Massachusetts: The MIT Press, 2006,

pp. 54–65.

[12] D. Fox, W. Burgard, F. Dellaert, and S. Thrun,

“Monte Carlo Localization: Efficient Position
Estimation for Mobile Robots.”

[13] D. Thrun, Sebastian; Burgard, Wolfram; Fox, “The
GraphSLAM Algorithm,” in Probabalistic

Robotics, 10th ed., Cambridge, Massachusetts:

MIT Press, 2006, pp. 337–385.

[14] J. D. Mur-Artal, Raúl, Montiel, J. M. M. and

Tardós, “ORB-SLAM : a Versatile and Accurate
Monocular SLAM System,” IEEE Trans. Robot.,
vol. 31, no. 5, pp. 1147--1163, 2015.

[15] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U.

Klingauf, “A Flexible and Scalable SLAM System
with Full 3D Motion Estimation,” in Proc. IEEE
International Symposium on Safety, Security and

Rescue Robotics (SSRR), 2011, pp. 155–160.

[16] Raulmur, “ORB_SLAM2.” raulmur / github

repository, 2016.

[17] G. Ponnu, J. George, and J. Skovira, “Real-time

ROSberryPi SLAM Robot,” Cornell University,
2016.

[18] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen,

O. Von Stryk, and U. Klingauf, “Hector Open

Source Modules for Autonomous Mapping and

Navigation with Rescue Robots,” Rob. 2013 Rob.
2013 Robot World Cup, vol. XVII, pp. 642–631,

2013.

[19] Tu-darmstadt-ros-pkg, “hector_slam.” Tu-

darmstadt-ros-pkg / github repository, 2016.

[20] PiBorg, “DiddyBorg - The most powerful

Raspberry Pi robot available | PiBorg,” Drupal.
[Online].

Available: https://www.piborg.org/diddyborg.

[Accessed: 29-Mar-2017].

[21] Martin Wimpress, “Ubuntu MATE for the
Raspberry Pi 2 and Raspberry Pi 3,” 2016.
[Online].

Available: https://ubuntu-mate.org/raspberry-pi/.

[Accessed: 29-Mar-2017].

[22] The Open Source Robotics Foundation, “ROS.org |
About ROS.” [Online]. Available:
http://www.ros.org/about-ros/.

[Accessed: 18-Mar-2017].

[23] Open Source Robotics Foundation, “Introduction,”
ROS Wiki, 2014. [Online]. Available:

http://wiki.ros.org/ROS/Introduction.

[Accessed: 25-Mar-2017].

[24] J. M. O’Kane, A gentle introduction to ROS. Jason
M. O’Kane, 2014.

[25] PiBorg, “PicoBorgRev.” 2015.
[26] ROS, “common_msgs - ROS Wiki,” Open Source

Robotics Foundation, 2014. [Online]. Available:

http://wiki.ros.org/common_msgs. [Accessed: 29-

Mar-2017].

[27] Robot Web Tools, “roslibjs.” Robot Web Tools /
github repository, 2017.

[28] larrylisky.com, “Enabling Raspberry Pi Camera
V2 under Ubuntu Mate.” [Online]. Available:
https://larrylisky.com/2016/11/24/enabling-

raspberry-pi-camera-v2-under-ubuntu-mate/.

[Accessed: 29-Mar-2017].

[29] 38 contributors (full list Https://github.com/ros-

perception/image_pipeline/graphs/contributors),

“ros-perception / image_pipeline.” github
repository.

[30] Robopeak, “rplidar_ros.” robotpeak / github
repository, 2016.

[31] A. Pieropan, M. Björkman, N. Bergström, and D.

Kragic, “Feature Descriptors for Tracking by
Detection: a Benchmark,” 2016.

[32] poine and raulmur (forked from raulmur),

“ORB_SLAM2.” , poine / raulmur / github

repository, 2016.

[33] Tu-darmstadt-ros-pkg, “hector_navigation.” Tu-

darmstadt-ros-pkg / github repository, 2016.

[34] Pariljain, Nischal92, ParitoshKelkar, Nischalkn,

“F1tenth.”, nischalkin / github repository, 2016.

	1 - Introduction
	2 - Structure-from-Motion (SfM)
	3 – Simultaneous Localisation and Mapping (SLAM)
	3.1 ORB-SLAM
	3.2 Hector SLAM

	4 - Adaptive Monte-Carlo Localisation
	5- Platform Description and Integration
	5.1 - Platform
	5.2 - The Robot Operating System (ROS)
	5.2.1 - Motion command node
	5.2.1 - User interface

	6- Other Hardware and Sensors
	6.1.1 Raspberry Pi camera module
	6.1.2 - Camera calibration
	6.1.3 - RPLIDAR

	7 - Site Description
	8 - Survey and Data Collection
	9 - Results and Discussion
	9.1 - ORB-SLAM
	9.1.1 - SfM Results

	9.2 - Hector SLAM

	10 – Results:Hector SLAM for Autonomous navigation using AMCL.
	11- Future Work and Considerations
	12 - Conclusions
	Acknowledgements This work was supported by the Engineering and Physical Sciences Research Council (ESPRC), UK.
	References

